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Abstract: Powders of β-tricalcium phosphate (β-TCP, Ca3PO4) doped with manganese (Mn2+) are
comprehensively analyzed with electron paramagnetic resonance (EPR) and electron-nuclear double
resonance (ENDOR) techniques. The modeling of the spectra permitted to calculate the values of
zero-field splitting (B0

2 = −904 MHz; B0
4 = −1.41 MHz and B3

4 = 195.2 MHz) and explain the origin of
the low-field hyperfine structures as the allowed spin transitions of fine structure. Three structurally
inequivalent positions for Mn2+ in the β-TCP crystal lattice are identified and their g-factors and
hyperfine constants are quantified. The obtained results can serve as fundamental background to the
study of structurally disordered matrices with high spin (S ≥ 1) impurities which are important for
catalytic systems.
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1. Introduction

Transition metal catalysts are used in pharmaceuticals, in the production of
natural products, chemistry, the hydrogenation of aromatic hydrocarbons, heavy-oil
upgrading, etc. [1–5]. Key to the catalytic importance of transition metals is the presence of
partially filled d shells (unpaired electrons) leading to the appearance of paramagnetism.
The complex ligand structure that surrounds the catalyst’s central active site has a great
influence in controlling the activity, selectivity and specificity of the catalyst and even subtle
changes in the first and following coordination spheres deserve a thorough investigation [6].

Electron paramagnetic resonance (EPR) has found wide use in identification of the
intermediate compounds and revelation of the correlation between the structural details
and activity of the systems. High sensitivity of the EPR method and its selectivity to the
paramagnetic compounds set the stage for the study of the intermediates containing un-
paired electrons directly in the catalytic systems, even without their isolation from solutions,
i.e., so even in conditions extremely like those occurring in a real catalytic reactor [7–12].

This potential is nowadays enormously extended thanks to the availability of high-field
and advanced pulsed methods. These high-resolution techniques allow resolving weak
magnetic interactions, not usually resolved in conventional continuous wave (cw) EPR
experiments. In particular, electron-nuclear double resonance (ENDOR) allows detecting
the nuclear magnetic resonance (NMR) transition frequencies of nuclei coupled to unpaired
electrons, providing unique information in both the local structure and the nature of the
chemical bond between the metal center and the surrounding ligands [13,14].

Calcium phosphates (CaP) based materials are used and developed not only for
biomedical purposes [15–18] but also as catalysts’ support [19]. CaP contains Ca2+ cations
together with orthophosphate (PO4

3−), metaphosphate (PO3
−), or pyrophosphate (P2O4

7−)
anions, and sometimes hydrogen (H+) or hydroxide (OH−) ions. Calcium phosphates with
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a Ca/P ratio in the range of 1.5 and 1.67 are called apatites [16]. Among the apatites,
hydroxyapatite (Ca10(PO4)6(OH)2, HAp) is the most famous one used as heterogeneous
catalysts [20–22]. The hydroxyapatite materials were more effective at coupling and de-
hydrogenation compared to calcium oxide. Other representatives of the large CaP family
are studied much less, although tricalcium phosphate (TCP, Ca3PO4) showed a higher rate
of alcohol coupling compared with the hydroxyapatite (see, for example [23,24]). β-TCP
structures attract attention because of their ability to demonstrate not only catalytical but
also non-linear optical, ferroelectric, antiferroelectric, and bioregenerative properties. Such
a wide field of possible applications of these materials is due to the unique structure of
β-TCP in comparison with other CaPs [25].

β-TCP is characterized by a rhombohedral structure with the space group R3c and five
inequivalent Ca sites (Figure 1) with coordination numbers ranging from six to nine and
various Ca-O distances offering a wide range of cationic substitutions. It is usually assumed
that the cation site affinity is ruled by steric criteria (rather than by charge) [26] meaning
that for example Zn2+, Mn2+ ions (with cationic radii smaller than 1.1 Å) incorporates
mainly in Ca5 sites [27,28] or fully Ca3 if their radii are larger than 1.3 Å like Sr2+ or Ba2+.
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Figure 1. β-TCP crystal structure with the corresponding calcium and phosphorus polyhedra, where
red balls—oxygen, blue—calcium, pink—phosphorus.

