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Abstract: Wildland fire management decision-makers need to quickly understand large amounts of 

quantitative information under stressful conditions. Categorization and visualization “schemes” 

have long been used to help, but how they are done affects the speed and accuracy of interpretation. 

Using traditional fire management schemes can unduly restrict the design of new products. Our 

design process for Ontario’s fine-scale, spatially explicit, daily fire occurrence prediction (FOP) 

models led us to develop guidance for designing new schemes. We show selected historical fire 

management schemes and describe our method. It includes specifying goals and requirements, ex-

ploring design options and making trade-offs. The design options include gradient continuity, hue 

selection, range completeness and scale linearity. We apply our method to a case study on designing 

the scheme for Ontario’s FOP models. We arrived at a smooth, nonlinear scale that accommodates 

data spanning many orders of magnitude. The colouring draws attention according to levels of con-

cern, reveals meaningful spatial patterns and accommodates some colour vision deficiencies. Our 

method seems simple now but reconciles complex considerations and is useful for mapping many 

other datasets. Our method improved the clarity and ease of interpretation of several information 

products used by fire management decision-makers. 
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1. Introduction 

Situational awareness and decision-making for operational wildland fire manage-

ment is supported by a large amount of complex, numerical information, often covering 

large areas and sometimes spanning multi-day forecasts. Comprehending and interpret-

ing that quantity of information under time-limited and stressful conditions is challeng-

ing. Among other ways, this task is commonly made faster and easier by categorizing and 

visualizing the numerical information. There are many ways to do so, but how it is done 
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can help or hinder interpretation, highlight or obscure valuable information and accu-

rately portray or distort the data. 

The categorization of numeric indicators of potential fire activity has a long history 

in Canadian and other fire management agencies. Established categories are deeply inte-

grated into fire operations and culture. Although categorization is useful, conforming to 

traditional schemes, such as a four-category blue–green–yellow–red sequence from low 

to extreme, may be less than ideal for new information products. This issue arose during 

our implementation of fine-scale, spatially explicit fire occurrence prediction (FOP) mod-

els. Our design process for a new scheme is the basis for this paper. 

FOP is one of the pillars of situational awareness, a requirement for daily and multi-

day preparedness planning [1] and a key component for modelling risk [2]. Ontario’s fire 

management agency has a lightning-caused FOP model [3] and, more recently, a human-

caused FOP model [1] that was developed in collaboration between the agency’s science 

specialists and decision-makers and external researchers.  

Our objective is to provide guidance for the design of the categorization and visuali-

zation of complex information used in fire management. We begin with an overview of 

selected historical categorization and colouring schemes used in fire management. We 

then describe our method in steps including (1) specifying design goals and requirements, 

(2) exploring design options and seeing how they interact and (3) making trade-offs. We 

present a case study on designing the scheme for displaying the output of Ontario’s FOP 

models. Although our method arose from this work, the considerations and general prin-

ciples employed can be useful in many other situations. The supplementary material in-

cludes other applications of our method and extensions to some other considerations for 

the display of data. Note that we use the terms “category” and “categorization” synony-

mously with “class” and “classification”, the latter set being conventions in fire manage-

ment. 

1.1. Overview of Selected Historical Categorization and Colouring Schemes 

Knowing the historical origin of the schemes aids us to understand their limitations 

and engender improvements. Prime categorization examples are those for the outputs of 

two Canadian Forest Fire Danger Rating System (CFFDRS) [4] subsystems: the Fire 

Weather Index (FWI) System [5] and the Fire Behaviour Prediction (FBP) System [6]. 

The FWI System accounts for effects of past and present weather on fuel ignitability 

and fire behaviour and has six main numeric outputs. Three track moisture in different 

depths or sizes of fuel: Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC) and 

Drought Code (DC). The other three indicate potential fire behaviour: Buildup Index 

(BUI), Initial Spread Index (ISI) and Fire Weather Index (FWI). FWI indicates the potential 

fireline intensity in a standard pine (genus Pinus) stand [5]. FWI is also used in Ontario as 

a general indicator of fire hazard or danger and is mapped into ordinal adjective classes: 

Low–Moderate–High–Extreme. The classes accompanied the introduction of the FWI Sys-

tem [5] and were implemented early on by Ontario [7]. Fire danger schemes are intended 

to “sound an alarm” about potential extreme behaviour and difficulty of control [8]. The 

class boundaries were set so that Extreme covered the worst 2% of historical days, and the 

remaining lower boundaries were set by a geometric progression [5]. For a more detailed 

history of the FWI classification methods in Ontario, see [9]. Other fire agencies in Canada 

calculated different boundaries according to their data [10,11]. The FWI System and com-

ponent classifications have also been applied outside North America. For examples, see 

[12,13]. The current danger classes and colours used in Ontario for the FWI System’s main 

outputs are outlined in Table 1. Examples of these are shown for roadside signs for public 

alerts about daily fire hazard (Figure 1a) and also for operational maps (Figure 1b). In 

mapping products such as Figure 1b, the FWI System values are calculated for weather 

station locations and are interpolated [14] across Ontario’s fire management area, which 

is almost 50% larger than France.  
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Table 1. Current danger classes and colour scheme [15] used in Ontario for each of the six Fire 

Weather Index System components: Fine Fuel Moisture Code (FFMC), Duff Moisture Code 

(DMC), Drought Code (DC), Buildup Index (BUI), Initial Spread Index (ISI) and Fire Weather In-

dex (FWI). 

