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Abstract: For the theoretical study of X and extreme-UV spectra of ions in plasmas, quantum
mechanics brings more detailed results than statistical physics. However, it is impossible to handle
individually the billions of levels that must be taken into account in order to properly describe hot
plasmas. Such levels can be gathered into electronic configurations or superconfigurations (groups
of configurations) and the corresponding calculations rely on appropriate statistical methods, for
local or non-local thermodynamic equilibrium plasmas. In this article we present the basic principles
of the Super-Transition-Array approach as well as its practical implementation. During the last
decades, calculations performed with the SCO code (Superconfiguration Code for Opacity) have been
compared to opacity measurements. The code includes static screening of ions by plasma and is well
suited for studying plasma density effects (for example pressure ionization) on opacity and equation
of state. The recently developed SCO-RCG code (Superconfiguration Code for Opacity combined
with Robert Cowan’s “G” subroutine) combines statistical methods from SCO and fine-structure
(detailed-level-accounting) calculations using subroutine RCG from Cowan’s code. SCO-RCG enables
us to obtain very detailed spectra and to significantly improve the interpretation of experimental
spectra. The Super-Transition-Array formalism is still the cornerstone of several opacity codes, and
new ideas are emerging, such as the Configurationally Resolved-Super-Transition-Array approach or
the extension of the Partially Resolved-Transition-Array concept to the superconfiguration method.

Keywords: atomic physics; hot plasmas; opacity; superconfigurations; fine structure

1. Introduction

Hot plasmas contain, for all their chemical constituents, atomic ions in different ioniza-
tion stages, potentially spread over billions of energy levels, and subject to several atomic
processes. Therefore, it is easy to understand that such systems have been studied using
methods from statistical physics. This review article deals with a method of calculation
of the photoabsorption cross-section in hot plasmas at local thermodynamic equilibrium
(LTE). The knowledge and understanding of photoabsorption in plasmas first interested
astrophysicists. Before the advent of computers, calculations relied on the hydrogenic
approximation [1]. The first computers allowed the development of self-consistent models.
For a long time, the field has suffered from the lack of direct experimental check of the
proposed atomic models. The first experiments which made it possible to evaluate the
exactness of calculations appeared at the end of the eighties. The comparisons made at
that time revealed that it was necessary to take into account the real N -electron states and
selection rules in the modelling. Detailed-configuration-accounting methods appeared
to be insufficient (see reference [2] and references therein), due to the limited number of
configurations that could be taken into account. The approach described in the present
article stems from intensive theoretical works generated by these comparisons. Although
the superconfiguration method has been proposed in 1989 by Bar-Shalom et al. [3], it
would not exist without the works of Bauche-Arnoult, Bauche and Klapisch on the statisti-
cal treatment of unresolved transition arrays between two electronic configurations (see
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references [4–7]). In the present article, we propose to discuss all the approximations of
this method avoiding, as much as possible, technical details.

The main approximations of the superconfiguration approach in the case of absorption
are described in Section 2, and the SCO code (Superconfiguration Code for Opacity) is
presented in Section 3. Comparisons with experimental spectra are discussed in Section 4.
With the development of more and more powerful computers, the application of precise
atomic-physics methods to opacity computation became possible. This led us to develop
the SCO-RCG code (Superconfiguration Code for Opacity combined with Robert Cowan’s
“G” subroutine), combining statistical methods and Detailed-Level-Accounting (DLA) fine-
structure calculations of atomic structure and spectra. Finally, recent works related to the
Super-Transition-Array (STA) formalism are mentioned in Section 6.

2. Approximations of the Superconfiguration Method (Case of Absorption)
2.1. Photoabsorption Cross-Section

Transitions involving bound electrons play a particularly important role in emission
and absorption of thermal radiation. The bound-bound absorption cross-section of ions in
a plasma is given by the following formula (ω is the frequency of the photon of energy h̄ω):

σa(ω) =
4π2αfine

3 ∑
n,m
Pn(Em − En)

∣∣〈n|D̂|m〉∣∣2 fn,m(h̄ω− Em + En), (1)

where αfine is the fine structure constant. n and m are the indexes of N -electron quantum
states and En and Em their respective energies. In the |~r〉 representation, |n〉 is an anti-
symmetric wavefunction of N electrons, depending on their positions~ri, i = 1, · · · ,N . D̂
represents the dipolar oscillator (in the |~r〉 representation, D̂(~r) = ∑Ni=1~riδ(~r−~ri)), Pn is
the population of initial state |n〉 and fn,m, centered around Em − En, is the normalized
line profile of transition n→ m. Except for light elements, the direct use of expression (1)
is practically excluded in the case of hot plasmas because of the huge numbers of states
involved in the double sum. Even the enumeration of all states is a challenging task (see
Section 2.7), since the use of Equation (1) would require to solve equation:

Ĥ|n〉 = En|n〉. (2)

The superconfiguration approximation consists in deriving a statistical version of
Formula (1) (and of the similar formula for the emission probability). As we will see, this
method offers the possibility to use Formula (1) in an efficient way, avoiding all direct sums
on multi-electronic states, as well as the resolution of Equation (2).

2.2. Use of Electronic Configurations

In atomic physics, the states |n〉 of the Hamiltonian Ĥ are obtained from the diago-
nalization of this operator in a basis of states composed by one-electron wavefunctions
(see, for example, reference [8]). The latest (also named “orbitals”) are wavefunctions of
the one-electron Hamiltonian including the central potential, calculated in a self-consistent
way, either in the framework of Hartree-Fock (or Dirac-Fock) formalism, or of another
model, such as, for instance, density functional theory. In atomic physics of dense plasmas,
the diagonalization of the Hamiltonian matrix is usually limited to the basis of the states
associated to an electronic configuration. We denote C the configuration defined by the
ensemble of one-electron subshells (non-relativistic or relativistic) and their respective
occupations. A non-relativistic configuration is represented by C1 = ∏s(ns, `s)

qs where
s runs over all bound subshells; for instance, 1s22s22p53s1 is a configuration made of
orbitals 1s (n = 1, ` = 0), 2s (n = 2, ` = 0), 2p (n = 2, ` = 1) and 3s (n = 3, ` = 0)
populated, respectively, with 2, 2, 5 and 1 electron(s). A relativistic configuration is rep-
resented by C2 = ∏s(ns, `s, js)

qs , where js = `s ± 1/2. Thus, 1s22s22p2
1/22p3

3/23s1 is a
configuration made of orbitals 1s (n = 1, ` = 0, j = 1/2), 2s (n = 2, ` = 0, j = 1/2), 2p1/2
(n = 2, ` = 1, j = 1/2), 2p3/2 (n = 2, ` = 1, j = 3/2) and 3s (n = 3, ` = 0, j = 1/2),
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respectively, populated with 2, 2, 2, 3 and 1 electron(s). Let us remark that orbital 2p is
not entirely populated, on the contrary to relativistic orbital 2p1/2. Since in the case of s
orbitals, the quantum number j can only take the value 1/2, it is usually omitted. Limiting
oneself to states belonging to configurations, one can rewrite Equation (1) replacing the
double summation over initial and final states by the double sum: ∑C,C′ ∑n∈C,m∈C′ . This
means that all solutions of Equation (2), which would be obtained in bases composed
by wavefunctions of two or more configurations, are excluded. In other words, general
configuration interaction is neglected. Nevertheless, a certain kind of configuration inter-
action, particularly important in plasmas, can be included in an approximate way [9–12]:
interaction between relativistic subconfigurations of a non relativistic configuration.