As concerning transition metals, manganese is one of the commonly used dopant
and metal centers for various types of catalysts including hydroxyapatites [29–32]. In a
recent investigation [33], Mn-doped α-tricalcium phosphate was extensively studied. In
paper [34] bioactive manganese-doped TCP/HA ceramic coatings were developed. It was
shown that Mn ions in the TCP structure were present in both Mn2+ and Mn3+ oxidation
states and manganese clusters were revealed.

The incorporation of Mn into the HAp crystal structure has been extensively investi-
gated by various methods including EPR (see [35,36] and references therein). It was shown
that in HAp (in contrast to the steric rule) both Ca1 and Ca2 sites are occupied by Mn2+

even at a low manganese concentration. It is logical to assume that for the β-TCP not
only Ca5 sites as mentioned above can be filled but (at least for some of the synthesis
conditions or manganese concentrations) also other calcium positions. Due to the structure
complexity, in comparison with HAp, there are not many experimental, theoretical, and
computational studies of TCP doping. Some reliable analytical approach(es) should be
introduced and applied to unravel the dopant positions. EPR techniques can help to get
the required information [37,38].

Interpretation of the EPR spectra for the transition metal ions is often complicated due
to their high electron spin (S). The spin systems with S = 2 (quintet) and S = 5/2 (sixtet)
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can experience fourth-order zero field interaction terms. On the contrary to the quintet,
the S = 5/2, fourth-order zero-field splitting (ZFS) is much more easily determined since
it may be the only ZFS possible in the spherically symmetric high-spin d5 configuration.
The common axial symmetry situation, where ZFS predominates by second-order terms
(i.e., D), the zero-field energies facilitate as follows: E1,2 = −8/3 × D; E3,4 = −2/3 × D;
E5,6 = +10/3 × D. These expressions give relative energies of 0, 2D, and 4D and correspond
to the three Kramers doublets, accordingly, |5/2,±5/2〉, |5/2,±3/2〉, |5/2,±1/2〉 [39]. The
presence of a gradient crystal field leads to the appearance of five fine structure components,
that are usually described by axial spin-Hamiltonian with D and E in powder systems [40].
However, this is not enough to describe satisfactorily the low-field lines arising from the
high-order zero splitting components. Additionally, the mixing of spin sublevels leads to
an extremely complex angular dependence of each component of the fine structure.

The aim of the present work was to develop the EPR-based approaches for the study
of the influence of manganese doping on the structure of β-TCP and to give a reasonable
explanation for the observed powders’ spectral features.

2. Materials and Methods

Calcium nitrate tetrahydrate (Ca(NO3)2·4H2O, ≥99%, Reakhim, Russian Federation),
manganese(II) acetate (Mn(CH3COO)2, ≥98%, Reakhim, Russian Federation) and diammo-
nium hydrogen phosphate ((NH4)2HPO4, ≥98%, Reakhim, Russian Federation) were used
as starting materials for the synthesis. The synthesis was carried out at room temperature,
of about 25 ◦C. The synthesis of Mn-doped TCP proceeded as follows. First, calcium
nitrate and manganese acetate were dissolved in deionized water at the total metal ion
concentration of 0.5 M, after which an appropriate amount of 0.5 M (NH4)2HPO4 solution
was added dropwise under vigorous stirring for 30 min, while manually controlling the pH
to around 6.5 by the addition of concentrated ammonia (NH4OH, 25%, Reakhim, Russian
Federation). The total metal ion to phosphorous ratio was kept at 1.50 for all the synthesized
compounds. The obtained precipitates were mixed in the reaction mixture for 30 min after
the addition of (NH4)2HPO4 and afterwards filtered, washed with deionized water and
dried at 110 ◦C overnight in the oven. Finally, dry powders were ground in an agate mortar
and annealed in the air atmosphere at 400 ◦C and 900 ◦C for 2 h, with the heating rate
of 10 ◦C/min. Four samples were synthesized, containing different Mn2+ contents: TCP,
0.1MnTCP, 0.01MnTCP, and 0.001MnTCP. With this denotation, 0.01MnTCP, for example,
means that 0.01 mol.% of Mn2+ is estimated to have been incorporated in the TCP structure
based on precursor concentrations, yielding the molecular formula Mn0.01Ca2.99(PO4)2. The
corresponding stoichiometries of TCP, 0.1MnTCP and 0.001MnTCP equaled Ca3(PO4)2,
Mn0.1Ca2.90(PO4)2 and Mn0.001Ca2.999(PO4)2, respectively. Detailed characterizations of the
samples by various analytical techniques are given in paper [41].

