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Abstract: Climate warming is expected to increase fire frequency in many productive obligate seeder
forests, where repeated high-intensity fire can initiate stand conversion to alternative states with
contrasting structure. These vegetation–fire interactions may modify the direct effects of climate
warming on the microclimatic conditions that control dead fuel moisture content (FMC), which
regulates fire activity in these high-productivity systems. However, despite the well-established
role of forest canopies in buffering microclimate, the interaction of FMC, alternative forest states
and their role in vegetation–fire feedbacks remain poorly understood. We tested the hypothesis
that FMC dynamics across alternative states would vary to an extent meaningful for fire and that
FMC differences would be attributable to forest structural variability, with important implications
for fire-vegetation feedbacks. FMC was monitored at seven alternative state forested sites that were
similar in all aspects except forest type and structure, and two proximate open-weather stations across
the Central Highlands in Victoria, Australia. We developed two generalised additive mixed models
(GAMMs) using daily independent and autoregressive (i.e., lagged) input data to test the importance
of site properties, including lidar-derived forest structure, in predicting FMC from open weather.
There were distinct differences in fuel availability (days when FMC < 16%, dry enough to sustain
fire) leading to positive and negative fire–vegetation feedbacks across alternative forest states. Both
the independent (r2 = 0.551) and autoregressive (r2 = 0.936) models ably predicted FMC from open
weather. However, substantial improvement between models when lagged inputs were included
demonstrates nonindependence of the automated fuel sticks at the daily level and that understanding
the effects of temporal buffering in wet forests is critical to estimating FMC. We observed significant
random effects (an analogue for forest structure effects) in both models (p < 0.001), which correlated
with forest density metrics such as light penetration index (LPI). This study demonstrates the
importance of forest structure in estimating FMC and that across alternative forest states, differences
in fuel availability drive vegetation–fire feedbacks with important implications for forest flammability.

Keywords: fire; climate change; alternative state; feedbacks; obligate seeder; Eucalyptus regnans;
fuel moisture content; fuel availability

1. Introduction

Fire is a critical process in many ecosystems globally that influences the distribution,
composition and successional stage of vegetation communities [1]. While fire is important
for the maintenance of many ecosystems, altered fire regimes can have negative impacts [2].
Climate warming is elevating fire danger in many locations across the globe [3–5] and
increasing temperatures coinciding with more variable rainfall are expected to increase
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fire frequency in southeastern Australia [6,7]. Repeated high-intensity fires can alter the
successional pathways of forest communities by overwhelming the utility of fire adaptive
traits [8], which can lead to abrupt shifts in ecosystem composition and forest structural
properties [9–11]. Given the inevitable nature of climate warming, a key challenge in this
region is determining whether shifts in forest composition would amplify or dampen
effects on fire activity in forests.

Fire-adaptive traits enable species persistence at a landscape level and are broadly
characterised along a continuum between resprouting and obligate seeding [12]. While
resprouting forests can persist in maturity through fire and are considered fire tolerant [13],
obligate seeding forests are generally killed by high-intensity fire and persist through mass
regeneration from seed [14]. They are considered fire sensitive because if regenerating
juveniles are burnt before reproductive age, local extinction can occur [13] and the dominant
vegetation community may transition to one more adapted to short-interval fires [11,15].
The potential for climate-induced changes in fire frequency to drive forest conversion is a
global challenge and has been recognised in high-altitude forests in Patagonia [16], tropical
forests in the Amazon [17], boreal forests of North America [10,18–20] and Australian
eucalypt forests [21–24].

Eucalyptus regnans (Mountain Ash) (F.Muell.)) is an obligate seeding dominant over-
storey eucalypt species present in southeastern Australia. E. regnans forests are highly
valued for ecosystem services such as water quality [25], tourism [26], timber [27] and
biodiversity values [28]. Changes to fire frequency have the potential to reduce the capacity
of E. regnans forests to provide these important services [29], yet our understanding of the
mechanisms through which climate warming will directly and indirectly affect forests is
currently inadequate.

The potential for forest conversion to be sustained is moderated by fire–vegetation
feedbacks [30]. While feedbacks exist in nature on a continuum, here we use a discrete
definition of positive, negative or no feedback in the context of dead fine fuel moisture
content (FMC). FMC is the mass of water per unit mass of dry material [31]. In forests, live
and dead vegetation are fuel to a fire, and herein, we define FMC as dead surface fuels,
which are a key determinant of fire risk in forests [32]. E. regnans are high-productivity
forest systems, which almost always have enough fuel to sustain fire [33]. Consequently, fire
activity, and therefore the potential for fire–vegetation feedbacks, is more closely associated
with the moisture content of fuel than the amount [34]. System changes that result in
lower FMC are considered positive feedbacks, while higher FMC is considered a negative
feedback (Figure 1). If no change in FMC is observed (in addition to those resulting from
climate warming directly), then no feedback is present. Negative feedbacks typically
stabilise a system, while positive feedbacks can amplify the effects of climate warming [35]
and have the potential to cause and sustain abrupt changes in forest composition and
structure [36]. Given the inherent value of E. regnans forests, and the high consequence of
their conversion to alternative forest states, understanding the potential for, and stability
of, such conversions is an important knowledge gap in these forests.

