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Abstract: The examination of the mutual influence of the two main trapping scenarios, which are
characterized by B and D and which in isolation yield the known sech4 (D = 0) and Gaussian
(B = 0) electron holes, show generalized, two-parametric solitary wave solutions. This increases
the variety of hole solutions considerably beyond the two cases previously discussed, but at the
expense of their mathematical disclosure, since φ(x), the electrical wave potential, can no longer be
expressed analytically by known functions. Therefore, they belong to a variety with a partially hidden
mathematical background, a hitherto unexplored world of structure formation, the origin of which is
the chaotic individual particle dynamics at resonance in the coherent wave particle interaction. A third
trapping scenario Γ, being independent of (B, D) and representing the perturbative trapping scenarios
in lowest order, provides a broad, continuous band of associated phase velocities v0. For structures
propagating near CSEA = 1.307, the slow electron acoustic speed, a Generalized Schamel equation is
derived: ϕτ + [A− B 15

8
√

ϕ + D ln ϕ]ϕx − ϕxxx = 0, which governs their evolution. A is associated
with the phase speed and τ := CSEAt and ϕ := φ/ψ ≥ 0 are the renormalized time and electric
potential, respectively, where ψ is the amplitude of the structure.
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1. Introduction

In the last few decades, a plethora of noteworthy studies of very different character have been
presented that deal with the development of the microscopic texture of a driven plasma in the
high temperature, dilute density limit, i.e., with structure formation in collision-free plasmas in
a time-dependent setting. Various aspects of the excitation as an initial value problem were addressed
numerically and/or treated analytically. To mention three examples: the nonlinear frequency shift of
an ion acoustic wave was studied in [1] as a function of a sudden or an adiabatic switching on of the
disturbance, the existence and approach of non-Landau solutions as a result of a special preparation of
the initial plasma state was addressed in [2], or the excitation of large amplitude structures, called KEEN
waves (Kinetic Electrostatic Electron Nonlinear), being driven e.g., by the ponderomotive force of two
crossing laser beams, was investigated in [3], with all of them representing valuable contributions
to the solution of the riddle of kinetic structures. However, the above choice of three works is by no
means mandatory, as other equally relevant works could be selected as well, such as [4–7].

However, the main problem associated with these studies is that there is theoretically no resolvable
link between the initial state and the final asymptotic hole state. This is especially true if initially
seed-like, non-topological fluctuations in the distribution are admitted [8–10]. In the transient transition
stage filamentation, folding, trapping, detrapping or retrapping processes etc. occur which are
too complex to be handeled analytically. Another reason for the lack of stringent non-stationary
solutions of the full Vlasov-Poisson system is the non-integrability of the single particle-coherent wave
interaction problem at resonance, which is reflected in the complexity of resonant characteristics of the
Vlasov equation.
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Mathematically speaking, hence, the task is hopelessly gigantic, because it boils down to finding
suitable paths through the chaos paved with obstacles such as KAM theory, Arnold diffusion, separatrix
crossings and pulsations or violent relaxations, to name just a few key words.

Fortunately, this is different for stationary solutions of the Vlasov-Poisson system, where for given
trapping scenarios exact and complete solutions can be obtained due to the pseudo-potential method
in the version of Schamel [11]. Most recent investigations [12–14] reveal that these coherent structures
are (i) strictly nonlinear, no matter how small the amplitudes, (ii) that continuous rather than linear
discrete phase velocities mark their speed, and (iii) that consequently there are an unlimited source of
experimentally unidentifiable hole solutions.

How difficult this task is and what irritation can arise in its interpretation can already be seen in the
single harmonic wave limit of hole structures. In the small amplitude limit a dispersion relation (DR)
of the Thumb-Teardrop type can either be obtained linearily [15–18] or nonlinearily [11,19–24], the four
branches of which refer to the Langmuir wave branch, the slow electron acoustic wave branch (SEAW),
the ion acoustic wace branch (IAW), and the slow ion acoustic branch (SIAW). However, only two of
them, the Langmuir and the ion sound branch, survive a validity check of the linearization procedure
whereas all four are reliable solutions of the nonlinear system up to the infinitesimal amplitude limit.
Hence, the Thumb-Teardrop DR is formally a linear one, but is, in reality, only justified as a nonlinear
dispersion relation (NDR). The electron acoustic wave (EAW), being identical with the earlier termed
SEAW [20–22], is hence by no means a linear wave in contrast to the current picture of this mode
(see e.g., [17]). For more details, see Sect.IV and the controversial discussion in [18,25].

This SEAW—the same holds for the SIAW—plays a central role in Schamel’s theory. It is not only
the correct nonlinear extension of the linear zero-damped van Kampen and Landau mode, respectively,
represented by the corresponding perturbative trapping scenario (namely B = D = 0, Γ 6= 0 in the
first and B = D = 0 = Γ in the second case, see later and [12]) but turns out linearly unconditionally
marginally stable in a current-carrying plasma independent of the drift velocity vD and the temperature
ratio Te/Ti [26] in stark contrast to Landau’s theory [15].