EPR measurements were performed using the W-band (with the microwave frequency
of νMW ≈ 93.5 GHz) Bruker Elexsys E680 and the X-band (νMW ≈ 9.5 GHz) Bruker Elexsys
E580 spectrometers (Germany, Karlsruhe) both in conventional (cw) and pulsed modes.
While cw EPR uses continuous microwave irradiation and reveals splitting of energy levels
of paramagnetic system, pulse techniques provide insights into the dynamics of the system
and allow one to measure relaxation times—longitudinal or spin-lattice relaxation time
T1 and transverse or spin-spin relaxation time T2. The typical pulse sequences we used
in our research in the X and W-band were: (1) π/2 − τ − π with the π/2 pulse duration
of 32 ns and the time delay τ = 240 ns to obtain electron spin echo (ESE); (2) T2 was
measured by tracking the primary ESE amplitude with the same π/2 − π pulse durations
while varying τ; (3) T1 was extracted from the inversion-recovery studies by applying the
π − Tdelay − π/2 − τ − π pulse sequence, while Tdelay was varied.

For ENDOR experiments we used special (for nuclei and electron) cavities and applied
Mims pulse sequence π/2 − τ − π/2 − T − π/2 with an additional radiofrequency (RF)
pulse with the frequency swept in the range of 1–200 MHz inserted between the second



Ceramics 2022, 5 321

and third microwave π/2 pulses. Details of ENDOR experiments and their interpretation
for studying CaP systems are given in [42].

EPR analysis and simulation of angular dependence of the zero-field splittings were
conducted using Matlab 2018b with the Easyspin software package [43].

3. Results and Discussion
3.1. X-Band Measurements

The EPR spectra of TCP-Mn in both cw and pulsed modes at X-band are depicted in
Figure 2. ESE was not observed at room temperature due to the short relaxation times,
so the further experiments using pulsed mode were conducted at T = 50 K. At higher
manganese concentrations (x = 0.1), the EPR signal in the pulsed mode was not observed
for T down to 10 K due to the very short value of T2 with the corresponding line broadening
(loss of the information about the hyperfine structure). The T2 value specifies the relaxation
(recovery) rate of the spin system from their excited state due to the spin-spin interaction
between equivalent paramagnetic centers.
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The relaxation time measurements give the same values of T1 (≈1.5 µs) and T2 (≈105 µs)
as measured throughout the magnetic field (H0 or B0) and range from 50 G to 7000 G. The T1
time indicates the spin-lattice relaxation rate owing to the interaction between longitudinal
magnetization of Mn2+ ions and the crystal lattice (matrix) of TCP. The absence of any
drastically changes of the relaxation times with B and roughly monoexponential types of T1
and T2 curves allows one to assume that uncontrolled manganese phases were not formed
during the synthesis, which would contribute to the appearance of additional signals in
both the cw and ESE spectra (cf. with [44], for example).