E. regnans forests are adapted to low-frequency, high-intensity fire (~75–150+ years) [37]
and reach reproductive maturity at approximately 15–20 years. Therefore, they are vul-
nerable to reproductive failure if burned below this threshold [38,39]. In the southeastern
Australian uplands, multiple short-interval fires have created a mosaic of alternative forest
states with strongly contrasting structural properties across the landscape previously domi-
nated by E. regnans [40]. This includes stands of pure Acacia dealbata (Link.) [41] and mixed
non-eucalypt forests dominated by understorey species such as Pomaderris aspera (Sieber
ex DC.) and tree ferns (e.g., Dicksonia antartica (Labill.) and Cyathea australis (R.BR.)). The
successional sequence of forest distribution, disturbance, abatement and recolonisation
for wet Eucalypt forest have been described in detail [21,24] and are a natural part of
their life cycle. However, under climate warming conditions, with associated increases
to fire frequency, there is considerable uncertainty regarding the strength, and therefore
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permanency, of potential fire–vegetation feedbacks and alternative forest states. Figure 1
outlines a conceptual model of potential fire–vegetation feedbacks considered in this study.
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Figure 1. A conceptual model of potential feedback processes in response to climate-change-induced increases to fire
frequency in obligate seeding wet forests. Three alternative feedback processes are depicted: positive (pink), no feedback
(green) and negative (blue). Dashed lines represent the components of this conceptual model under investigation in
this study.

Previous research across the alternative forest states depicted reported divergent fuel
moisture responses, supporting the presence of fire–vegetation feedbacks [24]. However,
the site-level conditions causing this variability were not discernible. The moisture content
of dead fine fuels is primarily a function of the weather conditions at the fuel surface,
also known as the microclimate, which is strongly influenced by forest structure [42].
Consequently, a considerable knowledge gap remains regarding the key microclimate
variables, and the extent to which alternative forest states mediate fuel moisture conditions
across these different forest systems.

Forest canopies buffer microclimate extremes, functioning as a thermal insulator for
biotic and abiotic ecosystems in the understorey [43–45]. The capacity of forests to buffer
microclimate have been reported for temperature [43,46–48], humidity and vapor pressure
deficit [42,49–51], while the attenuating effects of forest canopies are well established for
radiation [52], wind speed [53–55] and throughfall [56,57]. While the ecological implications
of microclimate buffering are widely reported [42,58–60], the application of this paradigm
to fuel moisture modelling is currently limited. Existing methodologies for estimating
FMC utilise above-canopy products derived at the point- or landscape-scale [61]. While
these data sources provide high-level insight, our ability to characterise forest microclimate,
and subsequently FMC, at a scale meaningful for fire ignition, and propagation is limited
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because understorey conditions cannot be directly measured from above the canopy [47].
However, we currently lack a detailed understanding of the dominant structural properties
controlling microclimate buffering in forests and the subsequent effect on FMC. In turn,
this limits our capacity to understand the effects of climate warming, and the potential for
vegetation-fire–climate feedbacks in these highly valued forest systems.

FMC is a key determinant of fire risk [32,62] and resultant behaviour [63]. It is a
function of conditions at the fuel–atmosphere interface (microclimate) and intrinsic fuel
properties than influence the time-lag of moisture exchange [64]. Fuels theoretically gain
or lose moisture exponentially as FMC approaches equilibrium with the microclimate [65].
In forested settings, 10 h automated fuel sticks are often used as an analogue of FMC
to collect continuous timeseries data [66]. The time-lag of these sticks suggests that the
moisture exchanged after 10 h correspond to 63% of the difference between initial and
equilibrium microclimate conditions, and near-complete moisture exchange is expected
within 24 h [67].

While automated fuel sticks are a useful tool for collecting continuous FMC timeseries,
they are limited to the point-scale where they are installed. Consequently, models are re-
quired to extrapolate across landscapes. FMC models are typically empirically or physically
based. Empirical models utilise statistical relationships between weather and observations
to derive FMC [68], while physical-based models, which include equilibrium moisture
content [69,70] and process models [71,72], describe the fundamental processes governing
the movement of water into and out of fuels. FMC models can be account-keeping, where
FMC at time t is a function of microclimate and FMCt−1 or instantaneous. Despite the
substantial knowledge base surrounding FMC models, there is no established paradigm for
the site and weather conditions under which an account keeping or instantaneous model is
most appropriate. While instantaneous models may be suitable in dry forests, where the
effects of canopy are limited [73], dense canopies characteristic of wet forests disconnect
understorey fuels from the prevailing weather conditions [43], such that a system change
above the canopy is not directly or immediately replicated in below-canopy conditions.
In turn, this temporal buffering facilitated by the canopy may generate a lagged response
in FMC dynamics. However, there are limited studies modelling subcanopy FMC from
open weather that explicitly account for forest structure effects on the weather inputs.
Consequently, disentangling these effects remains a key knowledge gap.

Our study aimed to test the hypothesis that, across alternative forest states, dead
fuel moisture would be different to an extent meaningful for fire ignition and spread, and
that FMC variability, and consequently the strength of fire–vegetation feedbacks, could be
attributed to quantifiable differences in forest structural characteristics. Specifically, we
addressed the following questions:

1. Are there differences in fuel moisture content across alternative forest states?
2. Can FMC at the forest floor (as represented by 10-h fuel moisture sticks) be accurately

modelled from open-weather conditions?
3. Which forest properties have the greatest influence on subcanopy FMC?

2. Materials and Methods
2.1. Overview

FMC and prevailing weather were monitored at seven forested sites (instrumented)
and two adjacent open-weather stations (control). Forest structural metrics were described
using airborne light detection and ranging (lidar) data, which was also used to check
that the forest structure at each instrumented site was representative of that alternative
state forest across the broader landscape. We developed statistical models using a mixed
model approach (whereby FMC measurements were nested within sites) to predict daily
mean FMC from open-weather-derived predictor variables. Linear regression was used to
evaluate relationships between the site level random effect model intercepts and instru-
mented site properties. These regressions were then used to interpret the importance of
each structural property for estimating FMC from open-weather conditions at the site level.
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2.2. Study Area

The study was conducted in the Central Highlands of Victoria in southeastern Aus-
tralia, on the traditional lands of the Wurundjeri and Taungurung people [74]. Seven field
sites (instrumented) and two open (control) weather stations were established in Wet Forest
(Ecological Vegetation Class 30) in the Highlands—Southern Fall Bioregion [75].