2.3. Approximation of the Probability of a State

The probability of a state |n〉 with N bound electrons in a plasma at local thermody-
namic equilibrium can be obtained by the formula:

Pn = A exp

−
(

En + E(b f+ f f )
n

)
kBT

, (3)

where En represents the contribution of bound electrons to the energy of state |n〉. E(b f+ f f )
n

is the sum of the interaction energy between bound and free electrons (bf: bound-free) and
the interaction energy between free electrons (ff: free-free) induced by the state |n〉. The
energy dispersion of the states with respect to the value of kBT being relatively weak, we
can replace in expression (3) the energy En + E(b f+ f f )

n by its average value, identical for all
the states of the configuration. We can then write:

Pn = B exp
(
− EC

kBT

)
= B exp

−
(

E(b)
C + E(b f+ f f )

C

)
kBT

. (4)

The term E(b)
C can be obtained as [8]:

E(b)
C = ∑

s
qs Is +

1
2 ∑

s,r
qs(qr − δs,r)Vs,r, (5)

where integer number qs is the population of bound subshell s; Is and Vs,r depend on
direct and exchange Slater [8] integrals calculated with wavefunctions obtained via a
self-consistent calculation, restricted to the configuration C. In that framework, we have:

Is = εs −
∫

d~r φ∗s (r)
[
−Z

r
+ V(r)

]
φs(r), (6)

where φs(r) is the wavefunction of subshell s, εs its eigen-energy and V(r) the central
self-consistent potential of configuration C (the Hamiltonian used for the calculation of
orbitals reads Ĥ0 = − 1

2
~∇2 − V(r)). In the local-density approximation of the density-

functional theory, the self-consistent potential is the sum of the electrostatic potential
(related to the electron density through the Poisson equation) and an exchange-correlation
potential. The version of the SCO code described in Section 3 relies on such an approx-
imation. However, it is worth mentioning that Blenski et al. derived finite temperature
self-consistent-field Hartree-Fock equations for atoms in plasmas based on the superconfig-
uration method [13–15]. The populations of the subshells and the interaction matrices in
the Hartree-Fock equations can be expressed in terms of statistical sums. In such a way
the Pauli principle and the exchange interaction are taken into account exactly [16]. This
allows one to avoid problems stemming from non-integer occupation numbers in other
approaches to thermal Hartree-Fock theories [17].
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2.4. Probability of an Electronic Configuration in the Superconfiguration Approximation.
Calculation of the Self-Consistent Potential of a Superconfiguration

The superconfiguration approximation consists in partitioning the ensemble of config-
urations, i.e., in gathering them into groups. A superconfiguration represents a number
of configurations of the plasma and is composed by an ensemble of supershells (i.e.,
groups of subshells) and their respective populations. For example, superconfiguration
Ξ = (1s2s2p)10(3s3p3d)18(4s4p4d4 f 5s5p5d)20 represents all the configurations with shells
n = 1, n = 2 and n = 3 full and a total of 20 electrons distributed in all possible ways
(consistent with the Pauli exclusion principle) in the subshells 4s, 4p, 4d, 4 f , 5s, 5p and 5d
(the third supershell consists of 7 orbitals 4s to 5d). As we will see in Section 2.7, Ξ contains
a total of 35,413 configurations and 4.71292·1013 states.

Gathering configurations into superconfigurations allows for a further simplification
of the expression of the probability of a configuration. As shown by Equation (5), the
Hartree-Fock energy of a configuration is a quadratic function of the subshell popula-
tions, which is not convenient for the evaluation of summations over populations. The
superconfigurations will therefore be chosen in a way such that the energy of a configura-
tion belonging to a superconfiguration Ξ can be approximated by a linear function of the
subshell populations:

EC = ∑
s

q(C)s εs + E(b,int)
C + E(b f+ f f )

C

≈ ∑
s

q(C)s ε
(Ξ)
s + 〈E(b,int)

C + E(b f+ f f )
C 〉Ξ + ∑

s
〈q(C)s 〉

(
εs − ε

(Ξ)
s

)
= ∑

s
q(C)s ε

(Ξ)
s + Ē(1)

Ξ , (7)

where E(b,int)
C represents the difference between E(b)

C and ∑s q(C)s εs. The STA formalism
requires the calculation of independent-electron partition functions under the constraint
that a group of subshells (referred to as a supershell) has an integer number of electrons (see
Section 2.7). The averages in the term 〈· · · 〉Ξ are carried out upon both bound-state popula-
tions and free states. The coefficients involved in the linear function which were, originally,
the one-electron eigen-energies εs for a configuration (see Equation (6)) are now replaced
by the one-electron eigen-energies of the superconfiguration, ε

(Ξ)
s , which are common to

all the configurations belonging to superconfiguration Ξ. In other words, the supercon-
figuration approximation consists in replacing EC by ∑s q(C)s ε

(Ξ)
s + 〈EC −∑s′ q

(C)
s′ ε

(Ξ)
s′ 〉C∈Ξ

in the Boltzmann factor. Each superconfiguration will therefore be characterized by a
self-consistent potential and/or the one-electron states in this potential. In such a way, the
probabilities of electronic states and configurations will be given in each superconfiguration
by identical expressions, as for the probability of states in an ideal gas of independent
electrons. Thus, in a sense, the superconfiguration approximation enables one to use the
statistical mechanics of the ideal gas for the states of configurations which energies are
sufficiently close to each other. This is the case when the energy dispersion of the states of a
superconfiguration is small compared to the value of thermal kinetic energy kBT. However
it must be noticed that the main advantage of the superconfiguration approximation is
the fact that it relies on a recursive algorithm. In practice, an efficient way to evaluate
the reliability and the validity of such an approximation is to control the convergence
of a photoabsorption calculation. Convergence can be considered to be achieved when,
after a certain supershell subdivision, the spectrum does not change anymore. The re-
finement of the supershell subdivision is not required anymore (it means the number of
superconfigurations to be calculated is sufficient).