Hence, its nonlinear character is kept in a strong microscopic sense up to the infinitesimal
amplitude limit introducing generally speaking a gap or cut between the linear and nonlinear wave
function space (see e.g., Figure 2 of [27]). This fact seems to be in agreement with Mouhot and
Villani’s assessment of linear and non-linear Landau theory (strong convergence macroscopically and
weak convergence microscopically), as its proof strongly relies on the homogeneity and perturbative
treatment of the problem [28–30].

The failure of Landau theory in case of coherency and non-smooth, seed-like initial conditions is
evident in the series of papers published by Mandal, Schamel, and Sharma [8–10,12,13], where robust
solitary electron holes (SEHs) were excited in the subcritical regime of a current-carrying plasma
without any signature of damping. These structures are triggered by tiny, eddy-like, non-topolgical
seed fluctuations. Their omnipresence without threshold values is an indication of a perturbative
trapping scenario that occurs in these simulations. In other situations, such as in a nonlinearly unstable
plasma when the amplitude is growing, non-perturbative trapping scenarios can come into play as
well giving rise to Gaussian like SEHs [13,14].

In the nonlinear Vlasov regime, advances in the construction of hole equilibria went hand-in-hand
with the abandonment of the Bernstein, Greene, and Kruskal method (BGK method [31]) as a reliable
method, since the necessary phase velocity as an essential element of a theoretical description cannot
be given by it. The progress in theory is instead based on the use of Schamel’s pseudo-potential
method [11], the only method that can provide complete, self-consistent solutions to the VP system.

Therefore, the focus of the new innovations is on the various trapping scenarios that occur
during the evolutionary process and are physically caused by events, such as phase space folding,
filamentation, ballistic motion, trapping, detrapping or retrapping etc. As said, the trapping scenarios
will be mainly perturbative for small amplitudes. When the amplitude is growing also non-perturbative
ones, existing for non-zero amplitudes only, can come into play during the evolution and contribute
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additively in an asymptotic settled equilibrium solution. These plasma phenomena are hence intimately
connected with the chaotic behavior of a single particle in its resonant interaction with a coherent wave
and, hence, with its stochastic motion in the phase space region where the discrimination between free
and trapped particles takes place. Therefore, collective particle trapping has many faces that need to
be explored to obtain a broader view of structure formation in collision-free plasmas.

In this paper, we focus on an intrinsic deterministic math problem, namely how the shape φ(x)
and the phase velocity v0 of a basic solitary electron hole are affected by the simultaneous presence of
additional trapping channels.

We treat the most familiar binary trapping systems that are characterized by the two limiting
solitary wave solutions, the sech4(x) solitary wave and the Gaussian e−x2

solitary wave, and evaluate,
in the first part, the shape and its corrections. In the second part, we consider the phase velocity and
its dependence on a possible third trapping scenario and work out the corrections that are associated
with it. The third part deals with an evolution equation of Generalized Schamel type, which is suitable
for describing the behavior of the generalized two-parametric SEH in space-time.

2. The Basics of the Pseudo-Potential Method

To describe the desired effects as transparently as possible we study the simplest possible plasma,
a two-component, current-less plasma with immobile ions and unperturbed Maxwellian electrons,
i.e., we focus on electron trapping effects for SEHs propagating in the electron thermal range. Therefore,
we start with a stationary solution of the electron Vlasov equation, (v∂x + φ′(x)∂v) fe(x, v) = 0, in the
wave frame where the structure is at rest, given by (1) in [13], which reads

fe(x, v) =
1√
2π

(
θ(ε) exp[−1

2
(σ
√

2ε− v0)
2] +

θ(−ε) exp(−
v2

0
2
){1 + [γ + χ ln(−ε)]

√
−ε− βε}

)
. (1)

In this equation, θ(x) represents the Heavyside step function, ε := v2

2 − φ(x) is the single particle
energy and v0 is the phase velocity in the electron lab frame. We use normalized quantities such that
the velocity is normalized by the (unperturbed) electron thermal velocity, the electron potential energy
by the electron thermal energy, and the space by the Debye length.

Its form results from the Galilei transformation shift v0 of the Maxwellian given in the unperturbed

case by fM(v) = 1√
2π

exp(− (v−v0)
2

2 ) and from the replacement of v by σ
√

2ε as an effect of the
perturbation, where σ := v/|v| is the sign of the velocity. Notice that fe(x, v) is thus a function of
two constants of motion, ε and sgv, both being a necessary requisite for a propagating wave solution.
It consists of two parts, the contribution of untrapped particles, ε > 0, and the one of trapped particles,
ε ≤ 0. Hence, trapping is controled by the three parameters β, γ and χ, the first two refer to a
perturbative treatment of trapped particle effects and represent the first two elements of a Taylor
expansion with respect to

√
−ε whereas the third one, χ, is definitely non-perturbative in nature.