The climate in this region is temperate (Köppen–Geiger type Cfb), with warm dry sum-
mers and cool wet winters [76]. Mean annual rainfall for the area is 1000–1400 mm y−1, and
mean daily maximum (January) and minimum (July) temperatures are 25.4 and 11.8 ◦C,
respectively [77]. The soils in this region are deep and fertile [40].

2.2.1. Site Selection

Study sites were selected to be as similar as possible except for fire history, to control
for other factors contributing to FMC variability. All sites are south facing, have similar
elevation and mean annual rainfall (Table 1), and are not located on ridgelines or in soil
moisture convergence zones. As outlined in Figure 2, six of the forested sites are located
near Powelltown, while the multi-cohort E. regnans260 site and its open-weather station is
located near Maroondah as this forest type, while controlling for other landscape factors
was not available near the Powelltown sites. The forest mosaic utilised in this study re-
sulted from a series of stand-replacing fires in 1759, 1926, 1932, 1939, 2009 and 2017 (Table 1)
which led to the arrangement of different forest ages and alternative states in the region.
Four sites are dominated by E. regnans of different age classes, and three are non-eucalypt
forest types. The E. regnans2 (2 years since stand-replacing disturbance) site was clear-fell
harvested and regenerated through burning, which is a common silvicultural technique in
the area [78]. E. regnans260 is located in the Myrtle Creek catchment of Maroondah Reser-
voir and regenerated from stand-replacing fire in 1759 [79]. The area was subsequently
burnt by low-severity fire in 1939 and 2009 that did not result in stand replacement. Conse-
quently, the E. regnans260 site represents multiple forest cohorts, which is not uncommon for
E. regnans forests of this age [14,80]. The same 1939 fire in Maroondah burnt forest near
Powelltown, which included areas previously impacted by stand-replacing fires in 1926
and 1932. Due to multiple fires in short succession, large areas of formerly E. regnans forest
did not naturally regenerate, and while some were replanted at the time [81], limited seed
stock meant that some areas were not resown. Much of this area was reburnt in 2009,
creating a mosaic of fire age classes and types utilized in this study. This mosaic has also
been described in detail by Burton et al. [24] and is comprised of seven field sites of strongly
contrasting forest structure and vegetation composition.

Table 1. Site information of the instrumented plots and open-weather stations. Site data is located below the relevant open
weather station (Powelltown Open & Maroondah Open).

Site Name Age i Rainfall
(mm y−1) Aspect (◦) Elevation

(m asl) Disturbance History Coordinates

1759 1926 1939 2009 2017

Powelltown Open 1495 267 740 N/A −37.8992,
145.7310

Acacia10 10 1322 134 558 x −37.9166,
145.7454

Non-
eucalypt10

10 1344 128 606 x x −37.9133,
145.7459

Non-
eucalypt80

80 1402 166 635 x x −37.9068,
145.7419

E. regnans2 2 1481 153 735 x −37.9005,
145.7323

E. regnans10 10 1337 142 588 x −37.9148,
145.7452

E. regnans80 80 1448 204 672 x −37.9028,
145.7364

Maroondah Open 1318 263 769 N/A −37.5713,
145.6213

E.
regnans260

260 1297 156 727 x j j −37.5728,
145.6161

i refers to postfire age, from 2019 when most data were collected, j low-intensity, non-stand-replacing burn in understory.
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Figure 2. Location of the study areas, including seven instrumented field sites and two open (control) weather stations
within the Central Highlands, Victoria, in southeastern Australia (b). Coloured and dashed areas indicate the fire disturbance
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2.2.2. Forest Structure Analysis

Airborne lidar data were commissioned by the state government environment depart-
ment and were acquired in 2016 from a fixed wing aircraft, using a Trimble AX60 sensor.
Average point density was 4.38 pts m−2 returning a full-waveform product, with 0.22 m
footprint per return [82]. Forest structural values (Table 2) were derived from one 20 m
radius plot at each instrumented forested site, using the lidR and leafR packages in R and
its dependents [83]. Plots of forest structure from each instrumented site are depicted in
Figure 3.

Table 2. Site forest structure and canopy height metrics derived from lidar.

Site Name LPI0.5 LPI2 LAI2 LPICANOPY LPIDELTA CH95

Acacia10 0.06 0.07 2.91 0.60 0.01 17.0
Non-eucalypt10 0.06 0.09 2.88 0.70 0.03 13.8
Non-eucalypt80 0.07 0.16 2.6 0.40 0.09 19.3

E. regnans2 0.36 0.65 0.84 0.65 i 0.29 4.9 j

E. regnans10 0.12 0.20 2.07 0.62 0.08 14.3
E. regnans80 0.07 0.16 1.46 0.6 0.09 67.4
E. regnans260 0.13 0.18 1.50 0.83 0.05 52.7

i 2 m is the canopy base height of E. regnans2, so values match, j manually measured in the field.
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Figure 3. Point cloud profiles (left) and percentage return profiles (right) for instrumented field sites: (a) Acacia10,
(b) Non-eucalypt10, (c) Non-eucalypt80, (d) E. regnans2, (e) E. regnans10, (f) E. regnans80 and (g) E. regnans260. The dead stag
has not been filtered from E. regnans10 instrumented site for this figure.

