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Abstract: A new logic of reducing the two-time formalism to a highly informative scenario of redis-
tribution of plasma particles in momentum due to Coulomb collisions is reported. Based on objective
plasma evolution equations following from a properly reduced full plasma description, it has a more
sound foundation than that presented in the previous report on increasing the informativeness of
scenarios of the phenomenon. The possibilities of adapting the approach to the further develop-
ment of more informative scenarios of plasma collisional relaxation and the modelling of transport
phenomena are discussed.
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1. Introduction

In physics research, evolving systems are of considerable interest to theorists. Note
that even a momentary change in a factor affecting a certain physical system cannot cause
an instantaneous transition of the system from an initial state to some final one: the tran-
sition from the first to the second state takes some time and, thus, involves the evolution
of the system. Meanwhile, the final state itself is often determined by the subtleties of
the system evolution scenario. In view of this, the development of evolution scenarios
is of particular importance in the above-mentioned studies of evolving systems. In turn,
its importance has led to the emergence of the concept of the informativeness of physi-
cal theoretical scenarios of system evolution: the longer a scenario adequately depicting
the real picture of the macrophysical evolution of a system, the higher the informativeness
of the scenario [1–6]. Regarding plasma science, we have found that the bulk of the kinetic
scenarios of plasma phenomena generated by predecessors have inappropriately low infor-
mativeness due to the lack of an adequate understanding of two important aspects. The first
of them is the asymptotic nature of the convergence of successive approximations to a
plasma scenario. As a matter of fact, modelling plasma kinetics involves reducing the full
plasma description that is given by the simultaneous Maxwell [7] and Klimontovich [8,9]-
Dupree [10] equations to a simpler kinetic plasma model. In view of this, the researcher
inevitably loses the ephemeral possibility of adequately modelling the plasma evolution
during an infinite time interval, since any of the possible schemes of this reduction imply
a significant reduction in the informational basis of the theory. Further, the reduction
inevitably involves the generation of some nonlinear perturbation theory. In any such
theory, an increase in the order of consideration entails a factorial increase in the number of
terms considered. Consequently, after a certain order of consideration, an improvement
in the accuracy of the scenario (which is the only reason for the increase in the order of
consideration) will inevitably be replaced by a reduction in accuracy: successive iterations
begin to diverge due to a growth in the number of terms. It is this feature of the behaviour
of successive approximations of perturbation theory that is termed “asymptotic conver-
gence”. Increasing the order of consideration within the framework of the corresponding
perturbation theory, the researcher can equally rigorously develop different scenarios of
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the plasma evolution from a specified initial state by referring to different versions of
the leading-order approximation that correspond to this initial state. The point is that,
when one takes different lowest-order approximations of the employed nonlinear per-
turbation theory, its first sequential orders converge to different conditional limits that
correspond to different theoretical scenarios of the plasma macrophysical evolution.

The second aspect that was ignored by predecessors is that, with the traditional re-
placement of real plasmas by plasma ensembles, the theory loses a lot of its informativeness.
Indeed, conclusions about the mutual influence of the statistics of the ensemble strongly
depend on the composition of the ensemble; therefore, they cannot be treated as objective
laws of the physical evolution of the system. Additionally, note that the above two aspects
are inseparable of each other: the first implies the second and vice versa [3,4].

Having realised the reasons for the theory non-informativeness, we have formulated
principles that help to reduce full plasma descriptions to kinetic models of plasma evolution
with as high informativeness as possible. These principles are rejecting the traditional
plasma ensemble averaging and the direct time integration of intermediate evolution
equations that appear when reducing the full plasma description. Bearing them in mind,
we have developed a technique that is suitable for studying phenomena in a weakly
turbulent plasma. (In view of the purpose of the corresponding theoretical apparatus, it is
most natural to refer to it as a highly informative correlation analysis of plasma kinetics.)
Various aspects of this technique were discussed in References [3–6,11–16]. Some stages
of its development are reflected in books [1,2]. Our recent contributions to the field are
papers on drift in ordinary space and wavenumbers of non-potential plasma waves in an
inhomogeneous plasma [6,17] and on the role of forced plasma oscillations that accompany
such a drift [18].

Undoubtedly, weakly turbulent plasma phenomena are not the only ones for which
it is possible to develop somewhat informative theoretical plasma scenarios. In general,
the identification of plasma contexts that have this property and the development of
tools for generating informative scenarios in respective physical situations should be an
extremely important component of theoretical plasma research. We stress that there is no
universal calculation technique: each plasma problem dictates its own logic of developing
possibly more informative plasma kinetic scenarios. The simplest illustration of this
thesis is the problem of thermodynamic relaxation of a weakly non-ideal nonequilibrium
homogeneous plasma. (A plasma is considered to be weakly non-ideal if the number of
particles in the Debye sphere ND = ner3

D notably exceeds unity: the smaller ND, the less
ideal the plasma. Here ne is the density of plasma electrons and rD is the plasma Debye
length.) In such a plasma, the particles undergo Coulomb collisions, which lead to plasma
thermalisation. For this process, as for the phenomena in a collisionless weakly turbulent
plasma, it is possible to develop informative scenarios. At the same time, the machinery
for developing highly informative kinetic models of evolving weakly turbulent plasma is
useless here.

Informative kinetic scenarios of plasma evolution due to Coulomb collisions can be
important, say, for research on nuclear fusion. With this in mind, we have performed a
study that aimed at creating suitable tools for developing relevant informative scenarios.
A report on this study is currently under consideration for publication in Contributions to
Plasma Physics [19]. We note that the leading order of our kinetic scenario of the plasma
evolution due to Coulomb collisions of particles in homogeneous plasmas turned out to be
consistent with the well-known Lenard [20]-Balescu [21] plasma kinetic equation. It should
be stressed that Lenard and Balescu both considered this phenomenon within the plasma
ensemble paradigm. The focus on probabilistic plasma ensembles predetermined the sets
of ideas underlying the logics of their intermediate calculations. Obviously, a further
extension of these logics turned out to be technically unfeasible: the history of publications
on modelling the evolution of plasma due to Coulomb collisions does not contain reports
on the development of kinetic equations that are superior in accuracy to the Lenard-
Balescu equation.
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In the above-mentioned research report, our goal was to take the effect of temporal
changes in plasma distributions on the plasma evolution scenario into account. This goal
was achieved on the basis of our two-time formalism [17] by an auxiliary integration of
some formal equation that "governs” time advances of a formal function that is somehow
similar to the two-particle distribution function in the concept of plasma kinetics after
Bogoluibov [22]-Born–Green [23]-Kirkwood [24]-Yvon [25] (BBGKY kinetics). This inte-
gration helped to guess the structure of the real (well defined) function, the two-point
correlation function, that governs time advances of one-particle distribution functions.
The proposed function turned out to satisfy the natural equation of its evolution. Still,
we have some internal dissatisfaction, since our key function of the theory only echoes,
in its structure, with the result of the auxiliary calculation. On the one hand, the lack of
full correspondence between this function and the result of the formal calculation is quite
natural, since the formal function used in the calculation does not reflect the objective
physical relations that are pertinent to the plasma under consideration. On the other hand,
there should exist a direct derivation of the above key function based on the integration of
the natural equation of the plasma evolution, whereas we had not succeeded in deriving it.