Of course, in the calculation of the average energy of a configuration, required for
instance for the determination of the transition energies, the quadratic terms (with respect
to the subshell populations) are taken into account, and their average expressed in terms of
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partition functions. This means that we assume (which is reasonable), that the dependence
of quantities Is and Vs,r with respect to the populations can be neglected.

2.5. Transition Arrays between Two Configurations. Statistical Treatment of Lines

The superconfiguration formalism enables one to use a basis of one-electron wavefunc-
tions common to superconfigurations in order to evaluate the matrix elements ∑n,m

∣∣〈n|D̂|m〉∣∣2.
Indeed, through the expression of the probability of the states, the cross-section can be
expressed in a simplified way:

σa(ω) =
4π2αfine

3 ∑
Ξ,Ξ′

∑
C∈Ξ,C′∈Ξ′

PC ∑
n∈C,m∈C′

(Em − En)
∣∣〈n|D̂|m〉∣∣2 fn,m(h̄ω− Em + En), (8)

where PC represents the probability of configuration C divided by its degeneracy. Sum-
mation over states n and m becomes independent on the temperature and describes a
transition array between configurations C and C′. The presence of dipolar operator in
the matrix elements of Equation (8) enables one [8] to construct configuration C′ from
the knowledge of configuration C through the transition C → C′ obeying selection rules
(∆` = ±1, ∆j = ±1 or 0). In the case of ions with several open subshells, the increasing
number of states n and m manifests itself by the occurrence of a large number of lines
building an unresolved transition array in absorption or emission spectra. The transi-
tion arrays between two configurations were studied by Bauche-Arnoult, Bauche and
Klapisch [4–7]. These authors have proposed a statistical treatment of transition arrays
consisting in modelling the contribution of lines to the spectrum by “envelopes” continuous
with respect to photon energy. Such an approach seems to be adequate in the case of a
huge number of lines. Indeed, the widths of such lines are finite (in plasmas, “physical”
broadening of lines, due to the interaction with the plasma environment made of electrons
and ions, can be important because of Doppler effect, electron impact and ionic Stark
effect). Subsequently, lines merge together and exhibit large unresolved structures in the
spectrum. The knowledge of the first three moments (orders 0, 1 and 2) enables one to
model a transition between two configurations by a Gaussian function. In the statistical
approach of references [4–7], physical broadening, described by functions fn,m, is assumed
to take the same value for all the lines of the transition array. Such an approximation leads
us to define the three previously mentioned momentsM(C)

i , i = 0, 1, 2, weighted by the
line strengths:

M(C)
i =

4π2αfine
3

PC ∑
n∈C,m∈C′

(Em − En)
i∣∣〈n|D̂|m〉∣∣2. (9)

The first three normalized moments of the Gaussian distribution can be expressed in
terms of the ones of Equation (9) in the following way:

µ
(C)
0 =M(C)

0 , (10)

µ
(C)
1 =

M(C)
1

M(C)
0

, (11)

and

µ
(C)
2 =

M(C)
2

M(C)
0

−
(
M(C)

1

M(C)
0

)2

. (12)

They correspond, respectively, to the total strength of the array, to its average transition
energy and to its variance. Let us consider a transition between two configurations: C and
C′. It can be described in terms of population numbers of the subshells by the following
symbolic notation: q1, · · · , qα, · · · , qβ, · · · , qN → q1, · · · , (qα − 1), · · · , (qβ + 1), · · · , qN ,
α → β being the considered transition (one-electron jump). Total strength of the transi-
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tions can be evaluated [8] from one-electron states (orbitals). Therefore, the zero-order
moment reads:

M(C,α→β)
0 =

4π2αfine
3

PC ∑
n∈C,m∈C′

∣∣〈n|D̂|m〉∣∣2
=

4π2αfine
3

PCgC2
q(C)α

(
gβ − q(C)β

)
gαgβ

|〈α||~r||β〉|2, (13)

where gC is the total degeneracy of configuration C. gα and gβ are the degeneracies of
subshells α and β, respectively, and 〈α||~r||β〉 is the reduced matrix element of these two
orbitals (we make the assumption, at this stage, that the basis of orbitals of C and C′ are the
same) [8].

References [4–6] provide analytical formulas for the first and second moments µ
(C)
1 and

µ
(C)
2 of the transition array between two configurations. In particular, the average energy

of the transition is given by: µ
(C)
1 = E(b)

C′ − E(b)
C + δE(C− C′), where the first two terms

correspond to pure-bound-electron energies of configurations C and C′ (see Equation (5))
and the third term to an exact correction (sometimes referred to as the “BBK”—for Bauche,
Bauche-Arnoult, Klapisch-shift). In the case of transition α→ β between two configurations
C → C′, such a result can be written:

µ
(C)
1 = ∑

s
(qs − δα,s)Ds(α, β) + D0(α, β), (14)

where coefficients Ds depend on the Slater integrals [8] involving orbitals α and β as
well as orbital quantum numbers of subshells α, β and s (for s different from zero). The
results for the variance will not be presented here; let us only note that they involve
quadratic forms with respect to populations qs. The formulas for the moments µ1 and µ2,
established in [4–6], take into account the selection rules, since the averages in Equation (9)
are made on the matrix elements on the N -electron states. The statistical description
of “non relativistic” configurations leads (see references [4,5]) to structures named UTA
(Unresolved Transition Arrays). In the framework of the configuration approximation, such
a description corresponds to intermediate coupling [8]. The unresolved structures obtained
in the case where the configurations are made of relativistic orbitals are named SOSA
(Spin-Orbit Split Arrays) [6]. In both cases, UTA and SOSA, the total theoretical spectra
are obtained as sums of weighted Gaussians, as predicted by Equation (8). The physical
broadening, uniform for the configuration, can be reintroduced through a convolution
leading to a Voigt profile.