Six metrics describing forest structure were derived from the lidar data (Table 2). The
95th percentile of return height for lidar returns classified as nonground points was taken
as the mean canopy height at each site (CH95). It was derived using the quantile function
in R and is a common metric for forest height that moderates the impact of outliers [84].
The E. regnans10 site contained a mature dead tree (Figure 3d), which was removed from the
lidar data by visual inspection and filtering prior to calculating CH95. However, because the
dead tree provided shade, it was included in leaf area index (LAI) and LPI calculations. LAI
was calculated using the lai function from the leafR package following Almeida et al. [85].
LPI is the ratio of lidar points that reach a defined height, over the total points in an
area [86] and is a proxy for the penetration of solar radiation through the canopy. LPI
at 0.5 m (LPI0.5) and 2 m (LPI2) were calculated following Bode et al. [52]. LPIDELTA is
the difference between LPI0.5 and LPI2 and is assumed to be an analogue for the amount
of vegetation present between these two heights in the understorey, with a higher value
indicating more biomass in this stratum. Canopy LPI (LPICANOPY) was calculated by
determining the canopy base height of each instrumented site (through visual inspection
of canopy return profiles), then extracting the corresponding LPI value for this base height.
It is a proxy for the density of the canopy at each site. The lidar data were collected
approximately three years prior to this study, and while small changes to structure are
likely over this timeframe, due to the large range of forest structural conditions (Figure 3),
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we assume that any changes in structure have a negligible effect on microclimate and FMC
comparisions. We did not have lidar available for the E. regnans2 site as it was harvested
after lidar capture; therefore, forest structure metrics were derived from representative
forested sites across the landscape of the same disturbance history. The method used to
determine forest structural metrics for this site is detailed in Appendix A.

2.2.3. Representativeness of Forest Structure at the Instrumented Sites

Instrumented sites were selected based on differing forest structures due to histor-
ical fire disturbance, and consequently, the random allocation of sites was not possible.
Replicating the study design was further limited by the cost of the sensor array at each site.
Forest structure is the primary difference between sites, and to test if the instrumented sites
were representative of other locations with similar disturbance history, we compared forest
structural properties estimated from lidar at the instrumented sites to stratified randomly
sampled points across the landscape (Figure 2—unfilled symbols). Candidate forest areas
for structural comparison were located through field reconnaissance and visual assessment
of aerial imagery, and stratified random points allocated in the GIS environment [87]. For
the instrumented sites to be considered representative of that alternative states across the
broader area, we determined that CH95 and LPI0.5 should plot within one standard devia-
tion of the 1:1 line. Mean LPI0.5 and CH95 were derived for each structural replicate site
(n > 12 per instrumented site, 20 m radius plot) and compared to mean values derived from
each instrumented site (Figure 4). Error bars represent one standard deviation (SD) from
the mean of the replicate sites. All mean replicate values except one (E. regnan260, CH95)
were within one SD of the 1:1 line, demonstrating that forest structure at the instrumented
sites can be considered representative of that alternative state forest across the broader
landscape. While CH95 at E. regnans260 was less than the landscape mean, given the height
of this forest (>60 m) and other studies reporting a negligible effect of canopy height above
a lower height threshold [47], we assume that this difference in forest height also has a
negligible effect. We did not have lidar available for the E. regnans2 site; therefore, mean
structural properties were derived from E. regnans forests in the landscape regenerated two
years prior to lidar capture (Appendix A). At E. regnans2, CH95 was measured in the field
using a structure pole and is compared here (Figure 4a) against the mean landscape value.
It was not possible to compare LPI0.5.

2.3. Field Instrumentation and Data Collection

The control open weather stations recorded air temperature and relative humidity
(RH) (CS215 probe, enclosed in a 6-plate 41303-5A shield at 1.5 m, Campbell Scientific Inc.,
Logan, UT, USA), solar radiation (CS300-L pyranometer, Campbell Scientific Inc., Logan,
UT, USA), rainfall (TB-3 tipping bucket gauge, Hydrological Services Pty Ltd., Warwick
Farm, NSW, Australia) and wind speed (014A Met One 3-cup anemometer installed at
2 m, Campbell Scientific Inc., Logan, UT, USA). Fuel moisture was recorded using three
automated 10 hr moisture sticks (CS506 fuel moisture sensor attached to 26601 10-h stick
at 0.3 m, Campbell Scientific Inc., Logan, UT, USA), arranged within 5 m of the centre of
each open-weather station. The automated sticks are made of 12.7 mm diameter USFS-
standard ponderosa pine dowel and emulate the moisture content of fuels on the forest
floor. The forest sites were also instrumented with three automated 10 hr fuel moisture
sensors arranged randomly across each site. The sensors were connected to a CR1000 data
logger (Campbell Scientific Inc., Log an, UT, USA), which was downloaded to a laptop
using LoggerNet software.

We utilised five instrumented sites established by Burton et al. [24], with two ad-
ditional instrumented sites, and one control weather station subsequently added. The
results (Figure 5) are consequently presented in two cohorts, a full timeseries (n = 420 days,
including 3 summer periods) of the five original sites (Figure 5b,d) and timeseries data
that includes all overlapping data (n = 208 days) for the additional two instrumented and
control weather stations (Figure 5d,e). The time periods of data collection are outlined in
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Figure 5a. Reporting in two distinct timeseries maximises the use of available data, while
appropriately presenting it for meaningful intercomparison. The modelling approach uses
a subset of sequential timeseries data from the seven instrumented sites (n = 96). The
timeseries data were visually inspected for errors and data spikes associated with sensor
errors; there were no missing data or sensor errors in the data presented.
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Figure 5. Cumulative proportion plots for mean daily FMC, including: (a) the timeline of data availability for each
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2.4. Data Analysis

Mean daily FMC (%) was calculated by averaging hourly observations from the
three sensors across a 24 h period. We refer to ‘fuel availability’ in the results, which is
defined here as days where mean FMC is less than 16%, which is a threshold value at
which fuels are assumed to be dry enough to sustain fire [88]. Daily air temperature and
relative humidity values were summarised by calculating the daily mean, maximum and
minimum values from hourly sensor readings. Shortwave radiation is presented as daily
cumulative radiation load, and precipitation is sum daily precipitation each day. Wind
speeds reported are the average and maximum speeds in a 24-h period, derived from
hourly sensor readings. Longwave, net radiation and potential evapotranspiration were
calculated from microclimate data following Nyman et al. [89] and are presented as daily
cumulative loads. All data analyses were conducted in R statistical programming language,
version 3.6.3 [90], a summary of data calculated is presented in Table 3.