Class Colour FFMC DMC DC ISI BUI FWI 

Low  0–80 0–15 0–140 0–2.2 0–20 0–3 

Moderate  81–86 16–30 141–240 2.3–5.0 12–36 4–10 

High  87–90 31–50 241–340 5.1–10.0 37–60 11–22 

Extreme  ≥ 91 ≥ 51 ≥ 340 ≥ 10 ≥ 61 ≥ 23 

 

(a)  (b)  

Figure 1. Examples of different displays of the Fire Weather Index (FWI) class used by the Ontario’s fire agency: (a) a 

public roadside sign; (b) an agency operational map showing interpolated, colour-coded FWI and the raw FWI values for 

each weather station. 

The other major CFFDRS subsystem that has outputs commonly communicated us-

ing classes is the FBP System, which provides quantitative estimates of fire behaviour out-

puts [6]. A primary output is fire intensity, the rate of energy or heat release per unit time 

per unit length of a spreading fire front [16], which ranges from 1 to ~100,000 kW/m in 

Canadian conditions. Fire intensity is also commonly categorized into fire intensity classes 

(ICs). Rather than adjective classes (i.e., low–extreme) they were given five numeric labels 

(IC 1–5 [17]), and later six (IC 1–6 [18]). Higher IC numbers correspond with the higher 

intensity values, but the boundaries are not evenly spaced (Table 2). The most commonly 

used IC boundaries in Canada delineate distinct differences in fire type characteristics (for 

example, surface, torching or crowning) in mature jack pine (Pinus banksiana Lamb.) 

stands and the corresponding general effectiveness of different types of fire suppression 

activities (for example, hand tools, pumps and hose, airtankers). These ICs are described 

in the Field Guide to the FBP System [19] and the ICs are also used to map fire intensity 

by many fire management agencies, for various purposes (Table 2). 

Table 2 shows some of the different intensity values for higher-end class boundaries 

(i.e., additional thresholds beyond IC 6). The choice of colour when mapping can be op-

erationally significant because colours covey information rapidly and have strong associ-

ations with levels of alarm—for example, red for danger [20] and green for calm [21]. Such 

psychological factors are not always considered in the visualization, however, which 

could lead to misinterpretation. For example, IC 4 in Table 2, which is associated with the 

upper limit of direct fire suppression effectiveness [17,22], is variously coloured a calming 

light green, a cautionary yellow or a warning orange. In Table 2 there are also cases where 

the same colour refers to different IC classes—for example, calming light green is used for 

IC 2 in Ontario, IC 3 in Alberta and IC 4 nationally. 
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Table 2. Examples of the diverse classification of fire intensity and colouring used in Canada. The 

Ontario, Alberta and national schemes are used in daily maps. The British Columbia (BC) scheme 

is used in a static map of the 90th percentile of historical fire intensity. The Field Guide to the Fire 

Behaviour Prediction System (Field Guide) scheme is used in printed tables. Intensity classes IC 1 

– IC 6 are as defined in [19]; the higher classes are informal. The colours are approximate. 

Intensity 

Class (IC) 

Range 

(kW/m)1 

Ontario 

Map 

Alberta 

Map [23] 

Field 

Guide2 

[19] 

National 

Map [24] 

BC 90th Percentile 

Map3 [25] 

IC 1 < 10     < 1k 

IC 2 10 – 500     < 1k 

IC 3 500 – 2k     < 1k 1k – 2k 

IC 4 2k – 4k      

IC 5 4k – 10k >4k    4k – 6k 6k – 10k 

IC 6  > 10k    10k – 30k 10k – 18k 

7     > 30k 18k – 30k 

8      30k – 60k 

9      60k – 100k 

10      >100k 
1 Range applies to the full row except where overridden by the text in the cell. 
2 The colours are limited by the printing ink used. 
3 BC’s IC 1–5 corresponds to BC’s colour progression rather than the row label. 

An additional caveat in the classification is that simplifying numerical information 

by aggregation into few classes has a cost. For FWI and fire intensity, the wide range 

within some classes is operationally significant for some decisions—for example, FWIs of 

11–22 become “High”. Furthermore, for interpolated maps, neighbouring points that are 

displayed as different classes will not have operationally meaningful differences. To com-

pensate, maps often include the raw point values that were used for interpolation (Figure 

1b). The numeric information cannot, however, be read and interpreted as quickly, thus 

reducing the benefit of categorization. The categorizing of data for spatial application such 

as FWI and FBP is common, and there are many recognized considerations (for example, 

[26]) and built-in solutions in geographic information systems. However, using a built-in 

classification option without a deep understanding may be unsuitable because potential 

distortions can lead to radically different interpretations, as others have noted [27]. Con-

sequently, there is a strong need to use schemes that convey information accurately. 

2. Methods 

We propose five steps to categorize and visualize model outputs for use in fire situ-

ational awareness and decision-making: 

1. Understanding and scoping the data 

2. Understanding the decision-making uses of the information 

3. Specifying the design goals and requirements 

4. Designing the categorization and visualization scheme 

5. Evaluating and revising the scheme 

We first describe these steps in general, below, and then with further detail on their 

application, in our case study. Although the method is described in a linear sequence, the 

work is partly concurrent and highly iterative, especially within Step 4. 

2.1. Step 1: Understanding and Scoping the Data 

Our method applies to data with a continuous numerical scale of measure (real num-

bers). With minor modifications, it can also apply to data with a discrete numerical scale 

of measure (integers) and to ordinal categorical data (for example, Very Low, Low, Low–
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Moderate, …). The modification is that colouring with continuous gradients (described 

below) does not apply unless there are a great many discrete values or ordinal categories. 