In this paper, we report a solution to the latter problem: we present a reasoning
approach that is based on a full-scale two-time formalism with integration of the natural
evolution equation of the two-point correlation function that strictly justifies the structure
of the function.

Our new study will be presented in this paper in accordance with the following plan.
In the next section, we briefly outline the principals of the two-time formalism. Section 3
uncovers the logic of consideration in paper [19] and it presents a slightly more clarified
version of the two-point correlation function that has been developed according to this
logic. Section 4 describes a completely new way of looking at the problem. The results of
the study are commented on in the Conclusions.

2. Key Equations of the Two-Time Formalism

Stating the need to refrain from ensemble averaging, the theorist is faced with the prob-
lem of considering the full plasma description, the integration of which involves the simul-
taneous integration of the equations of motion for all individual charged plasma particles.
On the one hand, such an integration presupposes the knowledge of the initial data on
the position and momentum of each charged particle, which are never known. On the other
hand, even if it was known, the task of simultaneously integrating infinitely many equa-
tions of motion is technically infeasible. This inevitably forces one to construct a Vlasov
type statistic of particle distribution fα(~r,~p, t) [26] from the Klimontovich’s distribution
Nα = ∑

n
δ3(~r −~rn(t))δ3(~p − ~pn(t)) [8,9]: it was the construction of such statistics that

was a consequence of the use of plasma ensemble averaging by our predecessors. (In
the Klimontovich distribution, which we call the microdistribution, the subscript n num-
bers the particles of species α, and the functions~rn(t) and ~pn(t) describe the trajectories
of individual particles.) In the corresponding functional role, averaging over a plasma
ensemble can only be replaced by contextually oriented averaging over a sufficiently large
neighbourhood of the current point (~r,~p) of the R ⊗ P phase space. (Here the sign ⊗
denotes the product of two spaces. In what follows, it will also denote the direct tensor
product). In this paper, we consider the effect of Coulomb collisions in a macroscopically
homogeneous plasma. For this, it is natural to use as the above neighbourhoods uniform
six-dimensional parallelepipeds with sufficiently small momentum dimensions and suffi-
ciently large spatial dimensions. As a result, the bulk of the averaged microdistribution fα

turns in the sense of mathematics into a well-defined statistic that is independent of~r; its
transformations in time follow the equation

∂

∂t
fα = −eα

∂

∂pβ

〈
Eβ(~r, t)δNα(~r,~p, t)

〉
. (1)
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(Here, and in what follows, we will use the notation of tensor analysis, although no freedom
to change the reference frame is implied: co- and contravariant indices are distinguished
for an unambiguous interpretation of formulae). The equation is written under the usual
assumption that the potential part only of microstructural electric fields in the plasma is
important in Coulomb collisions. The angle brackets denote averaging over the above-
mentioned parallelepiped-shaped neighbourhood of the product of the microstructural
part of the microdistribution, δNα(~r,~p, t) = Nα(~r,~p, t)− fα(~r,~p, t), and the corresponding
microstructural part ~E(~r, t) of the electric field.

The right-hand side of Equation (1) contains particular data on the two-point correla-
tion function,

〈
δNα(~r,~p, t)~E(~r′, t′)

〉
. Here, we have intentionally split the time and spatial

variables of the two objects under the averaging sign to simplify the calculation process.
The notation indicates that the arguments~r and ~p of δNα run through the neighbourhood
in the phase space that was chosen to construct fα at the current point (~r,~p), and the spatial
arguments of ~E(~r′, t′) vary synchronously with the spatial argument of δNα: the difference
between these arguments is fixed in the averaging. (In this regard, our concept of the two-
point correlation function differs substantially from the concepts of two-point functions
that can be encountered in many papers that rely on traditional approaches. Particularly,
we can point to the concept of phasestrophy (otherwise the two-point phase space density
correlation [27]) mentioned in Reference [28]. Although the concept of the latter object
involves some averaging in phase space (called averaging over the spatial coordinate of
the centre of mass), it was defined as the technical implementation of averaging over an
ensemble of plasmas. The reference to this object is motivated by recalling exotic objects,
such as convective cells [29] and phase space density granulations [30–32]. Meanwhile, had
these or any other exotic objects of the traditional plasma theory been of any importance
for plasma physical manifestations, then they would have contributed to our two-point
correlation function, and their cumulative effect on plasma manifestations would have
been adequately described by the equations of two-time formalism provided that the corre-
sponding iterative procedure shows some asymptotic convergence.) Hence the system of
spatial arguments in our approach is somewhat redundant. (For more detailed comments
on this issue, see References [6,17].) However, this system is very convenient due to its
internal symmetry.

The second equation of the two-time formalism is either the evolution equation for
the two-point correlation function or the evolution equation for the two-time correla-
tion function ΦΦΦ(~r, t,~r′, t′) (since the magnetic microfields generated by plasma particles
can be neglected in the problem under consideration, the last function can be defined
as ΦΦΦ(~r, t,~r′, t′) =

〈
~E(~r, t)⊗ ~E(~r′, t′)

〉
). For modelling the kinetics of plasma collisional

relaxation, the use of the first equation is more reasonable. (The other equation, the evolu-
tion equation for the two-time correlation function, has been widely used in our previous
studies of phenomena in weakly turbulent plasma.) A number of theoretical objects are
required to represent this equation. The first is the bare Green function of particles of a
given species α, 0Gα(~r,~p, t,~r′,~p′, t′). It satisfies the causality principle: at t < t′, the function
is identically zero. In the domain t > t′, the function under study evolves according to
the equation [

∂

∂t
+ vβ ∂

∂rβ

]
0Gα(~r,~p, t,~r′,~p′, t′) = 0, (2)

with the initial data

0Gα(~r,~p, t′ + 0,~r′,~p′, t′) = δ3(~p− ~p′)δ3(~r−~r′).