2.6. Transition Arrays between Two Superconfigurations. Statistical Treatment of Lines
and Configurations

The ensemble of transitions α→ β between two superconfigurations is named, in the
literature, a STA (Super Transition Array). The statistical treatment of STAs relies, as in the
case of UTAs or SOSAs, on the calculation of the first three moments of such superarrays
and on the modelling of transitions by Gaussians built from these moments. The moments
characterizing a transition α→ β are defined in a similar way as in (9):

M(Ξ,α→β)
i =

4π2αfine
3 ∑

C∈Ξ,C′∈Ξ′ ,α→β

PC ∑
n∈C,m∈C′

(Em − En)
i∣∣〈n|D̂|m〉∣∣2. (15)

In the case of Equation (15), the calculation must absolutely take into account the
fact that the probability PC depends on the temperature. In order to include this depen-
dence, we can use the main approximation of the superconfiguration method, presented in
Equation (7). Such an approximation simplifies considerably the calculation.
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2.7. Partition Functions of the Superconfiguration Approach

Thanks to Equations (4) and (7), the normalization coefficient of the probability PC
(see Equation (3)), which is nothing more than the inverse of the partition function U
counting all the states belonging to all the superconfigurations, becomes:

U = ∑
Ξ

exp

(
−

Ē(1)
Ξ

kBT

)
∑

C∈Ξ
gC exp

−∑s∈C q(C)s

(
ε
(Ξ)
s − µ

)
kBT


= ∑

Ξ
UΞ exp

(
−

Ē(1)
Ξ

kBT

)
, (16)

where µ represents the chemical potential and

gC = ∏
s

(
gs

q(C)s

)
, (17)

(
g
q

)
= g!/q!/(g− q)! being the usual binomial coefficient. The partial partition function

(also named “statistical sum”) UΞ of Equation (16) reads:

UΞ = ∏
σ∈Ξ

∑
q1,··· ,qN︸ ︷︷ ︸

∑s qs=Qσ

(
gs
qs

)
Xqs

s = ∏
σ∈Ξ

U(σ)
Qσ

({gi, i ∈ σ}), (18)

where Xs = exp
[
−
(

ε
(Ξ)
s − µ

)
/(kBT)

]
and the product runs over the supershells σ of Ξ.

Bar-Shalom et al. have proposed to use, for the calculation of the partition function of
a Q-electron supershell made of N orbitals, a recursive formula which is well-known in
the thermodynamics of ideal fermions. The partition function is a linear combination of
the partition functions of the same supershell (same number of orbitals N) with smaller
electron numbers [18,19]:

UQ(~g) =
1
Q

Q

∑
k=1

χkUQ−k(~g), (19)

with ~g = (g1, g2, · · · , gN) and

χk = −
N

∑
i=1

gi(−Xi)
k, (20)

where

Xi = exp
[
− (εi − µ)

kBT

]
. (21)

However, the coefficients of linear combination (19) have alternate signs which can
be a source of numerical errors. In order to remedy this problem, when the number of
electrons is larger than half the total degeneracy of the supershell, it has been proposed to
count the holes rather than the electrons [15]. The partition function for the holes U∗Q is
directly related to the partition function for the electrons UQ through the relation

U∗Q∗(~g) = U∗Q∗(~g, Xi, i = 1, N) = UQ

(
~g,

1
Xi

, i = 1, N
)
×

N

∏
i=1

Xgi
i , (22)

where G = ∑N
i=1 gi is the total degeneracy of the supershell and Q∗ = G−Q the number of

holes. The algorithm relying on Formula (19) and using electron/hole counting enables one
to perform calculations in most of the cases without any numerical errors. However, when
one considers very large supershells or supershells showing large differences in the energies
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of their orbitals (compared to the thermal kinetic energy kBT), it can become numerically
unstable. In the case of high-degeneracy supershells and/or at low temperature, the above
relations (Equations (19) and (22)) for generating these partition functions suffer from
numerical instability due to precision cancellations arising from sums of large terms of
alternating sign [20]. In 2004, we proposed a robust and stable algorithm [21], relying on
the calculation of partition functions by a nested recursion, building up supershells one
subshell by one, at each stage from “parent” supershells (of one less subshell) with smaller
numbers of electrons. All the terms entering the sums involved in this recursion are strictly
positive, and cancellation effects are therefore avoided. The relation reads

UQ,N =
min(Q,gN)

∑
i=0

(
gN
i

)
Xi

NUQ−i,N−1. (23)

The eigen-states obtained from the resolution of the Schrödinger equation are num-
bered by the principal n, orbital ` and spin s quantum numbers, as well as the magnetic
moments m` and ms. Each subshell can contain 2 ∑`

m`=−` 1 = 2(2`+ 1) states. Such a num-
ber is also the degeneracy of the subshell. In the case of Dirac equation, the degeneracy of a
relativistic subshell (n`j) is 2j + 1. The number of configurations K(Q, N) of a system with
N subshells and Q electrons is equal to the number of ways to distribute the Q electrons
in the N subshells. The population i of subshell N lies between 0 and min(Q, gN), where
gN is the degeneracy of the subshell. For each value of i, one has to “place” the remaining
Q− i electrons in the N − 1 remaining subshells [22]. This yields

K(Q, N) =
min(Q,gN)

∑
i=0

K(Q− i, N − 1). (24)

In the same way, the number of states W(Q, N) of a system with N subshells and Q
electrons reads

W(Q, N) =
min(Q,gN)

∑
i=0

(
gN
i

)
W(Q− i, N − 1). (25)

Table 1 displays the numbers of configurations and states for a supershell made of
N = 7 subshells 4s to 5d and different values of Q.

Table 1. Number of configurations and states for different values of the number of electrons Q in the
supershell (4s4p4d4 f 5s5p5d).

Q Configurations K(Q, 7) States W(Q, 7)

1 7 50
4 196 230,300
8 2096 536,878,650

12 8652 1.21400·1011

16 21,084 4.92369·1012

20 35,413 4.71292·1013

24 43,738 1.21549·1014

28 40,798 8.87498·1013

32 28,480 1.80535·1013

36 14,242 9.37846·1011

40 4622 1.02723·1010

44 757 15,890,700
48 28 1225
49 7 50
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Figure 1 displays the ratio of consecutive partition functions (
∣∣UQ/UQ−1

∣∣) versus the
number of electrons for the supershell (4d4 f 5s5p) in the case of a gold plasma (Au, Z = 79)
at 100 eV and 0.01 g/cm3. Electron eigen-energies have been obtained through a screened
hydrogenic model with (n`) splitting. One can check that in that case the electron-hole
formalism is sufficient in order to carry out the calculation with any precision loss.
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Figure 1. Ratio of consecutive partition functions (
∣∣UQ/UQ−1

∣∣) versus the number of electrons for the
supershell (4d4 f 5s5p) in the case of a gold plasma (Au, Z = 79) at 100 eV and 0.01 g/cm3. Electron
eigen-energies have been obtained through a screened hydrogenic model with (n`) splitting. Full red
circles represent the results of the calculations performed using relation (19) applied to the electrons
and empty blue circles represent the calculation relying on relation (19) applied to holes (22). One can
check that in that case the electron-hole formalism is sufficient in order to carry out the calculation
with any precision loss.