Note that fe(x, v) is continuous across the separatrix and it is assumed that 0 ≤ φ(x) ≤ ψ << 1.
Here, we interrupt to say the following: the whole world of collective trapping is represented by

the bracket {...} of fet in (1) and the manifold of functions being possible there. Here, we restrict the
analysis to three terms represented by the parameters γ, β, χ and justify this by its plausibility and
the reduction to known cases but we admit that other terms such as χn lnn(−ε)

√
−ε with fractional

powers of n < 3, including n = 2, could also be added ([14]). This is the interface between discrete
particle physics, the trajectories of which coincide with the characteristics of the Vlasov equation,
and the collective particle trapping physics in the mean field description, a largely unsolved problem.

To get a physical idea, consider the situation of an increasing amplitude linearly triggered by
a broad band packet of waves with random phases and / or nonlinearly by seeds. In course of
time, due to the filamentary fragmentation of the distribution, a number of trapping events may
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take place one after the other that asymptotically accumulate in the considered perturbative and/or
non-perturbative trapping scenarios, respectively.

The electron density ne(φ) can either be obtained by the velocity integration of (1) and subsequent
velocity integration, while using φ << 1, as done in [11,20–22] or by the Taylor expansion of (1) first,
followed by the velocity integration, as done in [19,32,33]. In both cases, the result is:

ne(φ) = 1 +
[

A− 1
2

Z′r(
v0√

2
)

]
φ− 5B

4
√

ψ
φ3/2 + Dφ ln φ (2)

where A :=
√

π
2 [γ + χ(1− 2 ln 2)]e−

v2
0
2 , B := 16

15 b(β, v0)
√

ψ with b(β, ṽD) := 1√
π
(1− β− v2

0)e
−v2

0/2 and

D :=
√

π
2 e−

v2
0
2 χ. By introducing a new notation for the trapping parameter γ, defined by Γ :=

√
π

2 e−
v2

0
2 γ,

we obtain A = Γ + (1− ln 4)D.
After insertion of the density into Poisson’s equation, φ′′(x) = ne − 1 =: −V ′(φ), where, in the

last step, the pseudo-potential V(φ) has been introduced, we get

−V ′(φ) =
[

A− 1
2

Z′r(
v0√

2
)

]
φ− 5B

4
√

ψ
φ3/2 + Dφ ln φ (3)

and by integration with V(0) = 0

−V(φ) = φ2

2

([
A− 1

2
Z′r(

v0√
2
)

]
− B

√
φ

ψ
+ D(ln φ− 1

2
)

)
=: −V0(φ). (4)

In (4), we have introduced a subscript 0 in V0(φ) in order to indicate that this is a preliminary
function. The necessary constraint of a second zero of V0(φ), at φ = ψ, yields (5), the nonlinear
dispersion relation (NDR):

[
A− 1

2
Z′r(

v0√
2
)

]
= B + D[

1
2
− ln ψ] (5)

which can be understood as an implicit function of v0 in dependence of (A, B, D, and ψ). Inserting (5)
into (4), we get the final version of V , as given by

−2V(φ) = Bφ2(1−
√

φ

ψ
) + Dφ2 ln(

φ

ψ
) (6)

Note that, in this last step, no knowledge of φ(x) is needed. The latter is obtained by a quadrature
of the pseudo-energy as will be demonstrated later (see (7) and (8)). We emphasize that both (5) and (6)
are necessary requisites for a complete nonlinear wave theory, i.e., only through φ(x) from (6) and v0

from (5) the final wave solution φ(x− v0t), fe(x− v0t, v) can be obtained. If it turns out that within
the pseudo-potential method a v0 can not be found, the chosen fet(−ε)-ansatz was taken too narrowly
implying that further trapping scenarios, i.e., further trapping parameters, have to be incorporated in
order to find a v0.

It should also be noted that, within the BGK method [31], which is equivalent to the first step
here, there is no way of getting a v0! The reason is that, in (6), which in generalized form contains the
same amount of information that is needed for the BGK method, the v0-dependency has dropped out.
Nevertheless, there seems to be a predominant opinion in the literature that the BGK method is more
general than the pseudo-potential method. This is definitely not true. The BGK method provides a
one-to-one correspondence between φ(x) and fet(−ε) i.e., either one of these quantities can be used to
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describe completely the shape of the potential. Hence, the manifold of φ(x) is uniquely mirrored in
the manifold of fet(−ε) and vice versa. Accepting that any fet(−ε) is admitted in the pseudo-potential
method, the generality of the BGK method is hence transferred to the one of the pseudo-potential
method. This refers however to the shape only and involves at this stage also BGK solutions that are
unphysical or don’t possess a phase velocity, an issue that can only be circumvented by applying the
pseudo-potential method.

We add that there is also a generic argument in favor the the pseudo-potential method, as φ(x) is a
derived quantity, whereas the distribution is an intrinsic one being determined by internal microscopic
processes. This implies that fet(−ε) is the primary function from which φ(x) is obtained and not
vice versa. Moreover, as we will see, it is by no means obvious that a φ(x) is established that can be
written explicitely in terms of known functions, a necessary restriction for the use of the BGK method.