The second object is the electromagnetic Green functionFFF , which conceptually corre-
sponds to the well-known delayed potentials. This function is a definite integro-differential
operator that gives an expression for the electromagnetic field (EMF) tensor in terms of
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the charge density. That is, in the absence of external electromagnetic radiation, the EMF
tensor in the plasma is

Fik(~r, t) = ∑
α

eα

t∫
−∞

dt′
∫
Fik(~r, t,~r′,~v′, t′)Nα(~r′,~p′, t′)d3~r′d3~p′. (3)

The explicit form ofFFF is not needed for our considerations.
An appropriately accurate equation for the evolution of the two-point correlation

function
〈

δNα(~r,~p, t)~E(~r′, t′)
〉

was developed in [33], where its full-scale presentation (and
derivation) was given in graphic form. We do not need to repeat this for the sake of
the current study. We only note that, in Reference [33], this equation is written in Figure 15
after the graphical notation that was introduced in the paper. The equation governs
the advances of

〈
δNα(~r,~p, t)~E(~r′, t′)

〉
with an increase in its entry time t. According to

the causality principle, the equation is only consistent for t > t′. That is, had we known
the initial value

〈
δNα(~r,~p, t′)~E(~r′, t′)

〉
, we could have integrated the equation to calculate

the function at larger entry times t > t′.
The above-mentioned equation from [33] has sufficient accuracy for the proper mod-

eling of the plasma kinetics in the next to the leading order of the expansion in N−1
D .

The researcher can easily develop more precise analogs of this equation: the principles of
corresponding derivations are set out in Reference [34]. Increasing the order of the cor-
responding derivations makes sense up to the order ∝ ND: higher orders diverge due to
the asymptotic nature of the convergence of the theory.

3. Preliminary Explanations

Following Equation (1), we need the feature
〈

δNα(~r,~p, t)~E(~r, t)
〉

to determine the rate
of change of the distribution function. In order to obtain it, we will develop a two-
point correlation function

〈
δNα(~r,~p, t)~E(~r′, t′)

〉
as a natural solution to the corresponding

evolution equation. In fact, we will concentrate our efforts on developing an approximation
of the function that evolves following only the linear version of this equation, i.e., the one
that is based on the terms containing a single wavy line in Figure 15 of paper [33]. This
time, our goal will be to properly account for the terms that are due to the next to the next
to the leading order of

〈
δNα(~r,~p, t)~E(~r′, t′)

〉
in its expansion in the ratio of the inverse

plasma frequency to the characteristic time scale of the plasma evolution.
Note that in a quiet plasma that evolves exclusively due to Coulomb collisions, the ra-

tio of inverse plasma frequency to the characteristic time scale of the plasma evolution is
of the order 1/ND. Correspondingly, we will develop a solution to the above linearised
evolution equation up to corrections scaled as the leading-order function multiplied by
1/N2

D. The nonlinear corrections due to the terms that are represented by three wavy lines
from the more precise version of the equation depicted in the above-mentioned figure have
the same order. (The reader can develop the corresponding version using the ideas outlined
in Reference [34]. An appropriate starting point for the prospective development of such
a version is Figure 4 in that paper.) These corrections can be developed independently,
and their proper versions will be obtained via iterations on the basis of the above-mentioned
approximation of the two-point correlation function (we mean the versions of the nonlinear
corrections that are most consistent with the motivation for the development of a plasma
kinetic scenario with maximum informativeness). We will not discuss the corresponding
iterations in the present paper.
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Our approximate equation for the evolution of the two-point correlation function
takes the analytical form [

∂

∂t
+ vβ ∂

∂rβ

]〈
δNα(~r,~p, t)~E(~r′, t′)

〉γ

= −eα
∂

∂pβ
fα(t)

[
Φβγ

(
~r, t,~r′, t′

)
=
〈

Eβ(~r, t)Eγ(~r′, t′)
〉]

. (4)

Here, a key property of two-time functions is that they have rather sharp dependencies
on the difference between their entry and exit time variables, whereas their dependencies
on the half-sum of these variables are rather smooth. That is, the characteristic time scales
of the first dependencies are of the order of the inverse electron plasma frequency ω−1

pe ,
whereas the time scales of the dependencies on the half-sum of the entry and exit time vari-
ables are of the order of the lowest of the inverse collision frequencies of plasma particles,
which is the inverse frequency of electron-electron Coulomb collisions ν−1

ee (the smallness
of νee as compared to ωpe is equivalent to N−1

D � 1).
A second property of these functions is that they only depend on the difference

between the entry and exit spatial variables because of the macroscopic homogene-
ity of the plasma. Therefore, we will use the Fourier transform in space according
to the conventions

f~k =
∫ d3~R

(2π)3 exp
(
−i
(
~k~·~R

))
f
(
~r + ~R,~r

)
,

f
(
~r, t,~r′, t′

)
=
∫

f~kd3~k exp
(

i
(
~k~·
(
~r−~r′

)))
.

This yields[
∂

∂t
+ i
(
~k~·~v
)]〈

δNα~E
〉γ

~k

(
~p, t, t′

)
+ eα

∂

∂pβ
fα(t)Φ

βγ
~k

(
t, t′
)
= 0. (5)

The two-time correlation function satisfies the Poisson equation:

ikβΦβγ
~k

(t, t′) = 4π ∑
α

eα

∫
d3~p
〈

δNα~E
〉γ

~k

(
~p, t, t′

)
⇓

Φβγ
~k

(t, t′) = −4πi
kβ

k2 ∑
α

eα

∫
d3~p
〈

δNα~E
〉γ

~k

(
~p, t, t′

)
. (6)

Thus, Equation (5) is conceptually an equality that contains some integral opera-

tor acting on the two-point correlation function
〈

δNα~E
〉γ

~k
(~p, t, t′). Using this equation,

one can express the two-point correlation function
〈

δNα~E
〉γ

~k
(~p, t, t′) at t > t′ in terms

of its initial data
〈

δNα~E
〉γ

~k
(~p, t′, t′). The equation cannot be integrated for t < t′: recall

the causality principle. Meanwhile, the function
〈

δNα~E
〉γ

~k
(~p, t, t′) is the spatial Fourier

transform of a statistic that is well defined for any sequence of its entry and exit tem-
poral arguments. Moreover, the more accurate evolution equation that is presented in
Figure 15 from Reference [33] shows that the advances in time of the two-point correlation

function
〈

δNα~E
〉γ

~k
(~p, t, t′) depend not only on the data of the function with an entry time

exceeding the exit time, but also on the data of the function with the reverse order of these
times. That is, we should develop an approximation of the two-time correlation function〈

δNα~E
〉γ

~k
(~p, t, t′) for an arbitrary sequence of its entry and exit time arguments.