To describe the obtained EPR spectra we used the following spin Hamiltonian from
the crystal field theory [35]:

Ĥ = gβH0Ŝz + B0
2O0

2 + B0
4O0

4 + B3
4O3

4 + Aiso
(
Ŝz Îz

)
(1)

where the first term is Zeeman interactions (Ze), second, third and fourth are
responsible for the fine structure and ZFS, and the fifth one is hyperfine splitting (hfs). Here
Bq

k = cq
k·b

q
k are the parameters of the electric crystal field (for example

c0
2(θ, ϕ) = 3cos2(θ)− 1 and c2

2(θ, ϕ) = cos2(ϕ)− sin2(ϕ)), bq
k¯crystal field values. Oq

k are
the Stevens operators (for example O0

2 = 3S2
z − S(S + 1) and O2

2 = S2
x − S2

y). The maximum
power is determined by the value of the spin number since the restrictions are: k ≤ 2 for
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S = 1 and 3/2, k ≤ 4 for S = 2 and 5/2, k ≤ 6 for S = 3 and 7/2, where only even terms (k = 0,
2, 4 and 6) can contribute. The value of q is equal to the multiplicity of the symmetry of
the crystal lattice. Stevens operators are known, while the parameters of the crystal field
depend on the environment of the impurity ion. Note that g-factor and Aiso—constant of
hyperfine interaction are assumed to be isotropic values. As seen from (1), the EPR spectra
are due to ZFS of the 6S5/2 ground state electron spin S = 5/2, and hyperfine coupling to
the 55Mn nuclear spin (100% abundance) with I = 5/2 [33].

The main reason for using such spin Hamiltonian is to observe several hfs in powder
spectra. The low-field hfs (so called singularity signals) observed in the experiments evoke
a particular interest for their study (Figure 3). In orientationally-disordered environments
(e.g., powder samples) observation of allowed non-central transitions is extremely rare
from an experimental point of view. Therefore, the low-field spectral features are analyzed
in detail below.
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Figure 3. Low field components of the fine structure with 6 splittings of isotropic hyperfine interaction
for 0.001MnTCP at three ranges of magnetic field sweeping corresponding to the (a) |+5/2〉 → |+3/2〉
spin transition for parallel orientation with Bres1 = 688 G, (b) |+3/2〉 → |+1/2〉 spin transition for
perpendicular orientation with Bres2 = 1400 G and (c) |+3/2〉 → |+1/2〉 spin transition for parallel
orientation with Bres3 = 2330 G.

We suppose that these singularities belong to the transitions of non-central (low-field)
components of the fine-structure in accordance with the selection rules (Figure 4, left panel).
Nanocrystals oriented in the proximity of canonical positions give the main contribution
to these signals. The presented theoretical calculation (Figure 4, right panel) of resonance
transition values and construction of the angular dependence model of the fine-structure
components using correct spin Hamiltonian, confirm our assumptions. The theoretical
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model of orientation dependence of ZFS components clearly demonstrate that there are
several resonance lines at low magnetic field which weakly depend on orientation. The
excellent agreement between calculated and experimental data demonstrates that using
correct spin Hamiltonian allow one to describe and explain the nature of the low-field (LF)
spectral features.
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where Bres1 = 688 G, Bres2 = 1400 G, Bres3 = 2330 G, hν—energy of the microwave quant.
The magnitudes of the magnetic field have been determined from the experiment.

Consequently, unknown values of ZFS were found by means of solving the equations. At



Ceramics 2022, 5 324

the last step to determine these values a simulation of the angular dependence model more
accurately, the MATLAB was used. The results obtained are given in Table 1.

Table 1. The spin-Hamiltonian parameters of zero-field splitting for Mn2+ ions in TCP.

B0
2 B0

4 B3
4

−904 MHz −1.41 MHz 195.2 MHz

Accordingly, the low-field hfs can be interpreted as spin transitions which satisfy
selection rules ∆MS = ±1, ∆mI = 0. Otherwise, if spin transitions correspond to the change
of quantum spin number by ∆MS = ±2, ±3, the constant of hfs must be equal to 2 × Aiso
(so called forbidden transitions).