Table 3. Candidate open-weather input variables used in generating the GAMMs.

Candidate Variable Value Denoted as Unit

Short-wave radiation Daily sum SWR MJ m2 day−1

Air temperature Daily minimum Tmin
◦C

Daily maximum Tmax
◦C

Daily mean Tmean
◦C

Relative humidity Daily minimum RHmin %
Daily maximum RHmax %

Daily mean RHmean %
Wind speed Max Wmax m s−1

Mean Wmean m s−1

Longwave radiation Incoming LWin MJ m2 day−1

Outgoing LWout MJ m2 day−1

Net LWnet MJ m2 day−1

Net radiation Daily sum Rnet MJ m2 day−1

Precipitation Daily sum P mm day−1

Vapor pressure deficit Daily mean VPD kPa
Potential

evapotranspiration Daily mean Ep mm day−1

Precipitationt−1 Daily sum Pt−1 mm day−1

FMCsite(t−1) Daily mean FMCsite(t−1) %

To determine whether FMC was different across the sites, we generated cumulative
density function (CDF) figures for mean daily FMC at each site and timeseries (Figure 5,
Table 4). To determine whether FMC could be accurately modelled from open weather,
and to test the importance of forest structural properties when estimating mean FMC from
open-weather data, we constructed general additive mixed models (GAMMs) using mgcv
in R [91]. Mixed models allow for the analysis of nested data (whereby FMC is nested by
site), while also appropriately treating the fixed effects (open weather to FMC relationship)
and random effects (specific effect of site ID on FMC) terms. GAMMS are a nonparametric
extension of generalised linear mixed models [92] and are useful when the shape of the
relationships between variables and across random effects are not known. Mean daily FMC
at each forested site was the dependent variable and all open control weather variables
were considered as candidate-independent predictors (Table 3). We included site ID as a
random effect to account for site-specific variability. We fitted penalised cubic splines for
each candidate variable using restricted maximum likelihood (REML), with the maximum
degrees of freedom limited for four to avoid overfitting. Effective degrees of freedom
(edf) are reported in Table 5, which measure the complexity of a penalised smooth term.
Higher numbers indicate a more dynamic fit [92]. Feature selection was conducted using
a stepwise approach, with all candidate variables considered initially and removed if
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they were correlated with other predictor variables (r2 > 0.80) or nonsignificant (p > 0.05)
(e.g., [93]). Candidate variables are outlined in Table 3.

Table 4. Summary of the proportion of mean daily FMC values less than 16% relative to the number of days in each
timeseries, the proportion less than 16% relative to the local control weather station and the total number of days fuels were
available for each timeseries.

Site ID

Powelltown-Only (n = 420) Powelltown–Maroondah (n = 208)

Proportion
Days below

16%

Relative
Proportion

Sum Days
Available

(FMC < 16%)

Proportion
Days below

16%

Relative
Proportion

Sum Days
Available

(FMC < 16%)

Powelltown
Open 0.32 1.00 133 0.18 1.00 38

Acacia10 0.27 0.86 114 0.24 1.32 50
Non-eucalypt10 0.18 0.58 77 0.15 0.84 32
Non-eucalypt80 0.04 0.13 17 0.04 0.24 9

E. regnans2 - - - 0.08 0.42 16
E. regnans10 0.20 0.62 82 0.12 0.68 26
E. regnans80 0.15 0.47 63 0.11 0.61 23
Maroondah

Open - - - 0.29 1.00 60

E. regnans260 - - - 0.17 0.60 36

Table 5. Diagnostics of the GAMMs developed with (a) independent (weather-only) data and (b) autoregressive data which
included lagged variables at the site level.

Smoothing Function edf Fisher Test p-Value

(a) Relative humidity (%) 2.505 10.536 ***
Max wind speed (m s−1) 2.339 15.535 ***

Outgoing longwave radiation (MJ m2 day−1) 2.847 138.036 ***
Net radiation (MJ m2 day−1) 1.702 2.854 ***

(b) Relative humidity (%) 2.082 21.321 ***
Max wind speed (m s−1) 2.805 9.504 ***

Outgoing longwave radiation (MJ m2 day−1) 2.729 31.674 ***
Net radiation (MJ m2 day−1) 1.739 4.178 ***

Previous day open precipitation (mm day−1) (t−1) 2.546 38.741 ***
Previous day subcanopy FMC (%) (t−1) 2.907 756.999 ***

Significance codes: p < 0.001 = ***.

Following Bradshaw et al. [67] we expect the automated fuel sticks to reach equilib-
rium within a 24-h period. However, the response time of fuel sticks in forested settings
has been poorly evaluated. To account for this, we constructed two GAMMs to ensure any
effects of lag in fuel moisture response in the system were captured. One model utilised
open weather on the same day only (GAMMINDP), while the other included autoregressive
weather and subcanopy terms (e.g., [94]) from the previous day (GAMMAR). The GAMM
random effects intercepts represent the degree to which the model is shifted up or down
the y-axis to predict site-specific FMC values from the control weather inputs. Because
forest structural properties are the only meaningful differences between the alternative
state and open sites at the daily level, in practice, this intercept represents the degree to
which site forest structure moderates mean daily FMC. Linear regression was used to
evaluate the relationship between random effects model intercepts and instrumented site
forest structural metrics and to infer relative importance of these structural elements.
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3. Results
3.1. Differences in Fuel Availability

In both timeseries, there were distinct concordant differences in fuel availability
between the end-member sites; Acacia10 and noneucalpyt80, which had the highest and
lowest fuel availability respectively (Figure 4). However, the fuel availability ranking of
sites in the mid-range varied across the two timeseries presented. In the Powelltown-
only timeseries, the relative proportion of fuel availability (RFA) at the instrumented
sites compared to the control weather station (Table 4) ranged from 0.13 (Non-eucalypt80)
to 0.86 (Acacia10), equating to a difference of 97 days across the timeseries. The fuel
availability rankings for end-member sites were mirrored in the Powelltown–Maroondah
timeseries (Acacia10, RFA = 1.32; Non-eucalypt80, RFA = 0.24), although the difference in
relative fuel availability increased between the two timeseries presented. At the 16% fuel
availability threshold, fuels at Acacia10 were more available than the Powelltown control
site (Figure 5e).