The idea of this approximation was put forward in Reference [19] based on auxil-
iary integration of a formal equation defining the time advances of the formal function
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〈δNαδNα′〉~k(~p, t,~p′, t′). We stress that this function is not a statistic. Its spatial original (in-
verse Fourier transform) is represented as the average where the difference ~p− ~p′ is fixed
similarly to the difference~r−~r′ while~r and ~p run through the neighbourhood selected
to define the distribution function fα at current point~r,~p. This is an extremely rugged
function containing spikes that are scattered in the phase space, depending on the details
of the microdistribution.

The “evolution equation” itself is written as[
∂

∂t
+ i
(
~k~·~v
)]
〈δNαδNα′〉~k(~p, t,~p′, t′) = −eα

∂

∂pβ
fα(t)

〈
~EδNα′

〉β

~k
(t,~p′, t′). (7)

Using the Laplace transform and its inversion, we have expressed 〈δNαδNα′〉~k(~p, t,~p′, t0)

for an entry time t that satisfies the constraint
(
ωpe
)−1 � t− t0 � (νee)

−1 through the data
〈δNαδNα′〉~k(~p, t0,~p′, t0). (Note: the effective expression of this data is
〈δNαδNα′〉~k(~p, t0,~p′, t0) = fα′(~p′, t0)δ

3(~p − ~p′)δαα′/(2π)3. It is rather rough: it does not
provide an understanding of whether the plasma is drastically dynamic or whether it has
reached a rather quiet state and evolves slowly further on. This “roughness” of the data is
just the reason for the persistence of some uncertainty as a result of the formal calculation).
Subsequently, we have used the Poisson equation to form the initial data of the two-point

correlation function
〈

δNα~E
〉γ

~k
(~p, t0, t′) ≡

〈
~EδNα

〉γ

−~k
(~p, t′, t0). After that, we have applied

the Laplace transform to the Equation (5) and obtained some expression for the two-point

correlation function
〈

δNα~E
〉γ

~k
(~p, t, t′) in the time domain

(
ωpe
)−1 � t − t0 � (νee)

−1.

The time delays t− t0 and t′ − t0 satisfying the above constraints are quite sufficient for
the transition of the plasma to a relatively quiet state, even with an exotic initial arrange-
ment of its particles in space (when the plasma is in a notably nonequilibrium state) and,
at the same time, these time delays are too small for some significant changes in the distri-
butions of plasma particles fα to occur. This ultimately yielded some formal expression for

the two-point correlation function
〈

δNα~E
〉γ

~k
(~p, t, t′) that depended on three time variables:

the entry time t, the exit time t′, and the variable t0, which stands for a somewhat arbitrary
previous moment. Here, we will not present the expression itself. Instead, we present
the result of a more accurate calculation following the same principles. By presenting
the one, we pursue two goals. The first is to obtain a clearer understanding of the structure
of the two-point correlation function, and the second is to further illustrate the consistency
of the new logic of developing the two-point correlation function, which is discussed in
the next section.

The new expression of the two-point correlation function is〈
δNα~E

〉γ

~k
(~p, t, t′) = i

eα

2π2
kγ

k2 exp
(
−i
(
~k~·~v
)(

t− t′
)) fα(~p, t0)(

ε~k(~k~·~v)(t
′)
)∗

[
1− i

∂

∂ω

((
ε~kω∗

)∗ ∂

∂t′
1(

ε~kω∗
)∗
)
− 1

2
∂2

∂ω2
∂

∂t′

((
ε~kω∗

)∗ ∂

∂t′
1(

ε~kω∗
)∗
)]

ω=(~k~·~v)

−ieα
kγ

k4 ∑
α′

e2
α′

2π2

∫ ∞

−∞

dω exp(−iω(t− t′))

ω−
(
~k~·~v
)
+ i0

{
G

α′~kω
(t′, t0)

[
1

ε~kω

(
~k~·~∇~p

)
fα(t′)

]

−i

(
1− i

∂

∂ω

(
ε~kω

∂

∂t′
1

ε~kω

))
ε~kω

∂

∂ω

(
1

ε~kω

G
α~kω

(t′, t0)

)[
1

ε~kω

(
~k~·~∇~p

) ∂

∂t′
fα

]

−1
2

ε~kω

∂2

∂ω2

(
1

ε~kω

G
α~kω

(t′, t0)

)[
1

ε~kω

(
~k~·~∇~p

) ∂2

∂(t′)2 fα

]}
. (8)
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Here,

ε~kω

(
t′
)
= 1 +

4π

k2 ∑
α

e2
α

∫ d3~p

ω−
(
~k~·~v
)
+ i0

(
~k~·∂ fα(t′)

∂~p

)
(9)

is the linear dielectric function of the plasma, and we have also introduced notation

Gα′ω(t
′, t0) =

∞∫
−∞

d3~p′
fα′(~p′, t0)(
ε~kω∗(t

′)
)∗ δ
(

ω−
(
~k~·~v′

))

×
[

1− i
∂

∂ω

((
ε~kω∗

)∗ ∂

∂t′
1(

ε~kω∗
)∗
)
− 1

2
∂2

∂ω2
∂

∂t′

((
ε~kω∗

)∗ ∂

∂t′
1(

ε~kω∗
)∗
)]

. (10)

The function G
α′~kω

(t′, t0) is well defined on the axis of real ω, but we intend to
manipulate with its analytical continuation at least to a narrow strip in the plane of complex
ω around the line Im ω = 0. The variable ω on the right-hand side of relation (8) is also
implied to be a complex one. The line of integration over this variable goes from the left
to right and it passes over all singularities of the integrand (note that the only important
singularity of the integrand is the one due to the resonance ω =

(
~k~·~v
)

).

Note that the variable t enters the expression
〈

δNα~E
〉γ

~k
(~p, t, t′) exclusively within

the argument of the exponent: all other components of the expression depend on t′ and t0.
The temporal variable t0 stands for a somewhat arbitrary previous moment. Its presence in
the expression is just due to the fact that corresponding calculation is purely formal. We
have concluded that one should set t0 = t′ in the case t > t′ and t0 = t in the case t < t′ to
obtain a reliable approximation of the two-point correlation function. The discussion shown
in the next section will provide additional support for the specified value assignments to
the variable t0.

Note that the above-mentioned formal calculation leading to relation (8) is a tedious
task. For those who wish to repeat it, in Appendix A we list the basic mathematical relations
that we used in this calculation.