It is worth noting that an additional splitting of the low-field hfs onto two components
can be observed (cf. Figure 3b). Each component equally increases in intensity with the
increasing concentration of impurity ions. It gives a sign that the manganese ion occupies
several (at least two) of the five possible, structurally nonequivalent positions (cf. Figure 1)
already at very low concentrations of x = 0.001, with further equally probable filling. We
excluded that an anisotropy of hyperfine interaction could be responsible for the observed
effect—such splitting should be observed for other spin transitions of a fine structure
too and attempts to simulate only this section of the EPR spectrum with anisotropic hfs
parameters also failing. For a more comprehensive analysis, the additional measurements
were performed in the high-frequency (HF) range of experimental setup.

3.2. High Frequency EPR Spectroscopy

The important advantage of HF-EPR used in this work is the higher spectral resolution,
which allows one to distinguish the paramagnetic centers with slight variations of their
g-factors. The temperature has been reduced to 50 K to improve the signal-to-noise ratio
(Figure 5). The appearance of the observed structure in the vicinity of g = 2 is due to the hfs
of Mn2+ ions. As seen, the EPR signal consists of three different superimposed hyperfine
structures. Each of these hyperfine structures has its own set of spectroscopic parameters,
as listed in Table 2. We assume that this EPR pattern is due to three different Mn2+ positions
in the structure of the sample under study. Each of these nonequivalent positions has a
different ionic environment with corresponding symmetry which affects the g-factor and
hfs constant.
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Table 2. The main spectroscopic and relaxation characteristics of Mn2+ ions in TCP for 0.001MnTCP
extracted at T = 50 K. The relaxation times were measured as a functions of magnetic field B0 from
33,380 G to 34,000 G.

g-Factor Aiso (G) Linewidth (G) T1 (µs) T2 (µs)

2.0040(5) 95.4(2) 9(1) 97(1) 1.51(3)

2.0055(5) 95.2(2) 12(1) 101(1) 1.49(3)

2.0080(5) 93.7(3) 18(2) 109(2) 1.5(3)

An HF-EPR spectrum in the larger magnetic fields sweep range is shown in Figure 6.
It can be noted that each hyperfine component of total signal in pulse mode (Figure 5 right
panel) at central transition has a triangular shaped line, caused by the overlapping signals of
three manganese positions with each other. Measurements of the relaxation time obtained
as a function of the external magnetic field B0 from 33,380 G to 34,000 G demonstrate the
presence of three different values of T1. This can serve as additional argument supporting
the assumption of three nonequivalent positions of manganese, because the values of T1
depend on the local environment (symmetry). It is hardly to assume that the existence of
several EPR components (or hyperfine structures) could be due to the presence of other
manganese-containing phases (hydroxyapatite or octacalcium phosphate). In this case, the
relaxation times would differ by an order of magnitude, see [44], for example.
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Figure 6. ESE HF-EPR for 0.001MnTCP with registration of all components of the fine structure
(left panel). Theoretical model of the angular dependence of the components of a fine structure in
the W-band (right panel).

Additional measurements were carried out in a wide range of magnetic fields (from
50 mT to 3.5 T, or from 500 G to 35,000 G) to confirm the absence of other EPR signals at
low fields (such as in the vicinity of g ≈ 9.7, g ≈ 4.3). This serves as additional argument
in favor of the fact that the wide EPR signal obtained belongs to the allowed transitions
of the fine-structure of the Mn2+ ions with g ≈ 2. The presented model of the orientation
dependence of the fine structure components in the W-band with the same parameters as
for the X-band, is shown in Figure 6. It is simpler than in the X-band (cf. Figure 4) due to
the fact that with the increase of the magnetic field strength by 10 times, the wave functions
became more “pure”. This also explains appearance of the hfs at the central transition of the
EPR spectrum, since the central component of the fine structure has become less dependent
on the orientation.
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3.3. ENDOR Measurements