The technical details of the raw model output data may be straightforward, but un-

familiar units, scaling, storage or other conditions can lead to misinterpretation. The fol-

lowing need to be understood by the designers: 

• Units, including any scaling and transformations 

• Data storage type (for example, 64-bit floating point, signed long integer, string) 

and associated considerations (for example, storing a scaled real value as an in-

teger, which truncates the precision) 

• The data’s range or anticipated range if using a static scale for all future maps 

• The frequency distribution of historical data 

o It may or may not be useful to have more categories where there was a lot of data, 

and it may or may not be pointless to have multiple categories where there was 

little or no data (see examples in Section 2.2.) 

• The data’s precision of measurement and storage and the data’s accuracy of 

measurement or estimation 

o The stored precision may not correspond with the accuracy. Measured data such 

as weather observations have low precision (for example, to 0.1°C), but calcu-

lated data such as FWI System values should be calculated and may be stored 

with full machine precision (~16 decimal digits), which is well beyond the accu-

racy of typical fire management data. 

• If the data are generated by a model, then the model’s meaning, structure, as-

sumptions, limitations, precision and accuracy 

Understanding data precision and accuracy is necessary for presenting information 

accurately and having decision-makers understand it easily and correctly. Regarding data 

storage and all subsequent calculations using data, full machine precision should be main-

tained to avoid accumulating rounding errors. Regarding the numbers displayed for de-

cision-makers, the displayed precision should not exceed the data’s accuracy, because that 

could be misleading. The numbers displayed for decision-makers should ideally have the 

lowest precision that is operationally significant to minimize unnecessary mental pro-

cessing. Further discussion and examples are given in the supplementary material. 

2.2. Step 2: Understanding the Decision-Making Uses of the Information 

The purpose of the information is to support decision-making, so it is necessary to 

know who is using the information and how it is used. Working directly with fire man-

agement staff to understand their needs is necessary for ensuring that new model outputs 

are effectively integrated into the decision-making process [28,29]. 

There are key questions to consider. What decisions are being supported? Are certain 

parts of the range more important, needing higher attention? Is a higher resolution 

(smaller class size) needed in some parts of the range rather than others? For example, 

consider the categorizing and mapping of the accumulated 24-hour rainfall from a precip-

itation radar [30]. For differentiating the degree and duration of the reduced fire behav-

iour potential, a high resolution is useful at the low end but not at the high end. Con-

versely, for differentiating the degree and duration of flood potential, a high resolution is 

useful at the high end but not at the low end. Moreover, a higher top category is appro-

priate. 

2.3. Step 3: Specifying the Design Goals and Requirements 

As stated in the introduction, the high-level goals of categorization and its visualiza-

tion are simply to show the information completely and accurately and to have the infor-

mation be understood quickly and easily. These goals are elaborated into criteria as fol-

lows. 

• Regarding the complete and accurate display of information: 

o Are the magnitudes shown with the original or reduced precision? 
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o Are the magnitudes undistorted or distorted by categorization, scale nonlinearity 

or truncation? 

o Are the relative magnitudes evident by the colouring without or with referral to 

the legend? 

• Regarding the quick and easy understanding of information: 

o Can the colouring be easily matched to the legend's magnitude numbers? 

o Does the colouring draw attention and convey a suitable psychological meaning 

for the degree of alarm? 

o What is the overall ease of understanding? 

Possible design requirements include the accommodation of colour vision deficien-

cies and other technical considerations such as the adequate appearance on low-quality 

displays, colour printers or standard photocopiers. 

2.4. Step 4: Designing the Categorization and Visualization Scheme 

There are four design options for categorizing and colouring the values in the scale 

(Figure 2): 

1. Gradient continuity: whether to use the original values unaltered or categorized 

2. Hue selection: the number and choice of colours and design of gradients 

3. Range completeness: whether to show the full range or truncate the top or bot-

tom of the range 

4. Scale linearity: whether to have a linear or nonlinear scale or progression of cat-

egory boundaries, and whether to have colour gradients that are linearly or non-

linearly proportional to the data magnitudes 

 

Figure 2. Illustration of the design options (rectangles), which are described in the text, and trade-

offs (circle) that are made when categorizing and colouring data that are on a numerical scale of 

measure. 

2.4.1. Gradient Continuity 

The alternatives for gradient continuity are either to use the original values or cate-

gorize them (Figure 2, parts 1a and 1b). For a continuous gradient, the percentage of colour 

saturation is proportional to the raw datum magnitude. Continuous gradients are 
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therefore precise and accurate but harder to interpret using the legend compared to cate-

gorized gradients. 

2.4.2. Hue Selection  

Colours have strong psychological associations that affect the inferred meaning of 

information and its speed and ease of interpretation. Blue and green are associated with 

relaxation, calm and hope [21], and red is associated with danger [20] (Figure 2, part 2f). 

Historically, variations of a blue–green–yellow–orange–red sequence (which alludes to 

water, growing vegetation, dried vegetation and flame) have been used to represent esca-

lating fire danger (see examples in Table 2). Accommodating colour vision deficiencies 

reduces the colour combination choices, particularly most of those in the traditional fire 

danger sequence [31]. Tools are available to assist with the testing of colour palettes for 

accessibility [31,32]. The design task is to choose colours appropriate for the implications 

of the data magnitudes, particularly the degree of attention or alarm. 

