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Abstract: Electroluminescence of metal halide perovskites has been widely reported via the fab-
rication and optimization of light-emitting diodes and light-emitting transistors. Light-emitting
transistors are particularly interesting owing to the additional control of the gate voltage on the
electroluminescence. In this work, the design of a microcavity, with a defect mode that can be tuned
with an applied voltage, integrated with a metal halide light-emitting transistor is shown. The
optical properties of the device have been simulated with the transfer matrix method, considering
the wavelength-dependent refractive indexes of all the employed materials. The tunability of the
microcavity has been obtained via the employment of doped semiconductor nanocrystalline films,
which show a tunable plasma frequency and, thus, a tunable refractive index as a function of the ap-
plied voltage. Consequently, the tunability of the electroluminescence of the metal halide perovskite
light-emitting transistor has been demonstrated.
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1. Introduction

The electroluminescence of metal halide perovskites is attracting increasing attention
owing to their narrowband emission, near-unity photoluminescence efficiency, and low-
cost solution-based fabrication [1-5]. In addition to the manufacture of very efficient
solar cells [6-10] and light-emitting diodes [11-13], the development of perovskite-based
light-emitting transistors is of great interest [14-19].

To enhance the electroluminescence of light-emitting transistors, the integration of
photonic crystals as gate dielectrics has been reported in organic light-emitting transistors.
In this way, enhanced emission efficiency and enhanced emission directionality has been
demonstrated [20,21]. Because of the similar wet chemistry fabrication techniques for
organic semiconductors and metal halide perovskites, photonic crystals as gate dielectrics
can also be implemented for metal halide perovskite light-emitting transistors. To further
increase the enhancement, a combination of a metal halide perovskite light-emitting transis-
tor with a microcavity has been proposed. In such a design, a photonic crystal is used as a
gate dielectric and the other photonic crystal is fabricated onto the metal halide perovskite
layer [22].

With a proper choice of materials, a microcavity can be tuned with an external stimulus
in order to tune the light-emitting transistor emission. For example, the employment of
metals or doped semiconductors [23-25] as components of the photonic crystal leads to
a tunable photonic band gap with the application of an external voltage [26]. In this
work, the design of a metal halide perovskite light-emitting transistor combined with a
microcavity, which can be tuned with an external voltage, is presented. The transmission
spectra are simulated with the transfer matrix method and the wavelength-dependent
refractive indexes of all the materials have been employed.
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2. Materials and Methods

The simulations of the light transmission spectra of the structures studied in this
work have been performed with the transfer matrix method, which is well established for
one-dimensional multilayer systems [27-30]. The studied system is glass/multilayer/air.

For silicon dioxide (5i0Oy), the following Sellmeier equation has been employed [31,32]:

2o (A) 1= 0.6961663A2 N 0.4079426A2 N 0.8974794A% )
5102 T A2-0.0684043% ' A2 —0.11624142 © A2 —9.8961612

For titanium dioxide (TiO;), the wavelength-dependent refractive index is given
by [33]
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The wavelength-dependent refractive of the active material MAPbI; is taken from
Refs. [34,35]. The optical response of indium tin oxide (ITO) nanocrystalline films and
fluorine indium co-doped cadmium oxide (FICO) nanocrystalline films has been simulated
by employing the Drude model and the effective medium approximation [36]. The filling
factor of the ITO and FICO nanocrystalline films is 0.65. For ITO, N = 2.49 x 1026 cm 3,
€oo = 4, m* = 0.4 m,, and T = 0.1132 eV [24]. For FICO, N = 1.68 x 10 cm 3, ¢o, = 5.6,
m* = 0.43 m,, and I' = 0.07 eV [24,37].

3. Results

In Figure 1, a sketch of the MAPbI3 metal halide perovskite light-emitting transistor,
coupled with a microcavity, is shown. In such a structure, the thickness of the MAPbI; layer
is 40 nm, the thickness of the ITO layers is 100 nm, the thickness of the FICO nanocrystalline
layers is 112.7 nm, the thickness of the SiO, layers is 144.15 nm, and the thickness of the
TiO, layers is 73.5 nm. The design of the device follows the sequence (from bottom to
top) of ITO/(TiO,/FICO)4/S5i02 /MAPDI3/S5iO, /ITO/(FICO/TiO,)4/1TO. In Figure 1, the
white spaces in the photonic crystal represent the repetition of the TiO, /FICO unit cell.
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Figure 1. Sketch of the light-emitting transistor integrated with a microcavity in which the upper
photonic crystal is a tunable switch activated by an external voltage. The sequence of the structure
(from bottom to top) is ITO/(TiO, /FICO)4/SiO, /MAPbI3 /SiO, /ITO/(FICO/TiO3)4 /ITO. The white
spaces in the photonic crystal represent the repetition of the TiO, /FICO unit cell.

The photonic crystal below the MAPbI; layer, made by TiO, and FICO nanocrystals,
functions as a gate dielectric. Instead, the photonic crystal above the MAPDI; layer is made
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by TiO, and FICO nanoparticle layers sandwiched between two transparent electrodes of
ITO and functions as electro-optic switch.