3.2. Modelling Understorey FMC from Open Weather

To understand the subcanopy processes driving FMC in wet forest systems, we
constructed two GAMMs using candidate variables in Table 3. The best-performing
independent model (r2 = 0.551) had four open-weather predictors (p < 0.001), although
the addition of two autoregressive terms substantially improved the skill of the model
(GAMMAR r2 = 0.936). GAMMAR included the four predictors in GAMMINDP with two
additional autoregressive terms: FMCsite(t−1) and Pt−1, all significant at the p < 0.001 level
(Table 5). Site was included as a random effect in both models and was significant at
p < 0.001 level, demonstrating the importance of site properties in predicting FMC across
alternative forest states. Partial plots of the penalised regression splines were developed
for both models and illustrate the effect of each predictor on FMC. The partial plots for
GAMMINDP are presented in Figure 6 and the partial plots for GAMMAR in Figure 7.
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3.3. Influence of Forest Properties on Understorey FMC

There were distinct differences in forest structural properties (Table 2) and profiles
(Figure 3) across the seven instrumented sites. CH95 ranged from 4.9 m at E. regnans2 to
67.4 m in E. regnans80, the shortest and tallest sites, respectively. The lowest LPI0.5 (0.06)
and LPI2 (0.07) values were recorded at Acacia10, which also showed the smallest change
in LPI across these two heights (LPIDELTA = 0.01). LPI0.5 and LPI2 were both highest at
E. regnans2, recording 0.36 and 0.65, respectively, despite having the second-lowest fuel
availability ranking. LAI2 ranged from 0.8 at E. regnans2 to 2.9 at Acacia10.

GAMMINDP site random effects intercepts were plotted against forest properties to
evaluate their relationship with mean daily FMC (Table 6). The strongest correlations for
GAMMINDP were with LPICANOPY (r2 = 0.45) and LPIDELTA (r2 = 0.43), while the weakest
correlations were with LAI2 and time since disturbance (Figure 8). The autocorrelated
terms were the dominant predictors in GAMMAR, making meaningful interpretation of
correlations between the random effects intercepts and forest structure difficult, because
variance cannot be appropriately apportioned between the predictors. While it cannot be
appropriately correlated with a forest structural metrics (and so is not discussed further in
this context), the significance of the lag term in improving the performance of the GAMM
is a key finding in this research.
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Table 6. Correlation coefficients of linear regressions between GAMMINDP random effects intercepts
and forest structural properties.

Forest Property r2

Time since disturbance 0.07
CH95 0.22
LAI2m 0.04
LPI0.5m 0.22
LPI2m 0.32

LPIDELTA 0.43
LPICANOPY 0.45
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4. Discussion
4.1. Differences in Fuel Availability across Alternative Forest States

The results show that forest structure exerts a strong control on dead fuel moisture
across alternative forest states. Distinct differences in days of fuel availability demonstrate
that FMC variability translates into meaningful differences in the potential for fire ignition
and spread. Our results aligned with previous studies across these sites [24] in regard
to moisture availability at the extreme end-members (highest and lowest). However,
site rankings of fuel availability in the mid-range varied between the two timeseries,
suggesting that fuel availability at the site level is a function of daily weather, in additional
to antecedent climate conditions that were not captured by our instantaneous or 24 h
lag statistical modelling approach. Fuels were most available at Acacia10, which is an
alternative vegetation state after recurrent high-intensity fire in mature E. regnans stands
(Figure 1), and this finding supports the existence of short-term, positive fire–vegetation
feedbacks. Fuels were least available at Non-eucalypt80. This finding, in conjunction with
there being few examples of Non-eucalypt80 forest across the landscape, suggests that this
alternative forest state is likely not stable and is potentially an example of a negative or
stabilising fire–vegetation–climate feedback.

Many empirical- [24], conceptual- [95] and remote sensing-based [96] studies of fuel
moisture and availability describe strong age-related differences in fuel availability, with
younger forests suggested to be available to burn more often than mature or old growth
forests in the E. regnans niche. In our study, while the three 10 year-old sites were available
more frequently than the other alternative states, there was considerable variability across
the two timeseries demonstrating uncertainty related to single-season studies of fuel
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moisture in these forests. We also observed divergence in FMC response across the two
dominant succession types. In this climate-affected system, we expect that over time,
Acacia10 and Non-eucalypt10 would transition to Non-eucalypt80 (Figure 1). We found
strong age-mediated fuel availability relationships within these alternative states, where
fuel availability was consistently higher in 10 year-old forests compared to mature non-
eucalypt forest (Table 4). However, the results were less distinct in E. regnans forests,
where fuel availability did not change linearly with age. Fuel availability was low at
the E. regnans2 site, and while relative availability was highest at the E. regnans10 site,
fuel availability plateaued after this point rather than declining as some studies have
suggested for mature and old growth forest [96]. Cawson et al. [97] reported that stand
age is not a key driver in FMC for forests older than 33 years, and given limited difference
in fuel availability between forests regenerated in 2009 (E. regnans10, RFA = 0.68) and
1759 (E. regnans260, RFA = 0.60), our research suggests that dead fuel moisture insensitivity
to time since disturbance may begin earlier than 33 years.