Moreover, by means of (5), we can obtain a simpler notation for the electron density that is given by

ne(φ)− 1 = B φ(1− 5
4

√
φ

ψ
) + Dφ[ln

φ

ψ
+

1
2
] = −V ′(φ) (7)

3. The Potential φ(x) and Its Lack of Analytical Disclosure

We now turn our attention to the first step, the shape of a SEH that is determined within the
pseudo-potential method by the pseudo-energy

φ′(x)2

2
+ V(φ) = 0, (8)

where V(φ) is the pseudo-potential in its canonical form, as given by (6), in which D < 0 and B > 0
characterize the strengths of the considered two trapping scenarios in isolation being related with χ

and β, respectively ([12,13]).
Hence, both basic SEHs (without the second trapping effect) are given by: φ(x) = ψeDx2/4 and

φ(x) = ψ sech4(
√

Bx
4 ), respectively.

Utilizing (6) and (8), we get, for the implicit shape of φ(x), the following expression:

x = −
∫ φ

ψ

dφ̃√
−2V(φ̃)

=
∫ 1

φ/ψ

dξ

ξ
√

D ln ξ + B(1−
√

ξ)
, (9)

i.e., to get x = x(φ) (or by inversion φ = φ(x)) we “simply” have to perform the integration.
However, the problem we are faced with is that for arbitrary D, B a solution of (9) cannot be found

in terms of known standard functions (WolframAlpha). This does not imply that a two-parametric SEH
is non-existent, but merely that this generalized structure cannot be expressed anymore by reference to
familiar functions. Nevertheless, to obtain an idea regarding the effect of a second channel of trapping,
we have to address both SEHs separately and assume the second trapping mechanism to be weak.

(i) Modified Gaussian

In case of B
|D| =: ε << 1 we Taylor expand (9) to get

√
−Dx =

∫ 1

φ/ψ

dξ

ξ
√
− ln ξ

− ε

2

∫ 1

φ/ψ

dξ(1−
√

ξ)

ξ(− ln ξ)3/2 . (10)

Both of the integrals in (10) can be solved by means of WolframAlpha to get

√
−Dx = 2

√
− ln

φ

ψ
+ ε

[
1−

√
φ

ψ
−
√

π

2
erf(

√
− ln φ

ψ

2
)

]
(11)
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As can be seen by inspection, the term after ε in (11) is negative for given φ. This means that
x(φ) > 0 becomes smaller and, hence, the potential φ(x) as a function of x narrower, i.e., the width
of φ(x) shrinks as an effect of the secondary trapping. This can also be seen by the inversion of (11)
which reads

φ(x) = ψeDx2/4
[

1 + ε

√
−Dx
4

[1− eDx2/8 −
√

π

2
erf(
√
−Dx

2
√

2
)]

]
(12)

in which the term behind ε is negative. Note that the effect of B, i.e., of the second channel, is hidden
in ε.

(ii) Modified sech4 solitary electron hole

Next, we investigate the effect of a weak, non-perturbative Gaussian-type trapping process on the
“regular” sech4 solitary electron hole. In this case, we have to solve

√
Bx =

∫ 1

φ/ψ

dξ

ξ
√
(1−

√
ξ) + ε(− ln ξ)

≈
∫ 1

φ/ψ

dξ

ξ
√
(1−

√
ξ)

+
ε

2

∫ 1

φ/ψ

dξ(− ln ξ)

ξ(1−
√

ξ)3/2 , (13)

where 0 ≤ ε := −D/B << 1 and where the Taylor expansion has already been made. Both of the

integrals can be performed. The first one leads to −4 tanh−1
(√

1−
√

φ/ψ

)
from which follows by

inversion our basic “regular” SEH: φ(x) = ψ sech4
(√

Bx
4

)
. However, the second integral assumes the

very tedious form (WolframAlpha)

[
0.444444

(1−
√

ξ)3/2√ξ

√
1− 1/

√
ξ

(
4(
√

ξ − 1)3F2(1.5, 1.5, 1.5; 2.5, 2.5; 1√
ξ
)− 9(

√
ξ − 1)ξ3/4 ln ξ sin−1(ξ−1/4) + 9

√
1− ξ−1/2ξ ln ξ

)]1

φ/ψ

, (14)

such that a further progress is terminated here. In (14), 3F2(a1, a2, a3; b1, b2; x) is a generalized
hypergeometric function for which even in the upper case ξ = 1 no explicit, manageable expression
seems to exist. There exists a Taylor expansion with combinations of Gamma functions Γ(k + 3

2 ) and
Γ(k + 5

2 ), k = 0, 1, 2, 3, ... as coefficients, but we are completely lost if we take the lower case ξ = φ/ψ.
We have to accept that we have reached in this special situation mathematical treatability.

The addition of a weak, non-perturbative Gaussian trapping process on the regular one has
the detrimental effect of analytical non-tractability. We have left the region in which physically
deterministic processes can be analytically treated using standard functions.