Regarding the gradient design, there are a few distinct alternatives [33] (Figure 2, 

parts 2a–2e). A single sequential gradient is for data ranging over a meaning of zero or 

neutral to bad or good. A divergent sequential gradient is for data ranging over a meaning 

of good through neutral to bad. In Figure 2, parts 2b and 2c grade from a calming blue 

through white to an alarming red. The left and right ends each have a single hue. Part 2b 

is neutral in the middle, whereas part 2c has compressed and expanded ends. Part 2d, 

multiple sequential, is analogous to part 2a except that part 2d has multiple hues, which 

are in a rainbow spectrum in the example. Compared to a single hue, multiple hues pro-

vide more contrast over the range, making it easier to match the legend and signal levels 

of attention or alarm. Part 2e, multiple divergent, is analogous to part 2b except that part 

2e has multiple hues for each side. The R software [34] package "inlmisc" [35,36] is useful 

for constructing continuous or categorized gradients. 

A key concern is how these many design alternatives support or oppose the design 

goals. Only the single sequential and single divergent gradients (Figure 2, parts 2a and 

2b) have the accuracy of continuous gradient continuity (Figure 2, part 1a), but they have 

a difficult interpretability. The remaining gradient alternatives require matching the leg-

end to identify the magnitudes, but this can become quick and easy to interpret with fa-

miliarity and an effective use of colour psychology. 

2.4.3. Range Completeness and Scale Linearity 

These are described together because an incomplete range is an extreme form of non-

linearity. The alternatives for range completeness (Figure 2, part 3) are whether to show 

the full range of the data or truncate the top or bottom and group the truncated data. All 

resolution is lost beyond the truncation points. The alternatives for scale linearity (Figure 

2, part 4) are for two components, independently: 

1. Numeric scale: whether to have a linear (part 4a) or nonlinear numeric scale (parts 

4b and 4c) or progression of category boundaries (if applicable) 

• For categorized gradient continuity, a nonlinear scale is used to vary the res-

olution over the range 

2. Colour gradient: whether to have colour gradients that are linearly or nonlinearly 

proportional to the data magnitudes 

• For categorized gradient continuity, a nonlinear colour gradient is used to 

communicate the varying meaning or importance of the information over the 

range 

For a continuous gradient, the same result can be achieved from nonlinearity in either 

of the above two components. 

Nonlinear-systematic (part 4b) methods use a smooth function such as log or power 

to transform the output, while nonlinear-irregular methods use a non-smooth progression 

such as Jenks [37]. Nonlinear colouring requires the referral to the legend to understand 
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the magnitudes. This is a trade-off between the goals of drawing attention to where it is 

needed and improving the speed and ease of understanding. 

2.4.4. The Design Process 

There are copious settings and combinations of alternatives for the four design op-

tions. Getting to a result is an iterative process, with analysts and subject matter experts 

trying alternatives and making trade-offs, hopefully avoiding the anchoring to tradition 

or early trials. We cannot recommend a path through the four design options other than 

saying it is iterative and concurrent. We do, however, recommend a starting point or base-

line, which is the extreme of displaying all the data completely and accurately and ignor-

ing the goals of quick and easy understanding. The baseline has continuous gradient con-

tinuity, an achromatic colour gradient of white through greys to black and a linear scale 

with no truncation (Table 3). 

Table 3. The baseline case alternatives for the design options. This is a starting point that presents 

complete and accurate information, while ignoring the goals of a quick and easy understanding of 

the information. 

Design Option Alternative Description 

1. Gradient continuity Continuous 

No categorization; the per-

centage of grey saturation is 

proportional to the datum 

magnitude 

2. Hue selection Single sequential 

Achromatic gradient of white 

through greys to black; no 

chromatic psychological col-

our associations 

3. Range completeness Complete 

Full range of data magnitude 

is shown; no truncation or 

aggregation at the top or bot-

tom 

4. Scale linearity Linear 

No distortion; the percentage 

of grey saturation equals the 

datum’s position within its 

range 

If categories are used, determining the number and their boundaries are fundamental 

design decisions [38]. The number of categories is a trade-off of accuracy (requiring more) 

and speed and ease of understanding (requiring fewer). Ideally, individual categories 

have no operationally significant physical differences, while adjacent categories do. In 

practice, all considerations require compromise. An example of determining categories 

for FWI System outputs based on physical differences is given by [9]. 

2.5. Step 5: Evaluating and Revising the Scheme 

Once the design process is done and implemented, an essential further step is the 

ongoing work with decision-makers to evaluate the outputs and revise the design as nec-

essary. 

3. Case Study: Designing the Scheme for Ontario’s FOP Models 

We now describe the application of the above method to categorizing and visualizing 

FOP data. 
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3.1. Case Study—Step 1: Understanding and Scoping the Data 

The data are outputs from process and statistical FOP models for Ontario, so we begin 

with their description. The lightning- and the human-caused FOP models have been used op-

erationally since the mid-2000s and 2015, respectively. The daily lightning-caused fire occur-

rence is modelled as two separate processes [3]: the probability of a lightning strike will lead 

to a holdover ignition and the probability that an existing ignition “arrives” (is reported). The 

ignition model is mainly driven by the forest floor organic layer’s moisture content, which 

determines the sustainability of smouldering and the survivability of the ignition. Additional 

factors are other moisture indicators, ecoregional modifiers and lightning strike polarity. The 

“arrival” model, which is conditional on a holdover ignition being present, is influenced by 

the surface litter moisture, organic layer moisture, wind speed and ecoregional differences. 