A limitation of our study is that we only investigated dead FMC using automated
fuel moisture sticks. Across the range of alternative forest states, live FMC, which is almost
always much higher than dead FMC [98], may play an important role in site-scale fuel
moisture dynamics. In addition, different physical and chemical properties of the litter
across alternative state sites may alter fuel availability [99]. While standardised automated
fuel moisture sticks provide a useful metric for intercomparison across states, drying
processes for the ponderosa stick and leaf litter properties unique to each alternative state
may vary and therefore be a source of error in our analysis.

4.2. Modelling Understorey FMC from Open Weather

Our modelling approach assumed no prior knowledge of macro- or micro-climate
effects on FMC in wet forests, which was appropriate given the uncertainty regarding the
performance of existing FMC models in wet forests. RHmean and Wmax were significant
predictor variables of FMC in both GAMMs (Figure 6), which are commonly included
in models of dead FMC [100]. RH represents the amount of water vapour in the air as a
percentage of the total amount at saturation [101] and is buffered by forest canopies to
be generally higher in the understorey than in the open [42], and in wet forests, between
near-surface and screen height (1.5 m) [102]. Wind speed is typically lower under tall
dense forests [103], which limits the lateral transfer of moisture through advection. Nyman
et al. [89] reported that high aerodynamic resistance in the subcanopy of wet eucalypt
forests limited moisture loss through advection. However, a key difference in our study
is the broader range of forest structural conditions investigated. Forest profiles uniquely
partition wind in the understorey [54], and the broader range of forest types presented in
this study may have generated a larger gradient of subcanopy wind conditions, leading
to the significance of wind speed in the model compared to Nyman et al. [89]. The effect
of wind speed on FMC was not a negative relationship as we might expect; rather, as
wind speed increased so too did FMC. We expect that this is due to higher mean wind
speeds in the spring and autumn periods, which are also associated with seasonally
wetter fuels. The two other significant variables common to GAMMINDP and GAMMAR
were Rnet and LWout, which are the primary drivers of surface evaporation in wet forest
systems [89,104]. LWout was the strongest microclimate predictor, consistent with other
research in wet forests [89,105,106]. The dense canopy in wet forest attenuates incoming
shortwave radiation [107], which can increase the magnitude and relative importance of
longwave energy components [108]. However, these components of the energy budget are
rarely included in FMC models, and we contend that including these variables constitutes
a significant advance in modelling FMC in wet forests.

A key finding of this research is that in wet forests the FMC model which included
autoregressive terms for precipitation and fuel moisture greatly outperformed that using
daily data alone, which was also noted by Lee et al. [105] for precipitation only. Of these
autoregressive variables, FMCt−1 had the strongest influence on mean FMC (Figure 7).
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Numerous FMC models exist for specific forest types, conditions, or temporal and spa-
tial scales with approaches typically based on vapour exchange principles [32,109–112],
semi-physical account-keeping approaches (e.g., [70,113–115]) or fully process-based [71].
Despite this substantial knowledge base, there is no established paradigm for the condi-
tions under which an account-keeping or instantaneous model is most appropriate. In drier
forests, with limited effects of canopy buffering, instantaneous models may provide robust
estimates of FMC [73]. However, complex forest structure in wet forests decouples the
understorey fuels from the prevailing weather conditions [43] and from other understorey
strata [102]. At the same time, dense canopy cover and soils with high water-holding capac-
ity, which are typical of wet forests, potentially facilitate temporal buffering of conditions
through site soil moisture-humidity feedbacks [42,49,116].

Ten hour automated fuel sticks are widely used operationally by fire managers [66],
and while the response time has been extensively studied under standard and open
conditions, it is poorly evaluated in forested environments. Substantial improvement
between the independent and autoregressive models in this research demonstrates that the
lag for the fuel stick under dense canopies is larger than expected (Table 5). In turn, this
suggests that there is a source of lag in the system separate to that accounted for through
the reported 10 h lag, which may be introduced through forest structure-mediated temporal
buffering of the microclimate, which has been reported to occur in forests globally [46].
We posit that temporal buffering capacity of dense forests in this study ultimately led to
nonindependence of FMC observations at the daily level, evidenced by the strong lag effect
(FMCsite(t−1)) in the GAMMAR model. Consequently, account-keeping approaches to FMC
estimation are likely to be most appropriate in wet forests.

4.3. Influence of Forest Structural Properties on FMC across Alternative States

Site random effects (a proxy here for forest structure) were significant when modelling
understorey FMC from open weather. This result demonstrates that quantifying the
effect of forest properties on macro- to micro-climate is critically important for accurate
representation of FMC when modelling across forested landscapes from open-weather
data, which is not currently explicitly accounted for in FMC models used operationally in
southeastern Australia [32]. The strongest correlations between the modelled site intercept
and forest structure were for LPICANOPY and LPIDELTA, which explained 45% and 43% of
the variability in FMC, respectively (Figure 8; Table 6). LPI in the canopy varied from 0.4 to
0.83 and, contrary to our expectations, was not linearly or positively associated with fuel
availability. We calculated LPIDELTA to evaluate whether changes in light transmittance
(also analogous to the amount of vegetation) close to the height where FMC is recorded
contributed to fuel availability in these systems, as others have shown strong microclimatic
gradients across this domain [102]. The largest change in LPI between 0.5 and 2 m was
observed at E. regnans2 (Table 2, LPIDELTA = 0.29), which had the second-lowest fuel
availability. However, 2 m was also the height of the base of the canopy at the juvenile
site (CH95 = 4.9 m); therefore, LPIDELTA represents the change in light penetration between
the canopy and 0.5 m, not just understorey strata, which is likely a source of error in
our analysis contributing to the large change in LPI in this metric. When the E. regnans2
is excluded, Acacia10 (0.01) and Non-eucalypt80 (0.09), which are the end-member fuel
availability sites, also have the smallest and largest amount of vegetation between 0.5 m
and 2 m respectively. Higher understorey density at Non-eucalypt80 may point to higher
rainfall interception, transpiration and surface roughness in this stratum. We suggest that
these effects would correspondingly increase humidity at the fuel-boundary-layer interface,
which may explain the extreme differences in FMC between Non-eucalypt80 and Acacia10,
which had limited understorey vegetation.