One may object that a Taylor expansion with respect to ε(− ln ξ) breaks down at ξ = 0, φ = 0
such that (14) is not, seriously speaking, justified. If this is correct, then (14) is more an illustration
of how challenging it is to express φ(x) as a solution of (9). Nevertheless, this does not change our
argumentation that our binary trapping system (D,B) has no solution φ(x) that can be expressed by
standard functions. Although φ(x) does exist as a bell-shaped function, but it remains analytically
unresolved. One way to get its shape is to numerically perform the integral. Because, on the other
hand, a known φ(x) is needed for the application of the BGK method [31], the limit of applicability of
the latter is reached in dealing with this problem. This is a further reason why the pseudo-potential
method is preferable to the BGK method.

Therefore, our main conclusion is that the diversity of SEHs, as mentioned at the beginning,
not only refers to analytically expressible solutions, but involves structures, as well, with a hidden
mathematical background of solutions. The complexity of trapping does not make any difference
between mathematically expressible or non-expressible solutions, if we want to or not.
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An interesting observation is that φ(x) can be expressed in the vicinity of the non-perturbative
Gaussian, but not in the vicinity of the perturbative sech4 SEH. The Gaussian SEH seems to be more
robust to perturbations than the sech4 SEH, at least within the considered class.

Moreover, we may point out that this non-expressionality of φ(x) cannot be automatically
transferred to other binary trapping scenarios. As a counterexample we consider the two
non-perturbative trapping nonlinearities in the trapped electron distribution: χ1 ln(−ε)

√
−ε and

χ2 ln2(−ε)
√
−ε. The potential is given for any χ1 and χ2 by φ(x) = ψe−sX(x)2

, where X(x) =

sinh(
√

D2x/2), where s and D2 are related with χ1,2 and ψ, as shown in [14]. In this case, a presentable
solution exists in the whole range spanned between these two isolated Gaussian-type holes.

As V(φ) is the more fundamental of the two (V , φ), we can already decide on the V level as
to whether SEHs exist without knowing the explicit x-dependency of φ. Namely, by demanding

V ′′(0) < 0, we obtain the necessary constraint −V ′′(0) = limφ→0[B(1 − 15
8

√
φ
ψ + D(ln φ + 1)] =

limφ→0(D ln φ) > 0 and hence D < 0, i.e., a negative D guarantees the existence of a solitary wave
even if its explicit x-dependence remains undetermined.

The explicit knowledge of φ(x) as a prerequisite for the applicability of the BGK method also
applies to the derived quantity, the bipolar structure, a central structure that is omnipresent in space
observations. It refers to the electric field E(x) = −φ′(x), which is given by E(x) = ±

√
−2V(φ). Or,

using x = x(φ(x)), we get by differention the equivalent expression E(x) = − 1
x′(φ(x)) . This means

that the lack of analytical disclosure is also transferred to E(x), and it holds as long as the functional
dependence of φ(x) is unknown.

4. The Phase Velocity v0

Next, we look at the second important part of a nonlinear wave solution, the phase velocity v0.
Because this is not accessible by the BGK method, many aspects of this topic remained unknown to the
majority of the plasma community. We want to analyze the NDR (5), which we write as

−1
2

Z′r(
v0√

2
) = B + D[

1
2
− ln ψ]− A = B− Γ− D[

1
2
− 2 ln 2 + ln ψ] =: R, (15)

where in the second definition of R the three trapping scenarios (Γ, D, B) or (γ, χ, β) are
well distinguished.

In this equation, the parameters B and D, which determine V(φ) and are the source of the trouble
with the explicit shape of φ(x), are thought to be given. It is the parameter A (or γ, respectively) that
provides solutions of (15) in a wide, continuous range of v0.

An inspection of − 1
2 Z′r(

v0√
2
), see e.g., Figure 3 of [10], shows that a slow solution branch 0 ≤ v0 ≤

2.12 = 1.5
√

2 exists when 1 ≥ R ≥ −0.285 and a f ast branch, 2.12 ≤ v0, when −0.285 ≤ R ≤ 0.
The latter branch is reminiscent of the Langmuir branch and it is obtained for R → 0−, i.e., in the
fluid limit [24]. The second zero of R refers to v0 = 1.307, a mode that also formally exists as
a linear mode, but that, in contrast to the common belief, can only be understood correctly as a
nonlinear mode [18,25]. It is the slow electron acoustic wave on which the classical SEH solution
(D = 0 = A, B > 0) rests [20,24].

An interesting aspect of (15) is the limit ψ→ 0. As long as D 6= 0 the ln ψ-term in (15) results in
an unlimited growth of R within this limit and, thus, in a violation of the NDR. Non-perturbative
SEH solutions of Gaussian type don’t have a zero amplitude limit. This regime is reserved for the
perturbative, privileged SEHs.