Ontario’s human-caused fire prediction system uses a set of logistic generalized additive mod-

els to model inherently nonlinear relationships with key drivers of human-caused fire occur-

rence, including seasonal and spatial patterns, fuel moisture and the characteristics of human 

land use [1]. The models are stratified regionally and by cause categories to account for differ-

ent seasonal patterns in fire occurrence. 

Both the lightning- and human-caused FOP models produce outputs for each of the 2574 

cells in a grid that spans the province’s approximately 91.9 million ha wildland fire manage-

ment area (Figure 3). Most of the cells are about 20 km × 20 km or 40,000 ha, with some frac-

tional cells at the boundaries. The units of the FOP output data are interpreted as the expected 

number of fires per cell, regardless of the cell size. The model calculations and outputs have a 

64-bit floating point precision, but the data are transferred to the mapping software via a text 

file holding up to 12 significant digits. 
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Figure 3. The approximately 91.9 million ha extent of Ontario’s fire management area and the 20 

km × 20 km resolution of the fire occurrence prediction (FOP) grid for Ontario. 

Regarding the range and frequency distribution, we analysed historical FOP data for 

each cell for each day from May 15 to August 31; 2016–2018 for human-caused and 1992–

2006 for lightning-caused fires. For this analysis, the start and end dates in each fire season 

were chosen to avoid the variability in spring and fall snow-free conditions, when the 

models are not making predictions for the entire province. The lower limit of the range is 

zero; there is no theoretical upper limit. Table 4 presents summary statistics for the data, 

with zeros excluded to characterize the important data more clearly. Most of the distribu-

tion statistics of the human- and lightning-caused data differ by about an order of magni-

tude. 

Table 4. Summary statistics of historical fire occurrence prediction model data (expected number 

of fires/cell) generated from May 15–August 31 for 2016–2018 (human-caused) and 1992–2006 

(lightning-caused), with zeros removed. 

 

Number 

of Obser-

vations 

First 

Quartile 
Median Mean 

Third 

Quartile 

Maxi-

mum 

Human 607,383 0.00003 0.00013 0.00107 0.00048 1.37168 

Lightning 1,026,860 0.00090 0.00260 0.00955 0.00750 3.89129 

Figure 4 shows the empirical probability distributions of the non-zero data. Those 

data were mostly clustered close to zero in both models, so we log-transformed the data 

for illustration (untransformed data are required for operational use). The magnitudes of 

data between the lower tails of the two distributions differ by orders of magnitude. This 

presents a challenge for categorizing and colouring the data on a common scale for map-

ping. 

 

Figure 4. Empirical probability distributions of the non-zero, human- and lightning-caused fire occurrence predictions 

(FOPs) for Ontario, May 15–August 31, for 2016–2018 (human-caused) and 1992–2006 (lightning-caused). FOPs for the two 

causes have distinctly different ranges and central tendencies because of the spatio-temporal processes of ignition. The 

data are transformed by log 10 for visualization here, but untransformed data are required for operational use. 
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3.2. Case Study—Step 2: Understanding the Decision-Making Uses of the Information 

We used a variety of methods to understand the FOP information needed and how 

it is used for daily decision-making: reviewing documentation, observing operational de-

cision-making and (for some) working part-time in operational functions where FOP in-

formation is used. Most importantly, we held a series of engagements with fire manage-

ment agency personnel. For example, we hosted a workshop in 2017 attended by agency 

personnel including regional and provincial Fire Intelligence Officers, external research-

ers and students. The workshop’s topics included the purposes and methods of subjective 

FOPs by experts. 

To understand the agency’s use of FOP information, it is necessary to outline the 

agency’s hierarchical structure and the responsibilities of each level. Ontario’s fire man-

agement area (Figure 3) has two main parts, the Northeast and Northwest Regions, each 

of which is divided into six or seven Fire Response Sectors. There is also a Provincial level. 

Each level has a sole or shared responsibility for various decisions; most are made with 

consultation or coordination between adjacent levels. The Regions are primarily respon-

sible for strategic fire response decisions and management, and the Sectors are primarily 

responsible for tactical fire response decisions and operations. The Province is primarily 

responsible for adjusting the near-term (1- to 21-day) capacity according to the demand 

via temporary commercial hiring and inter-provincial and international resource sharing. 

Several decisions are directly dependent on the potential number of fires anticipated 

in various parts of the province. These decisions are made at the stated levels: 

• Prevention: for example, escalated and targeted messaging, temporary fire 

bans; made by the Province, Regions and Sectors 

• Preparedness: types, numbers, locations and readiness alert levels of fire-

fighting resources (crews, helicopters, airtankers and engines); made by the 

Regions and Sectors 

• Detection: numbers, routes and times of aerial detection patrols described in 

[39]; made by the Regions, jointly 

• Dispatch: different resources may be sent now if more threatening fires are 

anticipated later; made by the Regions and Sectors 

• Inter-provincial and international resource sharing; made by the Province 

and Regions 

The various FOP-dependent decisions have diverse needs in terms of the spatial ex-

tent and resolution of FOP information. For example, detection route designers can use 

relatively fine resolution information on the order of kilometres, while the Province needs 

only aspatial, numeric FOPs by region for resource-sharing decision-making. 

3.3. Case Study—Step 3: Specifying the Design Goals and Requirements 

The primary and conflicting goals are of course to display complete and accurate 

information and have the information quickly and easily understood. In twice-daily brief-

ings, decision-makers have limited time (minutes) to view, interpret and absorb each of 

many information items regarding, for example, weather values, FWI and FBP System 

outputs, FOP, active fires, logistics and personnel. Completeness and accuracy are im-

portant because the information supports the many decisions described above, which are 

made under uncertainty and have potentially significant consequences. 