4. Determining the Structure of the Two-Point Correlation Function from
First Principles

We assume that the initial data of the two-point correlation function
〈

δNα~E
〉γ

~k
(~p, t′, t′)

is known. Using the Laplace transform technique, we can integrate Equation (5) and obtain
its solution for the time domain ω−1

pe � t− t′ � ν−1
ee . In this domain, the contributions to

the inverse Laplace transform of the poles due to the zeros of the linear dielectric function
ε~kω

(t′) are exponentially damped, which allows for obtaining an easily structured result.
However, we will not follow the corresponding calculation program straightforwardly.
Our calculations will include two stages. We will first develop an expression for the two-
time correlation function Φ~kΦ~kΦ~k(t, t′), and then derive a two-point correlation function that
generates the last expression.

4.1. Two-Time Correlation Function

In view of the Poisson Equation (6), the two-time correlation function is nothing
else than the integral of contributions from groups of particles that differ in momentum,
and each contribution can be calculated well while ignoring the zeros of the dielectric
function. Accordingly, it is possible to change the sequence of integration in momentum
and frequency after the formation of the integral based on inverse Laplace transforms
for differing groups of particles. That is, we can form the Laplace transform of Φ~kΦ~kΦ~k(t, t′)
and ignore the exponentially damped contributions due to the zeros of the dielectric
function when inverting this Laplace transform.
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The Laplace transforms of two-time functions will be introduced according to the rule

fω(t′) =
∞∫

t′

dt exp
(
iω
(
t− t′

))
f (t, t′),

and the inverse Laplace transforms, according to

f (t, t′) =
∫
C

dω

2π
exp

(
−iω

(
t− t′

))
fω(t′).

Here, C denotes the line in the complex plane ω that goes from left to right and passes over
all singularities of the integrand. After the Laplace transform, Equation (5) takes the form

−
〈

δNα~E
〉γ

~k
(~p, t′, t′) +

(
i
(
~k~·~v
)
− iω

)〈
δNα~E

〉γ

~kω
(~p, t′)

= −eα
∂

∂pβ

(
fα

(
t′
)
− i

∂ fα

∂t′
∂

∂ω
− 1

2
∂2 fα

∂(t′)2
∂2

∂ω2 + . . .

)
Φβγ
~kω

(t′). (11)

Note: the solenoidal components of microfields in the plasma are assumed to be
negligible, at least in terms of their contribution to the two-time correlation function.
Therefore, the following equality is valid:

Φβγ
~k
≡ kβkγ

k2

(
Φµη
~k

kµkη

)
.

Similarly, 〈
δNα~E

〉γ

~k
≡ kγ

k2

(〈
δNα~E

〉η

~k
kη

)
.

This makes it possible to simplify notation and, hence, the calculus. Namely, we denote

h~k
(
t, t′
)
= Φµη

~k

(
t, t′
)
kµkη , h~kω

(
t′
)
= Φµη

~kω

(
t′
)
kµkη ,

F
α~k

(
~p, t, t′

)
=
〈

δNα~E
〉η

~k

(
~p, t, t′

)
kη , F

α~kω

(
~p, t′

)
=
〈

δNα~E
〉η

~kω

(
~p, t′

)
kη .

This yields the following form of Equation (11)

−F
α~k(~p, t′, t′) +

(
i
(
~k~·~v
)
− iω

)
F

α~kω
(~p, t′)

= − eα

k2

[(
~k~·~∇~p

)(
fα

(
t′
)
− i

∂ fα

∂t′
∂

∂ω
− 1

2
∂2 fα

∂(t′)2
∂2

∂ω2 + . . .

)]
h~kω

(t′). (12)

The symbol ~∇~p denotes the derivative over the momentum ~p. Solving the equation for
F

α~kω
(~p, t′) and substituting the result into the Poisson equation, we obtain

h~kω

(
t′
)
=

1
ε~kω

(t′) ∑
α

4πeα

∫ d3~p

ω−
(
~k~·~v
)
+ i0

F
α~k(~p, t′, t′)

+
i

ε~kω

∂ε~kω

∂t′
∂h~k
∂ω

+
1

2ε~kω

∂2ε~kω

∂(t′)2

∂2h~k
∂ω2 .

The solution to this new equation can be constructed by iterations. We have:

h = 0h + 1h + 2h,
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0h~kω

(
t′
)
=

1
ε~kω

(t′) ∑
α

4πeα

∫ d3~p

ω−
(
~k~·~v
)
+ i0

F
α~k(~p, t′, t′),

1h~kω

(
t′
)
= −iε~kω

(
∂

∂t′
1

ε~kω

)(
∂

∂ω
0h~kω

)
,

2h~kω

(
t′
)
= −iε~kω

(
∂

∂t′
1

ε~kω

)(
∂

∂ω
1h~kω

)

+

 1
2ε~kω

∂2ε~kω

∂(t′)2 ≡
(

ε~kω

(
∂

∂t′
1

ε~kω

))2

− 1
2

ε~kω

(
∂

∂(t′)2
1

ε~kω

)( ∂2

∂ω2
0h~kω

)
.

Obviosuly, all of the components of h contain the summation over α with the weight 4πeα

and the ~p -integration of F
α~k(~p, t′, t′). Bearing this in mind, we only control the dependence

of these components on ω:

h~kω
∼ 1

ε~kω

1

ω−
(
~k~·~v
)
+ i0
−iε~kω

(
∂

∂t′
1

ε~kω

)
∂

∂ω

 1
ε~kω

1

ω−
(
~k~·~v
)
+ i0



−iε~kω

(
∂

∂t′
1

ε~kω

)
∂

∂ω

−iε~kω

(
∂

∂t′
1

ε~kω

)
∂

∂ω

 1
ε~kω

1

ω−
(
~k~·~v
)
+ i0



+

(ε~kω

(
∂

∂t′
1

ε~kω

))2

− 1
2

ε~kω

(
∂

∂(t′)2
1

ε~kω

) ∂2

∂ω2

 1
ε~kω

1

ω−
(
~k~·~v
)
+ i0

.

An equivalent form of the right-hand side here is

1
ε~kω

1

ω−
(
~k~·~v
)
+ i0

−

i

(
ε~kω

∂

∂t′
1

ε~kω

)
+

1
2

∂

∂ω

(ε~kω

∂

∂t′
1

ε~kω

)2
 ∂

∂ω

 1
ε~kω

1

ω−
(
~k~·~v
)
+ i0



−1
2

(
ε~kω

∂

∂(t′)2
1

ε~kω

)
∂2

∂ω2

 1
ε~kω

1

ω−
(
~k~·~v
)
+ i0

.