Figure 2 shows the ratio of consecutive partition functions (
∣∣UQ/UQ−1

∣∣) versus the
number of electrons for the supershell (4s4p4d4 f 5s5p5d) in the case of a gold plasma (Au,
Z = 79) at 100 eV and 0.01 g/cm3. One can check that in that case the electron-hole
formalism is not sufficient in order to carry out the calculation with any precision loss.
However, with the new recursion relation (23), the calculation works in all cases, even
without the electron-hole formalism (which still enables to save computation time).

In a 2007 paper entitled “Further stable methods for the calculation of partition
functions in the superconfiguration approach” [23], we proposed two main improvements
of the initial method:

• The first improvement consists in applying the recursion relation to holes, when a
supershell is more than half-filled with electrons.

• The second improvement consists in precomputing some partition functions and
storing the results. It stems from the successive use of generating functions with
reduced degeneracies.

The latter improvement, however, was not clearly explained, and several researchers
wrote to us because they did not manage to understand how to proceed. This is mainly
due to the fact that Equation (23) of reference [23] may be misleading, if not considered
as incorrect. Therefore, we published recently [24] a paper in which we propose an
optimization of the latter method and explain how to implement it in practice. The
formalism relies on the evaluation of elementary symmetric polynomials, which opens the
way to further improvements.
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It is worth mentioning that we also improved the treatment of electron-electron
interactions, in order to go beyond the averaging of the corresponding energy term in the
Boltzmann factors (see Equation (7)). Our approach relies on the Gibbs-Bogolyubov (or
Jensen-Feynman) variational approach, which enables one to include the effect of such
interactions in an average manner in the one-electron energies [25,26].
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Figure 2. Ratio of consecutive partition functions (
∣∣UQ/UQ−1

∣∣) versus the number of electrons for
the supershell (4s4p4d4 f 5s5p5d) in the case of a gold plasma (Au, Z = 79) at 100 eV and 0.01 g/cm3.
Electron eigen-energies have been obtained through a screened hydrogenic model with (n`) splitting.
Full red circles represent the results of the calculations performed using relation (19) applied to
the electrons and empty blue circles represent the calculation relying on relation (22) applied to
holes (19). One can check that in that case the electron-hole formalism is not sufficient in order to
carry out the calculation with any precision loss. However, with the new recursion relation (23), the
calculation works in all cases, even without the electron-hole formalism (which still enables to save
computation time).

3. The Opacity Code SCO

The SCO code (Superconfiguration Code for Opacity) [15,27,28], uses in practice all
the formulas mentioned in Section 2 in order to evaluate the contribution to the pho-
toabsorption cross-section of transitions involving bound electrons. The calculation of
the bound-free cross-section in that code relies on the superconfiguration formalism as
well. Free-free transitions (inverse bremsstrahlung) can be evaluated using the Kramers
(classical) formula or via a quantum calculation using free-electron wavefunctions. One of
the original features of the code is the self-consistent calculation of superconfigurations
in the Wigner-Seitz (WS) cell. In such a way, the code takes into account effects due to
the plasma environment, named “density effects”. The screening by the electrons is a
direct consequence of the neutrality of the plasma, which ensures, adjusting the chemical
potential, that the total number of electrons in the sphere (bound and free) is equal to
atomic number Z.

The computation starts with an average-atom calculation. Such a model enables one
to determine in a self-consistent way the average electronic structure of the plasma, i.e.,
the energies of the orbitals, their wavefunctions and their fractional populations, corre-
sponding to the average configuration. The whole plasma is described by the WS sphere
representing an imaginary average ion which charge is precisely the average ionization of
the plasma. Then, the code determines the list of the relevant superconfigurations. Such a
list is prepared on the basis of the results of the average-atom calculation (the configuration
energies are estimated using the average-atom eigen-energies and wavefunctions). In the
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SCO code, the choice of the supershells and the creation of retained superconfigurations
is automatic. Consistently with the imposed gathering criteria, the code builds the super-
shells containing subshells more or less dispersed on an energy scale. The supershells are
populated according to the fluctuation theory of non-interacting fermions [29]. Using the
eigen-energies and wavefunctions obtained from the average-atom calculation, the code
determines the probabilities of the superconfigurations and retains only the required num-
ber. The electronic structure of the retained superconfigurations is obtained as a result of
the self-consistent-field calculation. The superconfigurations are characterized by their self-
consistent potentials (and therefore by their wavefunctions) and their free energy, which
yields a more realistic evaluation of the partition functions as well as of the energy Ē(1)

Ξ (see
Section 2). The self-consistent computation of the electronic structure of a superconfigura-
tion is similar to the average-atom one, except that in the former one has to ensure that the
populations of the supershells are integers, which requires the introduction of Lagrange
multipliers. The relativistic effects are included in the Pauli approximation [30] and the
exchange-correlation potential at finite temperature is calculated using a fit proposed by
Iyetomi and Ichimaru [31]. The choice of the number of superconfigurations (and therefore
of the subdivision of supershells) is guided by the convergence of the spectrum: when the
spectrum does not change anymore, the number of superconfigurations is sufficient. Such
a convergence test also ensures, in an indirect way, the validity of the main approximation
of the superconfigurations method consisting in averaging the quadratic terms in the
Boltzmann probability of a superconfiguration (7). In addition the code includes interaction
between relativistic subconfigurations of a non-relativistic configuration. Several models,
proposed by Bar-Shalom et al., are implemented. They rely on analytical expressions for
the correction to the intensities, owing to configuration interaction, of a super transition
array [10–12]. Within the model described in reference [10], such formulas are obtained
when the correction is small compared to the spin-orbit splitting, bypassing the need to
diagonalize energy matrices. In the later works, the smallness of the correction is not
assumed (in particular, the model of references [11,12] describes the limit of LS-coupling).