Regarding specific information requirements: 

• There is a need for both maps and numeric subtotals and totals of fire occur-

rence by cause and location (i.e., Sectors, Regions, Province) 

• All the maps need to use the same categories and colours for FOP magni-

tudes 

• The FOP models’ output is the expected or average occurrence, but the actual 

occurrence varies around the average, so an indication of the variability is 

needed. 
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Decision-makers expressed strong preferences for the number of categories, ranging 

from three to many categories, and they desired a familiar colour sequence (blue–green–

yellow–red). There was also a strong preference for integers for all numbers related to 

FOP. Finally, we wished to accommodate colour vision deficiencies. 

3.4. Case Study—Step 4: Designing the Categorization and Visualization Scheme 

Design has been described as a messy process with a tidy outcome. We do not detail 

our circuitous journey but show and describe some key alternatives, stages and consider-

ations. Figure 5a illustrates the baseline alternative (Table 3) applied to the human-caused 

FOP and actual fire arrivals for a selected day. The range of the colour gradient is 0–3 

fires/cell, the upper limit of which is between the maximum human- and lightning-caused 

FOP (Table 4). The map area looks mostly white, with three small, pale grey patches; there 

is little useful information, especially considering the six actual fires that day, which is a 

low-to-moderately busy day for this cause. Adding more hues alone would make no 

meaningful difference because the data are clustered very near zero. Categorizing at this 

stage would make it worse. Truncating the upper limit to a low value somewhat close to 

zero would add resolution and colour to the human-caused FOP here, but such truncation 

would lose all resolution of the rarer but critically important high lightning-caused FOP. 

  
(a) (b) 

  
(c) (d) 

Figure 5. The human-caused fire occurrence prediction of June 10, 2018, mapped using the catego-

rization and colouring schemes indicated in the legends. The black dots are the human-caused 

fires reported later that day. The scales range from zero to 3 fires/cell: (a) the baseline scheme (Ta-

ble 3), which shows little useful information; (b) 4 + 1 categories; (c) 10 + 1 categories; (d) 20 + 1 

categories. The additional category in (b), (c) and (d) are for a “no forecast model” or true zero. 

Using more categories and hues greatly increases the information portrayed but makes matching 

the colour to the legend more difficult. The spatial pattern in (d) corresponds with roads and set-

tlements. 

Our original solution was to use separate scales for the two fire occurrence causes 

(Figure 6). The lightning-caused FOP scale was linear. For the human-caused FOP scale, 

we led subject matter experts through a scenario for an area of Ontario that has a relatively 

high occurrence. When the FFMC (a strong indicator of sustainable ignition) was 90, that 
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area was considered to have an elevated concern suitable for a High classification. We 

used the corresponding FOP magnitude (0.4 fires/cell) as the upper limit for the then 10-

category scale. We determined Moderate similarly and interpolated with equal linear 

steps. In Figure 6, this scale is shown by the blue line, except that categories 1 to 10 in the 

original have been mapped to a 0 to 20 scale for comparability. Scaling the original total-

fires map required a creative logic. The maps by individual cause were acceptable to de-

cision-makers, but the inconsistency between the causes was ultimately unacceptable (and 

motivated the present work). 

 

Figure 6. The original and unified fire occurrence prediction (FOP) classification scales. Because of 

order-of-magnitude differences in FOP, a separate scale was originally used for each cause: linear 

for lightning (black) and subjectively determined, irregular, nonlinear for human (blue). The uni-

fied scale (red) is a systematic, nonlinear one generated by a power function; a cube root in this 

example. 

Several alternatives were considered for a unified scale that accommodated the con-

flicting needs of fine resolution at the low end and a high upper limit. Discussions with 

decision-makers indicated that concern increases relatively quickly as the likelihood of 

fire rises from zero. Providing a high resolution at the low end while retaining a high 

upper limit would require a great many colours (for example, like those of precipitation 

radar maps). That would be unfamiliar and confusing and would not correspond with 

psychological colour associations nor accommodate colour vision deficiencies. Piecewise 

linear and irregular scales were explored, but their abrupt changes made them difficult to 

interpret. We wanted a smooth, systematic progression of category boundaries and tested 

logarithmic and power functions. Those functions can be made to match fairly closely, but 

the power function had a more suitable shape at the low end. A power function takes the 

general form 𝑓(𝑥) = 𝑎𝑥𝑏, with the shape controlled by parameters 𝑎 and 𝑏. Our desired 

behaviour for the scale to increase quickly for low FOP but then increase progressively 

more slowly is provided when 𝑎 > 0 and 0 < 𝑏 < 1, since this family of power functions 

is monotonically increasing and concave down. The FOP scale is 𝑥, and the category scale 

is 𝑓(𝑥). We developed a parametric scaling tool with three inputs to generate and plot 

boundaries: shape parameter, 1
𝑏⁄ ; the upper limit of the FOP scale, 𝐹𝑂𝑃𝑀𝑎𝑥; and the 

number of categories, 𝑁𝑢𝑚𝐶𝑎𝑡. The boundary for the top of category 𝐶𝑎𝑡 is  

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐶𝑎𝑡 = 𝐹𝑂𝑃𝑀𝑎𝑥 ∙ (
𝐶𝑎𝑡

𝑁𝑢𝑚𝐶𝑎𝑡
)