While positive (negative) relationships between canopy cover and fuel moisture (fuel
availability) have been reported in temperate eucalypt [97], tropical [117] and conifer
forests [118], other studies have reported limited effects of cover-mediated changes to fuel
moisture [119–121]. Our results are more closely related to the latter of these studies, where
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no strong linear results between fuel availability and canopy cover were observed. This
may be related to the comparatively small climatic gradient across our sites. Additionally,
the effects of canopy cover on FMC can interact with other factors such as topographic
position (e.g., slope and aspect [89]), season [122] and site hydrology [42], and, as our results
indicate, may depend on where in the profile forest structure is apportioned. Collectively,
these factors may explain divergence across the literature.

4.4. Implications for Forest Flammability

Our study affirms previous research findings that alternative forest states have di-
vergent fuel moisture responses after high-severity fire [24], with potential for positive or
negative fire–vegetation feedback processes depending on the type of alternative forest and
its age. Critically, we have determined that the effect of prevailing weather on fuel avail-
ability is strongly associated with not only the density of the canopy (through LPICANOPY)
but is also a function of the density of vegetation in the understorey (LPIDELTA)—which
varies substantially across the alternative forest states investigated in this study. This
study was undertaken in forests that currently are, or are alternative states to, E. regnans
forest, which are highly valued systems in this landscape. The potential for these forests
to transition to alternative states and their maintenance (or lack thereof) through positive
or negative feedbacks have important implications for biodiversity, socio-cultural and
economic forest values.

Our study focused on fuel moisture content, which is an important flammability
switch in wet forests [34]. However, the propensity for high-consequence wildfire also
depends on other elements of flammability, such as an ignition source [123], fuel load and
arrangement [124] and flammability traits of dominant species [99,125]. We only measured
one element of flammability, which is a limitation of our study. While we determined that
LPIDELTA had an important role in fuel availability across alternative states, it is also a
metric analogous to fuel load in this stratum (0.5–2 m). In the context of alternative forest
states, interactions between fuel moisture and fuel load may have opposing effects on
flammability, with important implications for the strength of fire–vegetation feedbacks
in this system. For example, low LPIDELTA (and therefore fuel load) at Acacia10 was
correlated with high fuel availability, and high LPIDELTA (high fuel load) at Non-eucalypt80
with low fuel availability. This contrast characterises the fuel production/fuel dryness
flammability switch described by Bradstock et al. [34], and while we know that this switch
exists across a landscape aridity gradient [126], our research provides a case study example
of this dichotomy within an aridity class across a forest biomass gradient as a result of
fire–vegetation feedbacks. For example, while Acacia10 has high fuel availability, low
biomass at the surface (LPIDELTA) suggests that fuel load may limit flammability in this
alternative state forest. Future research should focus on investigating the interactive role of
multiple flammability factors on vegetation–feedbacks, not only fuel moisture content, in
these complex landscapes.

We successfully modelled subcanopy FMC from open-weather stations, while demon-
strating the importance of site-specific forest structure variables such as light penetration
index to the performance of the model. Current approaches to estimating FMC in opera-
tional applications utilise the moisture content submodel in McArthur’s forest fire danger
index (FFDI) [32], with input values of temperature and relative humidity. The input
data are typically sourced from landscape-scale gridded weather products generated from
open-weather stations [61] that do not include adjustments accounting for the effect of
forest structure, which we know to be important [127]. In wet forests, temporal buffering
creates a lagged FMC effect, such that daily observations of FMC in wet forests are not
independent. While simple empirical models of FMC have been extraordinarily successful
despite the simple inputs and lack of subcanopy transfer functions, in wet forests, these
models are likely to generate erroneous, or highly variable FMC predictions. Our research
suggests that fire managers should investigate the landscape scale applicability of process-
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based account-keeping FMC models, with weather data scaled by forest properties to the
microclimate scale.

5. Conclusions

Recurrent high-intensity fire alters community composition and structure in obligate
seeder forests, facilitating shifts to alternative forest states. Our results demonstrate that
understory dead fuel moisture in wet forests is significantly affected by forest structural
properties across these alternative states, including a substantial lag effect, to an extent that
is meaningful for fire ignition and spread. Lidar-derived forest structural metrics related
to understorey and canopy density were found to be important predictors moderating
the relationship between open weather and fuel moisture across alternative states, and
differences in these structural metrics led to observations of both positive and negative
feedback processes. Our results constitute an important step towards the identification and
quantification of fire–vegetation feedbacks in wet forests that may amplify or dampen the
direct effects of climate change on fire activity, which has significant implications for the
resilience of these vulnerable and valuable obligate seeder forests.
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Appendix A

E. regnans2 Forest Structure Data

The lidar data were captured in 2016, while the E. regnans2 was harvested in 2017.
Consequently, we did not have lidar data at this site. To derive proxy forest structural
properties for E. regnans2, we stratified the landscape using a logging history spatial layer
to identify coupes regenerated in 2014, which was two years prior to the lidar being flown.
In total, 16 coupes of a similar aspect and age range were identified across the Central
Highlands, and 183 points were randomly sampled from within those coupes to derive
proxy forest structural metrics for E. regnans2. Resultant data were logic-checked using site
measurements, aerial photography [128] and an assumed mean annual growth increment
of 2.1 m pear year [129].
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