4. Comparisons with Experimental Spectra
4.1. Measurement of the Transmission of an Iron Plasma in the XUV Range

The experiment was performed on the ASTERIX IV laser facility by Winhart et al. [32,33].
It concerns a part of the spectrum of iron close to the absorption structure dominated by
3p-3d transitions, structure that had been measured previously by Da Silva et al. [2]. The
work of reference [2] was motivated by astrophysical applications. Assuming that, during
the measurement, the density and the temperature of the target are quasi-uniform, the
transmission is directly related to the opacity which is nothing else than the photoabsorp-
tion cross-section per unit of mass. We show on Figure 3 that it is possible to obtain a
relatively good agreement between theory and experiment concerning the position of the
absorption structures. The differences between theoretical and measured transmissions can
be attributed to temperature and density spatial (gradients) and temporal (non-stationarity)
variations in the target during the measurement. This comparison illustrates the way the
theoretical spectrum changes with the supershell splitting (see Figure 4) and with the
number of superconfigurations included.
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Figure 3. Comparison between an experimental transmission spectrum (black curve) of an iron
plasma (Fe, Z = 26) with a spectrum simulated by SCO code (red curve). The experiment is
described in reference [32,33]. The areal mass is 20 µg/cm2. The best agreement has been obtained
at a temperature of 22 eV and a density of 0.01 g/cm3. The calculation has been carried out with
9 supershells and 500 superconfigurations.
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Figure 4. Comparison between an experimental transmission spectrum (black curve) of an iron
plasma (Fe, Z = 26) with a spectrum simulated by SCO code. The experiment is the same as the one
in Figure 3. The figure displays 4 different calculations at a temperature of 22 eV and a density of
0.01 g/cm3: the green curve corresponds to a calculation with 2 supershells and 6 superconfigurations,
the yellow curve to a calculation with 3 supershells and 56 superconfigurations, the red curve to a
calculation with 4 supershells and 385 superconfigurations and the blue curve to a calculation with
9 supershells and 2000 superconfigurations. This illustrates the convergence of the spectrum with
respect to the subdivision in supershells and the number of superconfigurations. Beyond a threshold
number of superconfigurations, the spectrum does not change much.
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4.2. Transmission of a Multilayer Plasma: Aluminum and Nickel

This experiment, similar to the previous one, has been performed by the group of
Chenais-Popovics [34] and addresses the theme of mixtures. The target was made of
10 alternate slices of aluminum and nickel (5 of each element) and the total areal mass of
each element was 20 µg/gm2. In a general way, spectra of light elements are often used as
“thermometers” since it is easier to determine the temperature by theoretical analysis of
such elements. Figures 5 and 6 show the differences between spectral structures of a low-Z
element and a mid-Z element. Indeed, in the case of the aluminum spectrum, it is possible
to distinguish the structures due to different ionic charges. Such a distinction is totally
impossible in the case of nickel. Contributions of all ionic charges build large unresolved
structures. However, it is possible to determine which transitions the main structures
correspond to. Although direct information about the ionic charges seems to be lost, it is
present in an implicit way in the statistics underlying the superconfiguration method.

Aluminum transmission was computed with the detailed (fine-structure) code HUL-
LAC (Hebrew University Lawrence Livermore Atomic Code) [35] and then by the super-
configuration code SCO. Figure 5 shows the measured transmission, the transmission
obtained from the HULLAC code at a temperature of 24 eV and a density of 0.005 g/cm3,
and the transmission calculated by the SCO code at a temperature of 23 eV and a density
of 0.004 g/cm3. Figure 6 shows experimental and theoretical transmission spectra for
nickel. Both theoretical spectra have been calculated by the SCO code and correspond to
temperatures of 19 and 15 eV and to a density of 0.01 g/cm3. The comparison of the 2p-3d
and 2p-4d structures at 19 and 15 eV in Figure 6 illustrates the fact that the absorption
structures of nickel are very sensitive to the temperature. Note that the spectra obtained
with the SCO code showed a good agreement with a number of other experimental spectra,
in particular the germanium spectrum obtained by Renaudin et al. [36]. The sensitivity
of the absorption features calculated with SCO at the “theoretical” temperature led to an
additional diagnostics in several photoabsorption experiments [37,38].
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Figure 5. Comparison between an experimental transmission spectrum (black curve) of an aluminum
plasma (Al, Z = 13) of a Al/Ni multilayer, a spectrum calculated by the detailed-configuration code
HULLAC (green curve) at a temperature of 24 eV and a density of 0.005 g/cm3, and a spectrum
calculated by the SCO code at a temperature of 23 eV and a density of 0.004 g/cm3 (blue curve). The
experiment is described in reference [34].
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Figure 6. Comparison between an experimental transmission spectrum (black curve) of a nickel
plasma (Ni, Z = 28) of a Al/Ni multilayer, a spectrum calculated by the SCO code (red curve) at a
temperature of 15 eV and a density of 0.01 g/cm3, and a spectrum calculated by the SCO code at a
temperature of 19 eV and a density of 0.01 g/cm3 (green curve). The experiment is the same as in
Figure 5.

5. The Beginning of a New Story: The Birth of SCO-RCG Code

SCO-RCG [39–42] is a hybrid opacity code combining statistical modellings of transi-
tion arrays (STA, UTA, SOSA) with fine-structure calculations. The selection of transition
arrays for which a detailed line-by-line treatment is possible and relevant is made according
to some criteria involving the mean energy “spacing” between neighbouring lines and
the mean line width in the transition array. The data required for the calculation of the
detailed transition arrays (i.e., direct and exchange Slater, spin-orbit, and dipolar integrals)
are provided by the superconfiguration code SCO [27], ensuring in this way a consistent
modelling of the plasma screening effects on the wavefunctions. Then, the level energies
and the line energies and strengths are calculated by the routine RCG, which is an ingre-
dient of Cowan’s atomic structure code [8]. RCG proceeds to the diagonalization of the
Hamiltonian. The computation starts with an usual average-atom calculation, providing
the mean populations of the subshells, and from which a list of superconfigurations of the
following type:

(1s)q1(2s)q2 · · · (nk−1`k−1)
qk−1 σqk (26)

is built, where

σ =

(
N

∏
i=k

ni`i

)
, (27)