1
𝑏⁄

 , 𝐶𝑎𝑡 = 1, 2, 3, … , 𝑁𝑢𝑚𝐶𝑎𝑡. (1) 

Any FOP > 𝐹𝑂𝑃𝑀𝑎𝑥 stays in the highest category. A category for true zero can be 

added if required. For convenience, we parameterized 1
𝑏⁄ , for which we tested values in 
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the range of 1.5 to 4.5; for example, 2 yields a square root shape. 𝑎 works out to be 
𝑁𝑢𝑚𝐶𝑎𝑡

𝐹𝑂𝑃𝑀𝑎𝑥𝑏. The red curve in Figure 6 illustrates the boundaries for 1
𝑏⁄ = 3, 𝐹𝑂𝑃𝑀𝑎𝑥 = 3 

and 𝑁𝑢𝑚𝐶𝑎𝑡 = 20; for example, the boundary for 𝐶𝑎𝑡 = 11 (the top of category 11) is 

~0.5. The tool lists the boundaries and graphs them as in Figure 6. 

While working directly with subject matter experts, the tool facilitated the joint test-

ing of alternatives for the number of categories, truncation and nonlinearity design op-

tions. These alternatives plus colouring needed to be adjusted simultaneously when trad-

ing off the goals because their effects interact. The FOP outputs for a set of representative 

days were mapped using R [35] for candidate sets of boundaries and colouring. Table 5 

lists ways in which the alternatives for the number of categories, the amount of truncation 

and nonlinearity and number of hues generally interact in affecting several attributes re-

lated to completeness and accuracy of information or speed and ease of understanding. 

There are exceptions for some combinations and edge conditions. Every alternative for 

the design options improves some attributes and worsens others. The trade-off behaviour 

is more straightforward to work with than it may seem because the tool shows most of 

the trade-offs immediately. The difficulty lies in subjectively assessing the results and 

compromising on the attributes and goals. 

Table 5. Tabulation of how alternatives for the number of categories, amount of truncation and 

nonlinearity and number of hues generally interact in affecting several attributes related to com-

pleteness and accuracy of information or speed and ease of understanding. There are exceptions 

for some combinations and boundary conditions. Every alternative improves some attributes 

(blue-grey shading) and worsens others (orange-tan shading). 

Goal Attribute 

Alternative for Design Options 

More Catego-

ries 

More Trunca-

tion at High 

end 

More Nonlin-

earity 
More Hues 

C
o

m
p

le
te

 a
n

d
 a

cc
u

ra
te

 i
n

fo
r-

m
at

io
n

 

More resolu-

tion at low 

end 

Better Better Better No effect 

More resolu-

tion at high 

end 

Better 

Better in range 

Worse No effect 
NONE be-

yond trunca-

tion 

Accurate, Un-

distorted 
Better 

Better in range 

Worse No effect 
ABSENT be-

yond trunca-

tion 

F
as

t 
an

d
 e

as
y

 t
o

 u
n

d
er

st
an

d
 

Need to refer 

to legend 
Worse 

No effect in 

range 
Worse Worse 

Ease of match-

ing legend 
Worse Better Worse Better 

Attention 

drawn to im-

portant data 

No effect 

No effect in 

range 

No effect Better ABSENT be-

yond trunca-

tion 

Has suitable 

psychological 

meaning 

No effect No effect No effect 

Better if using 

colour psy-

chology 
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3.5. Case Study—Step 4: Results of the Design Process 

We state our current category and colouring design and give the rationale for the 

trade-offs made. The pressure to have a small number of categories and colours (~4) could 

not accommodate the need for fine resolution at the low end; we used 20 categories (plus 

a true zero if needed). Figures 5b–5d show the same FOP data as Figure 5a but with 4, 10 

and 20 categories, respectively. Only the largest number of categories reveals the mean-

ingful network pattern of lines and nodes that corresponds roughly with roads and set-

tlements. 

In addition, a highly nonlinear scale was needed to show the patterns in the data. We 

used a nonlinear-systematic scale with boundaries obtained using Equation 1 with param-

eters 1
𝑏⁄ = 3, 𝐹𝑂𝑃𝑀𝑎𝑥 = 3 and 𝑁𝑢𝑚𝐶𝑎𝑡 = 20. The boundaries are given in Table 6, 

stated in units of fires/cell and cells/fire. The final shape of the nonlinear scaling corre-

sponds to parameter settings of 𝑎 = 20 ∙ 3
−1

3⁄  and 𝑏 =  1
3⁄ . 

𝑓(𝑥) =  {20 ∙ 3
−1

3⁄  𝑥
1

3⁄ , 0 ≤ 𝑥 < 3
20 , 𝑥 ≥ 3

, (2) 

which is illustrated by the red curve in Figure 6. 

Table 6. Categories and colours used for mapping fire occurrence prediction model outputs. Note that the map legend 

has a highly simplified integer scale and broad adjective categories. 

Category 

Number 

Category Upper Bound of 

Expected Number Colour Adjective Category Map Legend 

(fires/cell) (cells/fire) 

20 ≥ 3.00 ≤ 0.333   
Extreme 

 

19 2.57 0.389   

18 2.19 0.457   

Very High 
17 1.84 0.543   

16 1.54 0.651   

15 1.27 0.790   

14 1.03 0.972   

High 

13 0.824 1.21   

12 0.648 1.54   

11 0.499 2.00   

10 0.375 2.67   

9 0.273 3.66   

8 0.192 5.21   

Moderate 
7 0.129 7.77   

6 8.10×10-2 12.3   

5 4.69×10-2 21.3   

4 2.40×10-2 41.7   
Low 

3 1.01×10-2 98.8   

2 3.00×10-3 333   
Very Low 

1 3.75×10-4 2,670   

0 0 ∞   Nil 

Regarding truncation, we considered the rarity and operational importance of ex-

treme FOP magnitudes. The 20th category ends at 3 fires/cell according to Equation 1, but 

that category is used for all higher FOP magnitudes. The maximum FOP in Table 4 is ≈3.9 

fires/cell. 