The crystal lattice of TCP contains an ion with a magnetic nuclear moment 31P (100%
abundance) with nuclear spin I = 1/2. Figure 7 shows the obtained HF ENDOR spectrum
using the Mims pulse sequence for two different values of external magnetic field. Three
resolved superhyperfine splittings are observed, with their own splitting values caused by
the 31P-Mn2+ nuclear-electron interaction. These constants depend on the distance between
interacting ions. Three different values of splitting are excellent evidence for the assumption
of three nonequivalent positions of manganese. This is justified by the fact that each Ca
position in the structure of TCP has a different interatomic distance to phosphorus [45].
Probably, the difference in the linewidth of each splitting is due to a different scatter of
lengths between specific (distinct) positions of manganese substituting the Ca site and
coordination spheres of phosphorus. In addition, one of the possible reasons is associated
with dipole-dipole broadening due to the powder averaging.
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observed splittings indicate the presence of several positions of Mn2+ ions in the crystal lattice of TCP.
The hyperfine values are a1 = 0.7 MHz, a2 = 2.05 MHz and a3 = 6.4 MHz.

The hyperfine structure constants containing two different contributions related to
dipole-dipole interaction (anisotropic part) and to Fermi contact interaction (isotropic part)
were used to estimate the interatomic distance between Mn and 31P. In point dipole approx-
imation the distance can be estimated as 3–4 Å. The intensity redistribution depending on a
fixed external magnetic field is caused by angular dependence of the splitting value related
to anisotropic dipole-dipole interaction. In addition, manganese has a weak spatial electron
density distribution on phosphorus nuclei, since all the electron density is concentrated on
the ion itself. Thus, the contribution of Fermi contact interaction is negligibly small and is
not considered in calculations.

The integral intensity of each structure is directly related to the number of phosphorus
ion nuclei on the particular coordination sphere. Consequently, using the relation of the
integral intensities’ values of splittings with each other comparing with the relative number
of nuclei on the different coordination phosphorus spheres positions of manganese can
approximately be defined. We assume that manganese has occupied three specific positions
of calcium. The two main arguments of this assumption are the number of phosphorus
nuclei surrounded by each position, which corresponds to the intensity of ENDOR spectra
and calculated distance (in dipole-dipole approximation) to these nuclei which has good
agreement with interatomic length data obtained from the x-ray measurements [41]. The
powder form of the samples leads to additional difficulties and restrictions during the in-
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terpretation of experimental results. Therefore, the results concerning manganese positions
have a probabilistic character and require further additional investigation by, for example,
the DFT calculations approach for refinements contributions to hfs value. Thus, these
experimental datasets are an excellent reference point for further research of the relevant
materials from calcium phosphate groups.

4. Conclusions

The structural and fundamental features of the spin system of TCP-Mn were analyzed
by the electron paramagnetic resonance and electron-nuclear double resonance techniques.
A comprehensive study by multifrequency and pulse approaches made it possible to iden-
tify the presence of three structurally unequal positions of manganese ions in the crystal
lattice of the sample. The main spin-Hamiltonian parameters (g-factors, zero-field splitting
and hyperfine constant) with dynamic (T1 and T2 relaxation) characteristics were precisely
determined for each Mn2+ center. The modeling of the EPR spectra permitted us to calculate
the high order term values of zero-field splitting (B0

2 = −904 MHz; B0
4 = −1.41 MHz and

B3
4 = 195.2 MHz) for powder systems and explain the origin of low-field hyperfine struc-

tures as the allowed spin transitions of a fine structure. The obtained results can be served
as a fundamental background to the study of structurally disordered matrices with high
spin impurities (S ≥ 1) and have additionally applied importance in the chemical synthesis
field or clinical industry.
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