nN`N being the last (highest-energy) subshell determined by the average-atom calculation
at the given temperature and density. We then use the LTE fluctuation theory around
the average-atom non-integer mean populations in order to fix the range of variation
of the populations qk, k = 1, N and therefore the possible list of configurations (if qk is
equal to zero) or superconfigurations (if qk is strictly positive). The superconfigurations
are then sorted according to their respective Boltzmann probabilities, estimated, at this
stage (they will be recalculated later with their “true” wavefunctions in their own self-
consistent potential) using the average-atom wavefunctions. In the calculations presented
in this paper, we kept the 1000 most probable superconfigurations. Next, a self-consistent
calculation is performed for each superconfiguration which has, in such a way, its own
potential and set of wavefunctions. The strength of our hybrid approach is that it makes
possible the accounting for many highly excited states and satellite lines. The probabilities
of those states may be small, but their number is so huge that they are likely to play a
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significant role in the total opacity. In SCO-RCG, the orbitals are taken individually up to a
certain limit beyond which they are gathered in a single supershell. The grouped orbitals
(typically, in the present calculations, the orbitals for which 5 < n < 12) are chosen so
that they weakly interact with inner ones. This is the reason why we call this supershell
the “Rydberg supershell”. A DLA calculation is then carried out (when possible and
necessary) for all of the transition arrays starting from that configuration. DLA calculations
are performed only for pairs of configurations giving rise to less than 800,000 lines (the
maximum size of a J-block inside a configuration is 4000). In other cases, transition
arrays are represented statistically by Gaussian profiles in the UTA or SOSA formalisms.
If the Rydberg supershell contains at least one electron, then transitions starting from
the superconfiguration are treated within the STA model. In that way, no configuration
is forgotten. The Rydberg supershell is pushed back in order to make its contribution
as small as possible. The amount of detailed calculations in SCO-RCG is now largely
dominant and subsequently the computed spectrum is less sensitive to the modelling of the
remaining statistical contributions (UTA, SOSA, STA). The Partially Resolved-Transition-
Array (PRTA) model [43] was also implemented in the code. It enables us to replace many
statistical transition arrays by small-scale DLA calculations resulting from the withdrawal
of passive subshells from the “real” configuration to form the reduced configuration. The
DLA computation of the reduced configuration is carried out with the wavefunctions
of the “real” configuration previously calculated. The electrostatic variance due to the
passive subshells is added to each line of the DLA calculation in order to keep constant
the total oscillator strength of the transition array. We extended this approach to the STA
formalism of reference [3], by temporarily withdrawing the Rydberg supershell in the
computation, and adding its contribution to the widths of all the lines. The contribution of
the Rydberg supershell is included as a Gaussian “dressing function” [40]. We also have
the possibility to replace this dressing function by a coarse-grain configurationally resolved
profile, following the configurationally resolved super transition array (CRSTA) method of
Kurzweil et al. [44–46] (see Section 6.1).

Figure 7 shows a comparison of the experimental and calculated SCO-RCG transmission
spectra of Si at T = 72 eV and ρ = 0.006 g/cm3 measured on the SG-II laser facility [47]. A good
overall agreement is obtained, except around hν = 1805 eV and between 1850 and 1860 eV.
The discrepancies in the latter energy window may be due to configuration interaction.
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Figure 7. Comparison of the experimental and calculated SCO-RCG (Superconfiguration Code for
Opacity combined with DLA (Detailed-Level-Accounting) calculations using Robert and Cowan’s
“G” subroutine) transmission spectra of Si at T = 72 eV and ρ = 0.006 g/cm3 measured on the SG-II
laser facility [47]. The areal mass is 23 µg/cm2 and the resolving power E/∆E = 2000.
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Figure 8 shows an aluminum spectrum measured by Winhart et al. on ASTERIX IV
laser facility in Germany and interpreted by SCO-RCG as an average of four theoretical
spectra at ρ = 0.01 g/cm3 and T = 18, 20, 22 and 24 eV, respectively, in order to simulate the
gradients [32].
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Figure 8. Aluminum spectrum measured by Winhart et al. on ASTERIX IV laser facility in Germany
and interpreted by SCO-RCG as an average of four theoretical spectra at ρ = 0.01 g/cm3 and T = 18,
20, 22 and 24 eV, respectively, [32]. The areal mass is 30 µg/cm−2.

X-ray transmission spectra of copper were measured in France at the LULI2000 laser
facility (Palaiseau, France) with a target design of indirect heating by X rays [48]. The
sample is a thin foil of mid-Z material inserted between two millimetre-size gold cavities
heated by two 300 J frequency-doubled nanosecond laser beams. A third laser beam
irradiates a gold foil to create an intense and spectrally continuous X-ray source (backlight)
in order to probe the sample. Figure 9 shows an interpretation of the transmission of a multi-
layer sample made of different materials: C (70 nm)/Al (38 nm)/Cu (12 nm)/Al (38 nm)/C
(70 nm). Here also, the aluminum spectrum is useful to infer the plasma conditions, in the
sense that the line ratios brings information about the plasma temperature, and the line
width about the plasma electron density.

In 2007, Bailey et al. reported on iron transmission measurements at T = 156 eV and
ne = 6.9 1021 cm−3 over the photon energy range hν ≈ 800–1800 eV [49]. The samples
consisted of an Fe/Mg mixture tamped on both sides by a 10 µm thick parylene-N (C8H8)
layer. The Fe/Mg mixture was made by depositing ten alternating Mg and Fe layers. The
difficulties of high-temperature opacity experiments were overcome using the dynamic
Hohlraum X-ray source at the Z facility of Sandia National Laboratories in Albuquerque
(New Mexico, USA). The process entails accelerating an annular tungsten Z-pinch plasma
radially inward onto a cylindrical low density CH2 foam. A radiating shock propagates
toward the cylinder axis and radiation trapped by the tungsten plasma forms a Hohlraum.
A sample attached on the top diagnostic aperture is heated during ≈9 ns when the shock
propagates inward and the radiation temperature rises above 200 eV. The radiation at the
stagnation is used to probe the sample. As we can see in Figure 10, the agreement is much
better with the fine-structure SCO-RCG computation than with the pure STA calculation
performed with SCO code. The experimental spectrum was well reproduced by several
fine-structure opacity codes (not only with SCO-RCG), but the features around 980 eV were
not reproduced by any of the involved codes.
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Figure 9. Copper 2p− nd, n = 3, 4, ... (around 975 eV, 1075 eV, ...) and aluminum 1s− n′p, n′=2, 3, ...
(around 1530 eV, 1675 eV, ...) absorption structures. Comparison between experiment and SCO-RCG
calculation at T = 27 eV and ρ = 0.01 g/cm3. The areal mass of copper is equal to 15 µg/cm−2 and
the areal mass of aluminum to 14 µg/cm−2.
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Figure 10. Iron transmission spectrum measured by Bailey et al. on the Z facility of Sandia National
Laboratories in Albuquerque (New Mexico, USA). Comparison between experiment, SCO and
SCO-RCG calculations at T = 150 eV and ρ = 0.058 g/cm3. The areal mass is equal to 54 µg/cm−2.

Interesting comparisons between detailed SCO-RCG calculations and traditional STA
ones were performed recently [50]. In the same corresponding paper, germanium emission
spectra were interpreted using the STA model. It is also worth mentioning that radiative
properties (i.e., absorption and emission spectra) of carbon and plastic were studied by
Lee et al. [51], still within the STA theory.