Performing the inversion of the Laplace transform, we find that this form leads to
the following structure

h~k
(
t, t′
)
= −i ∑

α

4πeα

∫
d3~pF

α~k(~p, t′, t′) exp
(
−i
(
~k~·~v
)(

t− t′
))

× 1
ε~k(~k~·~v)(t)

[
1 + i

∂

∂ω

(
ε~kω

∂

∂t
1

ε~kω

)
− 1

2
∂2

∂ω2
∂

∂t

(
ε~kω

∂

∂t
1

ε~kω

)]
ω=(~k~·~v)

.

Hence, for the time domain ω−1
pe � t− t′ � ν−1

ee , we have developed:

Φβγ
~k

(t, t′) = −i
kβ

k2 ∑
α

4πeα

∫
d3~p
〈

δNα~E
〉γ

~k

(
~p, t′, t′

)
exp

(
−i
(
~k~·~v
)(

t− t′
))
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× 1
ε~k(~k~·~v)(t)

[
1 + i

∂

∂ω

(
ε~kω

∂

∂t
1

ε~kω

)
− 1

2
∂2

∂ω2
∂

∂t

(
ε~kω

∂

∂t
1

ε~kω

)]
ω=(~k~·~v)

. (13)

Note: regardless of whether the plasma was initially drastically dynamic or not, we assume
that, by the time t = t′, it has acquired a quiet state with a rather large time scale of further
evolution, which is of the order of the inverse electron-electron collision frequency ν−1

ee .
Therefore, expression (13) should be reliable not only at t− t′ � ω−1

pe , but also at smaller
times t, up to t = t′. Similarly, at times −ν−1

ee � t − t′ < 0, the two-time correlation
function should comply with the formula

Φβγ
~k

(t, t′)

≡ Φγβ

−~k
(t′, t) = i

kγ

k2 ∑
α

4πeα

∫
d3~p
〈

δNα~E
〉β

−~k

(
~p, t′, t′

)
exp

(
−i
(
~k~·~v
)(

t− t′
)) 1

ε−~k−(~k~·~v)(t
′)

×
[

1 + i
∂

∂ω

(
ε−~kω

∂

∂t′
1

ε−~kω

)
− 1

2
∂2

∂ω2
∂

∂t′

(
ε−~kω

∂

∂t′
1

ε−~kω

)]
ω=−(~k~·~v)

≡ 1(
ε~k(~k~·~v)(t

′)
)∗

×
[

1− i
∂

∂ω

((
ε~kω∗

)∗ ∂

∂t′
1(

ε~kω∗
)∗
)
− 1

2
∂2

∂ω2
∂

∂t′

((
ε~kω∗

)∗ ∂

∂t′
∂

∂t′
1(

ε~kω∗
)∗
)]

ω=(~k~·~v)

. (14)

Naturally, when the time variable t passes through t = t′, no discontinuity in the two-
time correlation function should be observed. That is, with the growth of t, the two-time
correlation function following Equation (14) is transformed after t = t′ into the one that
corresponds to Equation (13). Accordingly, a compound form that fits the entire time
domain −ν−1

ee � t− t′ � ν−1
ee should have the structure

Φβγ
~k

(t, t′) =
kβkγ

k4 ∑
α

4πeα

∫
d3~pQα(~p, t0) exp

(
−i
(
~k~·~v
)(

t− t′
))

1

ε~k(~k~·~v)(t)
(

ε~k(~k~·~v)(t
′)
)∗
{[

1 + i
∂

∂ω

(
ε~kω

∂

∂t
1

ε~kω

)
− 1

2
∂2

∂ω2
∂

∂t

(
ε~kω

∂

∂t
1

ε~kω

)]

×
[

1− i
∂

∂ω

((
ε~kω∗

)∗ ∂

∂t′
1(

ε~kω∗
)∗
)
− 1

2
∂2

∂ω2
∂

∂t′

((
ε~kω∗

)∗ ∂

∂t′
∂

∂t′
1(

ε~kω∗
)∗
)]}

ω=(~k~·~v)

, (15)

where Qα is some function that only depends on the momentum ~p and time, and we
have introduced the variable t0 to denote the last dependence. This variable stands for
the argument t′ for t > t′ and the argument t for t < t′.

The meaning of the function Qα can be stated, as follows.
Setting t = t′, we can directly calculate the two-time correlation function ΦΦΦ(~r, t,~r′, t′)

for the case where the displacement |~r−~r′| is small when compared to the mean interpar-
ticle distance in the plasma. At corresponding distances, the influence of neighbours on
the field around a plasma particle can be neglected, and the function becomes the sum of
the equal terms standing for individual charged particles:

Φβγ(~r + ~R, t,~r, t) =
2π

R ∑
α

nαe2
α

(
δβγ − RβRγ

R2

)
.

We can now modify this result to take plasma evolution into account on a time scale
that is much shorter than the time of particle free flight through the mean interparticle
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distance. This time depends on electrons and, since the typical velocity of bulk electrons is
of the order of the electron thermal velocity vTe, we obtain

Φβγ(~r + ~R, t,~r, t′) = ∑
α

2πe2
α

∫
d3~p fα

(
~p, t′

)

× 1∣∣∣~R−~v(t− t′)
∣∣∣
δβγ −

(
~R−~v(t− t′)

)β(
~R−~v(t− t′)

)γ

∣∣∣~R−~v(t− t′)
∣∣∣2

, 0 < t− t′ � (ne)
−1/3/vTe.

Using this formula, we can obtain the data of the spatial Fourier transform of the function
for large wavenumbers at small time delays (k & (n0)

1/3, 0 < t− t′ � 1/(kvTe)) [35]:

Φβγ
~k

(t, t′) =
2
π

kβkγ

k4 ∑
α

e2
α

∫
d3~p fα

(
~p, t′

)
exp

(
−i
(
~k~·~v
)(

t− t′
))

.

Naturally, the right-hand side here should satisfy Equation (15). Hence, there should be

Q(~p, t0) =
eα

2π2 fα(~p, t0).

(We comment that the dielectric function ε~k(~k~·~v) is indistinguishable from unity for the above
large wave vectors.)

4.2. Two-Point Correlation Function

In this subsection, our goal is to invent a procedure that allows us to reverse the rela-
tion that is given by the Poisson Equation (6), i.e., to develop a unique two-point correlation

function
〈

δNα~E
〉γ

~k
(~p, t, t′) that, in each situation, generates the given two-time correlation

function. For the class of evolving plasmas of our interest, i.e., those that have reached a
relatively quiet state at the moment under consideration, the latter problem has a logical so-
lution.