The application of an external voltage between the two ITO electrodes leads to a change
in the carrier density of the doped semiconductor nanocrystals, i.e., FICO nanocrystals,
resulting in a change in the dielectric function of the FICO nanoparticle layers and, thus, to a
change in the effective refractive index of the photonic crystal. Such an effective refractive
index change gives rise to a shift of the photonic band gap of the photonic crystal [26,38]. Re-
ferring to the structure sketched in Figure 1, the shift of the photonic band gap of the photonic
crystal above the MAPbDI; layer results in a modification of the light transmission spectrum
of the light-emitting transistor coupled with the microcavity. In Figure 2, the transmission
spectrum of the light-emitting transistor coupled with the microcavity is shown for two
different carrier densities of the FICO nanocrystals: the solid black curve corresponds to the
structure with a FICO carrier density of 1.68 x 10%” charges/m?3, while the dotted /dashed
red curve corresponds to a FICO carrier density of 3.68 x 10?7 charges/m?3.

400 600 800 1000
Wavelength (nm)

Figure 2. Transmission spectrum of the light-emitting transistor coupled with a tunable microcavity
(structure depicted in Figure 1). The solid black curve corresponds to the structure with a FICO
carrier density of 1.68 x 10’ charges/m3, while the dotted/dashed red curve corresponds to a FICO
carrier density of 3.68 x 10?7 charges/m?.

With such a change in carrier density of FICO nanocrystals, it is possible to almost
completely suppress the defect mode of the microcavity. This is mainly due to the asym-
metry generated between the two photonic crystals of the microcavities, i.e., the one
below the MAPbI; layer and the one above the MAPbI; layer. To highlight the possibil-
ity of tuning the defect mode of the microcavity, in Figure 3, the transmission spectrum
of the light-emitting transistor coupled with the microcavity is shown for six different
carrier densities of the FICO nanocrystals: 1.68 x 10%” charges/m? (solid black curve),
1.88 x 10% charges/m? (dotted /dashed red curve), 2.08 x 10%” charges/m? (dashed dark
red curve), 2.28 x 10% charges/m3 (solid brown curve), 2.48 x 10%” charges/m? (dot-
ted/dashed dark green curve), and 2.68 x 10% charges/m? (dashed green curve). The
arrow in the figure highlights the increase in carrier density.
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Figure 3. Transmission spectra of light-emitting transistor coupled with a tunable microcavity

(structure depicted in Figure 1), in the spectral region of the defect mode, for a FICO carrier density

of 1.68 x 10% charges/ m? (solid black curve), 1.88 x 10% charges/ m? (dotted /dashed red curve),

2.08 x 10% charges/ m? (dashed dark red curve), 2.28 x 10% charges/ m3 (solid brown curve),

2.48 x 10% charges/m3 (dotted/dashed dark green curve), and 2.68 x 10?7 charges/m? (dashed
green curve). The arrow in the figure highlights the increase in carrier density.

A shift of about 20 nm is shown. With a simple linear fit, it is possible to determine
that 7.2 x 10% charges/m? are needed for a shift of 1 nm of the defect mode. In a similar
photonic structure, i.e., a photonic crystal made with indium tin oxide and titanium
dioxide layers, a shift of 23 nm has been achieved with an external voltage of 10 V [38].
Considering the electroluminescence (EL) of a light-emitting transistor based on MAPbI3
(the experimental data were taken from Ref. [16]), it is possible to finely tune the EL
by changing the FICO nanocrystal carrier density (Figure 4). As in Figure 3, the arrow
underlines the increase in carrier density. Taking into account the aforementioned result
for a similar photonic structure reported in Ref. [38], the EL shift (in nm) over the external
voltage (in V) can be estimated for this transistor and the value is about 2 nm/V.
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Figure 4. Electroluminescence (EL) of the metal halide perovskite light-emitting transis-
tor/microcavity for a FICO carrier density of 1.68 x 10% charges/m> (solid black curve),
1.88 x 10%7 charges/ m?3 (dotted /dashed red curve), 2.08 x 102 charges/ m?3 (dashed dark red curve),
2.28 x 10% charges/m3 (solid brown curve), 2.48 x 10% charges/m? (dotted/dashed dark green
curve), and 2.68 x 10% charges/ m? (dashed green curve). The arrow in the figure highlights the

increase in carrier density.
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An extension of this work could take into account an improvement in the performance,
in terms of electroluminescence, of the light-emitting transistor through direct contact between
a plasmonic material and the emitting material in the transistor, i.e., metal halide perovskite
in this work. To study this possible improvement in transistor performance, very precise
microscopic theories have been proposed for similar devices [39,40]. Such microscopic theories
would allow the device and its characteristics to be studied with great accuracy.

4. Conclusions

In this work, the tunability, via the application of an external voltage, of the defect
mode of the microcavity combined with a metal halide perovskite light-emitting transistor
has been studied. In this way, the electroluminescence of the metal halide perovskite
active layer can be modulated with an electric field. This tunability can be very interesting
for lighting applications with tunable electrically stimulated light emitters. Since the
integration of a microcavity in a light-emitting transistor can lead to a possible electrically
injected metal halide perovskite laser, the device presented in this work can be interesting
also for the realization of tunable lasers.
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