We note in parenthesis that, in the case of a periodic structure, k0 6= 0, when k2
0 appears additively

on the left hand side of (15),R is often called “nonlinear frequency shift”, see [1] and references therein.
However, this assignment is problematic, if not misleading. The reason is that there is no linear mode
that can be assigned to end in a nonlinear structure that might justify the notion and the introduction of
a frequencyy shift. Even ifR = 0 the resulting harmonic waves are typically nonlinear representing a
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specific trapping state (e.g., B = 0 or 1− β = v2
0, being a slow mode ) and not necessarily the Langmuir

case e−v2
0/2 → 0 ([18,25]). The functional space of the linear Vlasov modes is detached from that of

the non-linear Vlasov modes. There is no cross connection. This especially holds for localized solitary
holes. The typical cause for the establishment of a SEH is an initially localized seed fluctuation in fe,
which quickly turns into a privileged electron hole (β 6= 0, γ 6= 0), no matter how small the fluctuation.
As already said, a privileged SEH does exist for arbitrarily small amplitudes, and, due to γ for almost
any v0. If it grows in an unstable mode situation, further trapping scenarios take place, which turn it
into a more complex SEH with an analytically undisclosed character, the topic of the present paper.
Hence, there is no instant where linearity plays any role, such that the term “nonlinear frequency shift”
is a questionable abbreviation.

The common view according to Landau and prevailing wave theory is that, in the unstable case
with an initial wave packet with random phases and topological perturbations, the most unstable linear
mode dominates in course of time getting a given finite wave number. However, during saturation
due to trapping, the mode changes its character and undergoes a transit into the non-linear function
space, thereby completely forgetting its linear past. Thereby, it not only becomes a nonlinear trapping
mode but maintains periodicity, i.e., it cannot transform into a coherent solitary hole with k0 = 0,
the most observed structure. Or, generally speaking, coherency, and especially the generation of
localized structures, are in conflict with linear Landau theory, which hence fails to be a universally
valid theory [8,24–27,33–36].

Another example of the misuse of linear wave concepts in the nonlinear wave regime is the group
velocity in Rayleigh’s sense: vg := ∂ω/∂k [37–41]. Because there is no linear carrier wave that can be
assigned, a nonlinear wavelet, being understood as a spatially shortened solution of cnoidal holes,
propagates as a bulk with v0, instead, the associated phase velocity [27]. “It is therefore by no means
surprising when authors in [42,43] find strong deviations of the group velocity as a result of particle
trapping and conclude that the group velocity vg of an essentially undamped wave, calculated by
using the very definition of Rayleigh, is found to significantly differ from ∂ω/∂k or that surprisingly
enough the main nonlinear change in vg occurs once the wave is effectively undamped”.

We now continue with the further discussion of the NDR (15).

When |R| << 1, we can solve (15) using − 1
2 Z′r(x) ≈ − 1

x0
(x − x0), |x − x0| << 1, x0 = 0.924,

ref. [24], to obtain

v0 = 1.307(1−R). (16)

Hence, the phase velocity v0 is sub (super) critical with respect to the slow electron acoustic
velocity CSEA := 1.307 ifR > 0 (R < 0).

Expressed by the trapping parameters (Γ, D, B), v0 becomes: v0 = 1.307
(

1− B + Γ + D( 1
2 + ln ψ

4 )

)
.

An important aspect now is that, for every meaningful doublet (B, D) that specifies V(φ), the third
trapping mechanism Γ can always be adjusted, so that v0 is placed anywhere in 0 < v0 < ∞. In other
words, although the explicit form of φ(x), depending on (B, D), can be analytically undetermined,
the γ-trapping process can always be determined, so that a predetermined phase speed is reached.
Therefore, there is a high degree of flexibility in the three trapping processes to establish a SEH
e.g., near CSEA.

5. The Nonlinear Evolution Equation

The essence of Schamel’s pseudo-potential method is that it alone gives access to the two main
criteria for the completeness of a nonlinear wave solution: the existence of :

(i) a pseudo-potential V(φ) (but not necessarily an explicit φ(x)) and
(ii) a phase velocity v0.
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In our present case, V(φ) is given by (6) and v0 by (16) with R given by (15) for structures that
propogate near CSEA.

Our goal here is to establish an evolution equation that describes this mode in the stationary limit
φ(x, t) = φ(x− v0t), but enables more complex space-time dependent processes, such as the collision
of two members.

The simplest way to get such an equation is to use and combine both concepts, assuming that,
in the stationary limit, the evolution equation decomposes into −V ′′(φ)φx − φxxx = 0, which is
obtained by an x-differention of Poisson’s equation, φxx = −V ′(φ), and into φt + v0φx = 0 with v0

given by (16) andR given by (15). Accordingly, we come to φt + v0φx + 1.307[−V ′′(φ)φx − φxxx] = 0,
where we used the coupling constant CSEA = 1.307. By inserting −V ′′(φ) using (6), i.e., −V ′′(φ) =
B(1− 15

8

√
φ
ψ ) + D(ln φ

ψ + 3
2 ), and v0 from (16) withR given by (15), we hence obtain:

φt + 1.307
[
A− B

15
8

√
φ

ψ
+ D ln

φ

ψ

]
φx − 1.307φxxx = 0 (17)

with A given by

A = 1 + A + D(1 + ln ψ) = 1 + Γ + D(2 + ln
ψ

4
) (18)

and A, B, D, Γ being defined after (2). (17) is our desired evolution equation, which, by construction,
satisfies (6) and (9) with v0 given by (16).