We take a finalized expression for the two-time correlation function,

Φβγ
~k

(t, t′) =
kβkγ

k4 ∑
α′

2e2
α

π

∫
d3~p′ fα

(
~p′, t0

)
exp

(
−i
(
~k~·~v′

)(
t− t′

))
1

ε~k(~k~·~v′)(t)
(

ε~k(~k~·~v′)(t
′)
)∗
{[

1 + i
∂

∂ω

(
ε~kω

∂

∂t
1

ε~kω

)
− 1

2
∂2

∂ω2
∂

∂t

(
ε~kω

∂

∂t
1

ε~kω

)]

×
[

1− i
∂

∂ω

((
ε~kω∗

)∗ ∂

∂t′
1(

ε~kω∗
)∗
)
− 1

2
∂2

∂ω2
∂

∂t′

((
ε~kω∗

)∗ ∂

∂t′
1(

ε~kω∗
)∗
)]}

ω=(~k~·~v′)

. (16)

(Here, we have replaced the integration variable ~p and the type of particles under the sign
of summation α with ~p′ and α′, respectively). Its entry time variable should be the entry

time variable for the desired two-point correlation function
〈

δNα~E
〉γ

~k
(~p, t, t′). We separate

the structure in the pre-exponent of the integrand that depends on t0 and t′. In addition,
in this structure, we will explicitly distinguish the dependence on

(
~k~·~v′

)
. The latter

presupposes the use of the notation (10). This allows us to write

Φβγ
~k

(t, t′) =
kβkγ

k4 ∑
α′

2e2
α′

π

∫ ∞

−∞
dωG

α′~kω
(t′, t0) exp

(
−iω

(
t− t′

))

× 1
ε~kω

(t)

[
1 + i

∂

∂ω

(
ε~kω

∂

∂t
1

ε~kω

)
− 1

2
∂2

∂ω2
∂

∂t

(
ε~kω

∂

∂t
1

ε~kω

)]
. (17)
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We now expand the remaining part of the pre-exponent in powers of t− t′ up to the next to
the next leading order:

Φβγ
~k

(t, t′) =
kβkγ

k4 ∑
α′

2e2
α′

π

∫ ∞

−∞
dωG

α′~kω
(t′, t0) exp

(
−iω

(
t− t′

))
{

1
ε~kω

(t′)

[
1 + i

∂

∂ω

(
ε~kω

∂

∂t′
1

ε~kω

)
− 1

2
∂2

∂ω2
∂

∂t′

(
ε~kω

∂

∂t′
1

ε~kω

)]

+
(
t− t′

) ∂

∂t′

(
1

ε~kω

(
1 + i

∂

∂ω

(
ε~kω

∂

∂t′
1

ε~kω

)))
+

1
2
(
t− t′

)2 ∂2

∂(t′)2
1

ε~kω

}
.

Integrating the right-hand side by parts, we reduce it to the form

Φβγ
~k

(t, t′) =
kβkγ

k4 ∑
α′

2e2
α′

π

∫ ∞

−∞
dω exp

(
−iω

(
t− t′

))
{

G
α′~kω

(t′, t0)

ε~kω
(t′)

[
1 + i

∂

∂ω

(
ε~kω

∂

∂t′
1

ε~kω

)
− 1

2
∂2

∂ω2
∂

∂t′

(
ε~kω

∂

∂t′
1

ε~kω

)]

−i
∂

∂ω

[
G

α′~kω
(t′, t0)

∂

∂t′

(
1

ε~kω

(
1 + i

∂

∂ω

(
ε~kω

∂

∂t′
1

ε~kω

)))]

−1
2

∂2

∂ω2

[
G

α′~kω
(t′, t0)

∂2

∂(t′)2
1

ε~kω

]}

≡ kβkγ

k4 ∑
α′

2e2
α′

π

∫ ∞

−∞
dω exp

(
−iω

(
t− t′

)){
G

α′~kω
(t′, t0)

1
ε~kω

(t′)

−i

(
1− i

∂

∂ω

(
ε~kω

∂

∂t′
1

ε~kω

))
ε~kω

∂

∂ω

(
1

ε~kω

G
α′~kω

(t′, t0)

)(
∂

∂t′
1

ε~kω

)

−1
2

ε~kω

∂2

∂ω2

(
1

ε~kω

G
α′~kω

(t′, t0)

)
∂2

∂(t′)2
1

ε~kω

}
.

The last transformation in this chain of equations was carried out, as follows. In the in-
tegrand, we first separated the part of the pre-exponent that contains the second-order
time derivative of ε~kω

−1. The fact that the term with this derivative enters the expression
without any differentiation over ω indicates that the previous calculation was correct. (This
is in our order of consideration. Desiring to generate higher orders, one should make
sure that in the above-mentioned pre-exponent in the term with the highest-order time
derivative of the function ε~kω

−1, this function is undifferentiated over ω.) Subsequently, we
separated those terms with the first-order time derivative of ε~kω

−1 in which this derivative
was not differentiated with respect to ω (the terms with both time- and ω- derivatives of
ε~kω
−1 may well be present in the multipliers of these terms). Finally, terms remained that

contained ε~kω
−1 without any differentiations.

Now consider the last steps. In the developed formula, we make the following substitutions:

1
ε~kω

(t′)
= 1−∑

α

4πe2
α

k2

∫ d~3~p

ω−
(
~k~·~v
)
+ i0

[
1

ε~kω

(
~k~·~∇~p

)
fα(t′)

]
, (18)

∂

∂t′
1

ε~kω

= −∑
α

4πe2
α

k2

∫ d~3~p

ω−
(
~k~·~v
)
+ i0

[
1

ε~kω

(
~k~·~∇~p

)∂ fα′

∂t′

]
,
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∂2

∂(t′)2
1

ε~kω

= −∑
α

4πe2
α

k2

∫ d~3~p

ω−
(
~k~·~v
)
+ i0

[
1

ε~kω

(
~k~·~∇~p

) ∂2 fα

∂(t′)2

]
.

This results in the equation

Φβγ
~k

(t, t′) =
kβkγ

k4 ∑
α

2e2
α

π

∫ ∞

−∞
dω exp

(
−iω

(
t− t′

))
G

α~kω
(t′, t0)

− kβkγ

k4 ∑
α

4πe2
α

k2 ∑
α′

2e2
α′

π

∫ ∞

−∞
dω exp

(
−iω

(
t− t′

)) ∫ d~3~p

ω−
(
~k~·~v
)
+ i0{[

G
α′~kω

(t′, t0)

[
1

ε~kω

(
~k~·~∇~p

)
fα(t′)

]

−i

(
1− i

∂

∂ω

(
ε~kω

∂

∂t′
1

ε~kω

))
ε~kω

∂

∂ω

(
1

ε~kω

G
α~kω

(t′, t0)

)[
1

ε~kω

(
~k~·~∇~p

) ∂

∂t′
fα

]

−1
2

ε~kω

∂2

∂ω2

(
1

ε~kω

G
α~kω

(t′, t0)

)[
1

ε~kω

(
~k~·~∇~p

) ∂2

∂(t′)2 fα

]}
.