6. Recent Improvements of the STA Formalism
6.1. The STA Code by Krief et al.

Krief et al. [52–54] have recently developed a new STA code for calculating absorption
and emission spectra of LTE plasmas. The code follows the prescriptions of Bar-Shalom et
al. with several improvements. In particular, the authors developed a method to handle
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the first-order correction in the argument of the exponential in the Boltzmann populations
faster by about an order of magnitude than the traditional way [52]. Their atomic code,
named STAR (STA-Revised) was used to compute spectral opacities for a solar model on the
basis of the recent so-called “AGSS09” composition [55]. STAR Rosseland opacities for the
solar mixture showed a very good agreement with OP (Opacity Project) and OPAL (OPAcity
Livermore) opacities throughout the radiation zone. Finally, an explicit STA calculation
was performed with the AGSS09 photospheric mixture, including all the heavy metals and
the main conclusion was that, due to their extremely low abundance, and although they are
undoubtedly very good photon absorbers, the heavy elements do not affect significantly
the Rosseland opacity [53,54]. The STAR code was also used to investigate the role of line
shapes [56] and ion-ion correlations [57].

6.2. The Reseos Code by Ovechkin et al.

To investigate the effect of ion correlations on plasma opacities, Ovechkin et al. per-
formed opacity calculations using an ion-correlation average-atom model, following the
recent Starrett and Saumon formulation [58,59]. The model was implemented in the RE-
SEOS code [60–62] that implements a generalized version of the STA approach providing a
substantial acceleration of the photo-absorption and photo-ionization calculations with al-
most the same accuracy as that one obtained with the original superconfiguration approach.
As a result, RESEOS predicts a much smaller increase of the Rosseland mean opacity due
to ionic correlations (5.5%) than the above mentioned STAR code does (20%).

6.3. The Configurationally Resolved Approach of Kurzweil and Hazak

Kurzweil and Hazak developed a new method, called “Configurationally Resolved
Super Transition Arrays” (CRSTA), for the calculation of the spectral opacity of hot plasmas.
In the latter approach, the spectrum of each STA is computed as the Fourier transform of a
single complex pseudo-partition function, which represents the exact analytical summation
of the contributions of all constituting UTAs sharing the same set of one-electron states.
Therefore, in such a new method, the spectrum of each STA is resolved down to the
level of the (unresolved) transition arrays. It is shown that the corresponding spectrum,
computed by the traditional STA method [2], is in fact just the coarse-grained Gaussian
approximation of the CRSTA. The authors developed a new computer program, able
to evaluate the absorption coefficient by both the new configurationally resolved and
the traditional Gaussian STA model. Within the CRSTA formalism, the photoabsorption
cross-section reads (without the stimulated-emission correction):

σ(ω) =
4π2α

3
h̄ω

1
U(~g, β, 0) ∑

Ξ,a,b
〈a||r||b〉2gagb

×<
{∫ ∞

0
ei(Dab

0 −Dab
a )τ/h̄Xab

a (β, τ)Uab
Ξ,Q−1

(
~g−~δa −~δb, β, τ

)
e−ih̄ωτ/h̄dτ

}
(28)

with
Dab

s = Vs,b −Vs,a, (29)

where

Vs,r = F(0)(s, r)− 1
2

gs

gs − δs,r
∑
k
(1− δs,rδk,0)

(
js k jr

1/2 0 −1/2

)
G(k)(s, r), (30)

where F(k) and G(k) are the direct and exchange Slater integrals. One has also

U(~g, β, τ) = ∑
ab

Uab(~g, β, τ) (31)
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with
Uab(~g, β, τ) = ∑

Ξ
Uab

Ξ (~g, β, τ) (32)

and

Uab
Ξ (~g, β, τ) = ∑

C∈Ξ
∏
s∈C

(
gs
qC

s

)[
Xab

s (β, τ)
]qC

s
, (33)

as well as

Uab
Ξ,Q(~g, β, τ) = ∑

C ∈ Ξ
∑s qC

s = Q

∏
s∈C

(
gs
qC

s

)[
Xab

s (β, τ)
]qC

s
, (34)

with
Xab

s (β, τ) = exp
[
−β(εs − µ) + iDab

s τ/h̄
]
. (35)

It is possible to account for the homogeneous broadening and UTA widths in the
framework of the CRSTA method, although the corresponding terms are not included in
Equation (35).

6.4. Non-LTE Plasmas

The application of superconfigurations in a non-LTE context, i.e., in the framework
of the collisional-radiative model, is presented in references [63–65]. Moreover, the intro-
duction of the effective temperature of a superconfiguration enables one to simplify the
calculation of emission and absorption in some non-LTE plasmas [66–68]. Lee et al. have
investigated departures from LTE in recent interpretation of emission spectra [50].

7. Conclusions

In order to model absorption and emission of radiation by plasmas it is necessary
to account for a huge number of ion configurations and to use a realistic description of
their electronic structures. The superconfiguration method has been introduced by Bar-
Shalom et al. in order to calculate opacities in plasmas at local thermodynamic equilibrium.
This method is a statistical approach to ions allowing one to study atomic physics of
dense plasmas beyond the average-atom model. Each ionic species is described by a
group of superconfigurations and each superconfiguration represents in turn a certain
number of configurations. The STA technique is a powerful tool to compute the emissivity
and opacity of intermediate to high-Z elements where detailed-configuration-accounting
methods would have a prohibitive numerical cost. In the SCO code, developed at CEA
(French Alternative Energies and Atomic Energy Commission) at the end of the nineties
by Blenski et al., the one-electron eigen-energies and wavefunctions were determined
through a self-consistent calculation for each superconfiguration. Screening was taken
into account through the neutrality of the WS sphere, the free electrons being described
with the Thomas-Fermi approach [69]. A few years later, we developed a new model of
plasma, providing a consistent modelling of plasma mixtures [70,71], implemented the
quantum-mechanical description of continuum states, with the proper depiction of shape
resonances in the density of free states [72,73], and added the capability to compute the
equation of state [74,75]. In order to refine the spectra, we developed the SCO-RCG code
combining statistical (UTA, SOSA, STA) methods and fine-structure calculations, using
subroutines from Cowan’s code. This enabled us to obtain very detailed spectra, which
were successfully compared to many recent laser and Z-pinch measurements. The STA
formalism is still the cornerstone of several opacity codes, and new ideas are emerging,
such as the CRSTA approach [44–46] or the extension to the superconfiguration approach
of the PRTA model [40,76].
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