A still more attractive form is obtained if we use the rescaled variables ϕ := φ/ψ and τ := t/CSEA
to obtain

ϕτ + [A− B
15
8
√

ϕ + D ln ϕ]ϕx − ϕxxx = 0. (19)

For more details to further justify the derivation and robustness of the equation, see Appendix A.
Next, we divide the discussion into the perturbative and partially non-perturbative trapping limit.

In the perturbative trapping limit, we get by setting D = 0 = χ from (17)

φt + 1.307
[

1 + A− B
15
8

√
φ

ψ

]
φx − 1.307φxxx = 0 (20)

with A = Γ =
√

π
2 γe−

C2
SEA
2 = 0.378γ. With 15

8 B = 2b
√

ψ we hence get

φt + 1.307
[

1 + Γ− 2b
√

φ

]
φx − 1.307φxxx = 0 (21)

This is identical to the Schamel equation (Equation (15) from [22]), which appears here in an
extended form due to the perturbative trapping term Γ, which was not considered at this early
stage in [22]. With the participation of Γ, the phase speed, as given (16), becomes more generally
v0 = CSEA(1 − B + Γ).

It should be noted that the original Schamel equation (formerly referred to as the modified
Korteweg de Vries equation) was first derived in [32], namely Equation (15), for solitary ion sound
waves with non-isothermal electrons. This regime is equivalent to SEHs derived for structures
propagating more slowly in the ion acoustic regime, v0 =

√
me/mi =: CS, which however requires

mobile ions, i.e., a finite ion mass mi, the coupling constant being given by CS in this case.
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With the second, analytically feasible option, the non-perturbative trapping limit, B = 0,
but keeping the perturbative Γ trapping term, we are breaking new ground. We obtain

φt + 1.307
[

1 + Γ + 2D(1− ln 4) + D ln φ

]
φx − 1.307φxxx = 0. (22)

This represents the Gaussian limit of (17). This limit is outside the scope of a BGK analysis,
because it contains the concept of a phase velocity. Hence, its solitary wave solution is given by

φ(x, t) = ψeD(x−v0t)2/4 with v0 = 1.307
(

1 + Γ + D( 1
2 + ln ψ

4 )

)
. As before, due to the Γ trapping

mechanism, there is a high dynamic flexibility of the Gaussian SEH in order to achieve a speed
around CSEA.

Equation (17) in its general form represents a new evolution equation that we may term the
“Generalized Schamel”—equation and abbreviate it as the GS equation. The new feature of (17) is that,
for non-zero values of B, D, a stationary solution φ(x− v0t) can no longer be analytically expressed,
albeit a v0 could be assigned. This is due to the missing step to describe x(φ) and especially its
inversion φ(x) by standard mathematical functions, as discussed in Sect.III. There is access to the speed
v0, but not to the explicit form φ(x) of the structure.

We conclude that the (B, D) trapping scenarios generally imply an area in the function space
of solutions where there is no longer any analytical accessibility, a previously unknown property of
non-linear wave solutions.

In Appendix B, we provide proof of a further extension of the GS equation by taking a second
order Gaussian trapping scenario into account.

6. Summary and Conclusions

The paper, which to some extent completes the interim conclusion of a long-term development
and reveals further details of the mystery of coherent phase space vortices, has two main achievements:

(i) the simultaneous presence of the two main trapping scenarios, the perturbative β- and
non-perturbative χ- scenario, leads to a two-parametric solitary wave electric potential φ(x)
(represented by V(φ)), which, however, can no longer necessarily be analytically described by
the help of standard mathematical functions anymore, and

(ii) a new evolution equation for φ(x, t) was nevertheless proven which describes its nonlinear,
weakly time-dependent dynamics in the vicinity of equilibria.

Two major factors contributed to this innovation, the use of the pseudo-potential method
and the existence of both a pseudo-potential V(φ) and a phase velocity v0, the latter satisfying a
nonlinear dispersion relation (NDR). As a result, the Schamel term

√
φφx in the ordinary Schamel

equation, which stems from the β-trapping scenario, gets a companion ln φφx, which arises from
the Gaussian trapping process. It will certainly be of great interest to learn how the dynamics
is controlled by both terms, a process that can probably only be numerically solved. To simplify
access to the world of collective particle trapping, we limited ourselves to the trapping of electrons
by considering immobile ions (δ := me

mi
= 0) and to a current-less plasma assuming a vanishing

drift velocity vD = 0 between electrons and ions. Releasing this restriction by using mobile ions,
ion trapping, and a two-stream plasma situation leads to an immense increase in diversity of
solutions, even in the solitary wave limit (k0 = 0). Hence, by considering the standard trapping
parameters, this multitude of solutions is characterized by an at least 13-dimensional parameter space,
given by [γs, βs, χ1s, χ2s; ψ, θ := Te

Ti
, vD, δ, k0], s = e, i. This is a minimum, since further trapping

scenarios could easily be added and would increase dimensionality, such as χ 1
2 s

√
− ln(−ε)

√
−ε or

χ 3
2 s

√
− ln(−ε)

3√−ε in {...} of (1). It would be too optimistic to believe that structure, space-time
behavior, and parameter dependency of coherent phase space vortices can be determined while using
experimental or numerical techniques.
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However, the collision-free Vlasov approach has to be abandoned, even for extremely diluted
and hot plasmas in order to capture physical reality, as already mentioned [12–14]. The reason is that
one not only has to circumvent the linear singularities of δ-function and principle value type by going
into the nonlinear Vlasov regime, but one has also to bypass the cusp-type singularities, which are
inevitably present in any stationary, completely nonlinear VP solutions (see (1)).