Here, we transformed ~p′ and α′ back into ~p and α in the first term of the right-hand side due
to unity on the right hand side of equality (18). Finally, recalling the Poisson Equation (6),
we understand that the two-point correlation function should satisfy relation (8).

Completing this section, we note that the reader can easily check that the developed
two-point correlation function exactly satisfies the evolution Equation (5) in the intended
second order of expansion in powers of the inverse plasma frequency to the characteristic
time of collisional change of the particle distribution functions.

5. Conclusions

In this paper, we again clarified the concept of the informativeness of plasma kinetic
scenarios. For the purpose of increasing the informativeness of a scenario of plasma evolu-
tion due to the Coulomb collisions of its particles, we presented a rigorous derivation of

the leading order of the two-point correlation function
〈

δNα~E
〉γ

~k
(~p, t, t′). An advantage of

the new derivation is that it does not involve any auxiliary integration of formal equations,
since it is based on objective equations that are obtained by logically reducing the full
description of a classical ionised plasma to a simpler kinetic plasma description.

The two-point correlation function
〈

δNα~E
〉γ

~k
(~p, t, t′) advances the particle distribution

functions fα(~p) in time. In our motion, we omitted the nonlinear part of the evolution
equation for this function. Solving the simplified evolution equation, we further clarified
the structure of the solution to the equation to a better extent. We increased the accuracy
of its description up to second-order terms in the expansion in powers of the inverse
plasma frequency to the characteristic time of plasma electron-electron collisions. This
opened the way for some explanation of the influence of the omitted nonlinear terms of
the mentioned evolution equation on the composition of the two-point correlation function
and, hence, on the scenario of the plasma collisional evolution. In this way, the scenario can
be corrected up to the second order of expansion of the corresponding rates of change in
particle distributions to the leading orders of these rates in powers of the inverse number
of plasma particles in the Debye sphere 1/ND. Achieving higher accuracy of the scenario
implies further obtaining a solution to the linearised equation of evolution of the two-point
correlation function as compared to the presented one, and this can well be performed on
the basis of the approach developed in this paper.

Although our consideration focused on a macroscopically homogeneous plasma,
its principles can be adapted to consider inhomogeneous plasmas. The corresponding
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platform will form a natural basis for modelling plasma transport phenomena for classical
high-temperature plasma.

Thus, a basis is created for the development of more informative kinetic scenarios of
the plasma evolution due to Coulomb collisions as compared to the previously formulated
scenarios of this evolution.
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Appendix A. Mathematical Tricks Used in the Formal Calculation Following the
Logics of a Preceding Study

The main difficulty in the formal calculation of the two-point correlation function
〈δNα~E〉γ~k (~p, t, t′) is to express it in terms of its “initial data” 〈δNα~E〉γ~k (~p, t0, t′) where

ω−1
pe � t − t0 � ν−1

ee . Using the Laplace transform to integrate the corresponding evo-
lution equation, we find two terms in the inverse Laplace transform. The first term is
〈δNα~E〉γ~k (~p, t0, t′) exp

(
−i
(
~k~·~v
)
(t− t0)

)
, and the second is the integral over ω, in which

the integrand contains the integral over the dummy momentum ~p′. The discussion be-
low will focus solely on this integral. A significant contributions to this integral come

from the poles originating from the multipliers 1/
(

ω−
(
~k~·~v
))

and 1/
(

ω−
(
~k~·~v′

))n
.

In the intended order of expansion in powers of the ratio of the inverse plasma frequency
to the characteristic time of the plasma evolution, the exponent n takes values n = 1− 3.
That is, under the sign of integration over ω, we find structures of the type

1

ω−
(
~k~·~v
) 1

ω−
(
~k~·~v′

) ,
1

ω−
(
~k~·~v
) 1(

ω−
(
~k~·~v′

))2 ,
1

ω−
(
~k~·~v
) 1(

ω−
(
~k~·~v′

))3 .

To express the contributions to the inverse Laplace transform due to these structures,
we substitute them into the integrand according to the following presentations:

1

ω−
(
~k~·~v
) 1

ω−
(
~k~·~v′

) =
1(

~k~·~v′
)
−
(
~k~·~v
)
 1
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(
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) − 1
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)
,

1
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(
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) 1(
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)
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(
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) ∂
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(
~k~·~v′

)

− 1((
~k~·~v′

)
−
(
~k~·~v
))2

 1

ω−
(
~k~·~v′

) − 1

ω−
(
~k~·~v
)
,

1

ω−
(
~k~·~v
) 1(

ω−
(
~k~·~v′

))3 =
1
2

1(
~k~·~v′

)
−
(
~k~·~v
) ∂2

∂ω2
1

ω−
(
~k~·~v′

)

+
1((

~k~·~v′
)
−
(
~k~·~v
))2

∂
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1

ω−
(
~k~·~v′

) +
1((

~k~·~v′
)
−
(
~k~·~v
))3

 1

ω−
(
~k~·~v′

) − 1

ω−
(
~k~·~v
)
.

Correctly approximating the inverse Laplace transform (with integration over ω by
parts, if necessary), we obtain an integrand in the integral over dummy ~p′ that has no
singularities at

(
~k~·~v′

)
=
(
~k~·~v
)

. This makes it possible to treat the integral over
(
~k~·~v′

)
as a principal value integral. The initial data 〈δNα~E〉γ~k (~p

′, t0, t′) in the ~p′ -integral is pro-

portional to exp
(
−i
(
~k~·~v′

)
(t0 − t′)

)
. The integration over ω provides either the exponent
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exp
(
−i
(
~k~·~v
)
(t− t0)

)
or the exponent exp

(
−i
(
~k~·~v′

)
(t− t0)

)
, depending on the sum-

mand. Accordingly, under the sign of integration over
(
~k~·~v′

)
, we find terms with smooth

functions of this variable that are multiplied by either exp
(

i
((

~k~·~v′
)
−
(
~k~·~v
))

(t′ − t0)
)

or

exp
(
−i
((

~k~·~v′
)
−
(
~k~·~v
))

(t− t′)
)

. Due to the natural structure of the distribution function,

the ~p′ -integrals of these terms converge absolutely. In terms of the first type, the exponent
is rapidly oscillating, which makes it possible to rearrange their integrands via the use of
the following simplifying substitutions:

GΩ
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(

i
(
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Here Ω is the integration variable that stands for
(
~k~·~v′

)
. The last set of tricks that help

to simplify the structure of the integrand consists of the substitutions:

GΩ(
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