Regarding colouring, we used a nonlinear, divergent scale with one hue for the low 

end and multiple hues for the high end (Table 6). The hues transition from light blue to 
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yellow through orange to red, which mostly follows the traditional blue-to-red progres-

sion. Avoiding green in that sequence accommodates some types of colour vision defi-

ciency [31]. Even though there are 20 categories, having four main colours is easy to inter-

pret and consistent with other CFFDRS outputs (for example, Table 1). The gradient 

within each main colour is difficult to match with the legend, but nonetheless reveals 

meaningful spatial patterns in the maps. Figures 7a–7c show the final categorization and 

colouring scheme in example daily FOP maps of human- and lightning-caused fires and 

total fires, respectively. We intentionally show maps as formatted for operational use. 

They are intended for display on large monitors, but these reduced versions still show the 

colouring and categorization results adequately. Larger versions are provided in the Sup-

plementary Material. 

Note that a sequential scale is logical for FOP because any non-zero FOP is “bad” in 

this context. But the calming colours are assigned to very low magnitudes, and this pro-

vides a slightly greater distinction between the remaining colours. A much greater dis-

tinction could easily be achieved by adding more colours—for example, magenta–purple–

black for the highest categories, which would also draw more attention to the critical ex-

tremes. This, however, would not accommodate colour vision deficiencies. 

Broad adjective categories were added to emulate the familiar four- or five-category 

pattern and simplify interpretation. Those boundaries fit the general association between 

Ontario’s fire arrival density and fire situation severity. The three-significant-digit cate-

gory boundaries were replaced in the legend by integers for selected category midpoints 

or boundaries (Table 6). Note that the units change from fires/cell to cells/fire to show 

integer magnitudes, which are far more meaningful than fractions. 

3.6. Case Study—Step 5: Evaluating and Revising the Scheme 

Several significant revisions were done in arriving at the current design in Figure 7. 

The first lightning-caused FOP maps had a linear scale with four equal-interval categories 

using traditional blue–green–yellow–red. When human-caused FOP was added, the scale 

was changed to 10 categories using a smooth green–yellow–orange–red transitional gra-

dient and later to a special blue–yellow–orange–red to accommodate some colour vision 

deficiencies. As stated above, the inconsistent subjective scales were replaced completely 

in early 2020 per our method. The maps originally showed the expected number of 

fires/cell but were changed to show the density of the expected number of fires/unit area 

because of fractional cells. Note that the map legends intentionally omit this complication; 

density seems to be the automatic, intuitive interpretation. Additional revisions are 

planned, and further evaluation is always ongoing. 

4. Discussion 

While implementing the FOP models for operational evaluation, we arrived at and 

applied this method, which may seem well structured and straightforward now, but it 

was far from that during the design work. The method emerged as a by-product, having 

evolved during iterative deliberations. As illustrated in the introduction and identified in 

[9], the categorization of the FWI System outputs could benefit from this approach. We 

have since applied the method to categorize and colour outputs from other models for 

operational display [39–41], examples of which are in the supplementary material. 

The many considerations discussed in this paper need to be addressed to ensure that 

the models are interpreted and used appropriately. We emphasize that any schemes in-

cluding those built into software applications need this careful consideration. Incorporat-

ing the outputs from scientific models into operational decision-making is not straightfor-

ward. The key for a successful application is that researchers and practitioners work to-

gether closely throughout the process, from problem identification through to implemen-

tation and evaluation [1]. Through this collaborative approach, outcomes tend to have a 

higher acceptance and usefulness. 
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An additional factor not addressed by our method is that categories need to be mean-

ingful for more than just map design, because there is a tendency to extend the use cate-

gories to guidelines and standard operating procedures and vice versa [9]. The classifica-

tions and their boundaries can also be used as unwritten mental shortcuts or heuristics in 

the place of a more deliberative consideration of complex information. Well-designed, sci-

ence-based classifications can be consistent with less time-constrained situational anal-

yses, while poor classifications may lead to suboptimal decision-making. 

Design considerations for presenting quantitative data for decision support go be-

yond the categorization and colouring of numerical scales. Also important are options for 

spatial resolution and the use of simulated three-dimensional displays, examples of which 

are given in the supplementary material [42]. 

We presented a method of designing classification and colouring schemes that con-

sider many complex factors, interactions and trade-offs. These satisfied the ultimate goals 

of showing decision-makers complete and accurate quantitative information that was un-

derstood quickly and easily. 

 (a) 

 (b) 
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 (c) 

Figure 7. Examples of fire occurrence prediction maps that use the categorization and colouring in 

Table 6: (a) human-caused; (b) lightning-caused; (c) total. The legend uses units of fires/cell and 

cells/fire to make the magnitudes integer. Larger versions are in the supplementary material. 

Supplementary Materials: The following are available online at www.mdpi.com/2571-

6255/4/3/50/s1: other applications of the model (Figures S1 and S2), classification of numbers, addi-

tional considerations for the spatial display of data (Figures S3 – S5) and larger versions of Figure 

7a – c (Figures S6 – S8). 
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