As pointed out by Korn, Luque, and Schamel [34,44], dissipative hole equilibria in current-driven
plasmas unequivocally require the participation of ions in the collective dynamics, as shown within
the “primitive” collisional Fokker–Planck description.

In other words, the coherent patches and eddies in intermittently turbulent plasmas cannot be
treated correctly without also taking correlations in the resonant particle region into account, meaning
that the pure Vlasov–Poisson approximation is too restricted in dealing with such processes adequately.

We conclude with the remark that chaos at the one-particle level has thus left its footprint in
collective structure formation. The stochasticity of resonant particle trajectories obviously prevents
us from treating particle trapping as a unique, deterministic process in structure formation. We close
with the perhaps overly optimistic hope that mathematical explicitity and disclosure may come back
through the back door, in the coarse-grained distribution due to the diffusive phase space dynamics
that are triggered by self-consistent correlations.
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Appendix A. The Mathematical Robustness of the New Evolution Equation

The modified KdV equation, (15) of [30] (which was later called Schamel equation), was first
derived for ion acoustic, solitary - like wave structures using the reductive perturbation method and
taking into account electron trapping effects that deviate from isothermality. A simpler construction
with the same result (as long as D = 0) is to look for a nonlinear evolution equation of the type KdV
( i.e., for which the dispersion is controlled by a φxxx-term) and which has the solitary electron hole
(SEH) of sech4—type as an equilibrium solution. This can be done either by formulating an equation,
φt + (a1 + a2

√
φ)φx + a2φxxx = 0, and by adjusting the parameters a1,2,3 or by combining the traveling

part, φt + v0φx = 0, with the structural shape determining part, the Poisson’s equation, or its first
derivative respectively, using the underlying acoustic velocity as the appropriate “coupling constant”.
For SEHs in the ion sound range the latter is given by Cs, the ion sound speed, for SEHs in the electron
thermal range it is given by the slow electon acoustic speed CSEA (see e.g., Equation (36) of [19]).
In the present two parametric case, when the shape φ(x) (together with its width) is mathematically
undisclosed (and lacking in order to justify a reductive perturbation method) only the second procedure
is left. The derivative of Poisson’s equation is hence suggested by the dispersive part in a KdV -type
equation. Moreover, our new Equation (17) has the correct D = 0 limit.

In a mathematical context, one should note that strong convergence holds macroscopically
i.e., that the evolution equation for the macroscopic φ(x, t) should be rather insensitive to fluctuations
and hence robust to microscopic changes.

Appendix B. Extension of the GS Equation by a Second Order GAUSSIAN Trapping Scenario

In this Appendix B we present a further extension of the GS equation by allowing a second order
non-perturbative Gaussian trapping scenario. This is done by replacing χ in (1) (or D in (17)) by the
two-Gaussian trapping processes (χ1, χ2) (or (D1, D2), respectively) in line with the investigations
of [14].

This extension is introduced by a replacement of {...} in (1) by

{1 + [γ + χ1 ln(−ε) + χ2 ln2(−ε)]
√
−ε− βε}. (A1)
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In other words, our previous Gaussian-like trapping scenario, now labeled Index 1, receives
a second-order Gaussian competitor, so that altogether four trapping scenarios are involved..
The application of the previous analysis to this new situation, which we leave to the reader for
confirmation, yields

−2V(φ) = φ2
[

B(1−
√

φ

ψ
) + (D1 + r̂D2) ln(

φ

ψ
) + D2 ln2(

φ

ψ
)

]
. (A2)

This is our new pseudo-potential, where D1,2 :=
√

π
2 e−v2

0/2χ1,2 and r̂ := 1 + 2 ln ψ
4 . Using the

neighborhood at CSEA of v0 again: v0 := 1− R̂, we get

R̂ := B− Γ− D1[
1
2
+ ln

ψ

4
]− D2[−

5
2
+ ln 4(ln 4− 1) +

π2

3
+ (1− 2 ln 4) ln ψ + ln2 ψ], (A3)

an expression which coincides in the limit of D2 = 0 withR of (15). Having the two necessary formulas
(for V and vo) we can repeat the previous procedure to get:

φt + 1.307
[
Â − B

15
8

√
φ

ψ
+ (D1 + r̂D2) ln

φ

ψ
+ D2 ln2 φ

ψ

]
φx − 1.307φxxx = 0, (A4)

where Â is an extension of A in (18) and refers to Γ, D1, D2 that may ultimately be performed by
the reader.

This is the most general form of the GS equation involving four trapping scenarios (γ, χ1, χ2, β).
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