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Abstract: Prescribed fires and wildfires are common in wetland ecosystems across the Southeastern
United States. However, the wetland burned area has been chronically underestimated across
the region due to (1) spectral confusion between open water and burned area, (2) rapid post-fire
vegetation regrowth, and (3) high annual precipitation limiting clear-sky satellite observations. We
developed a machine learning algorithm specifically for burned area in wetlands, and applied
the algorithm to the Sentinel-2 archive (2016–2019) across the Southeastern US (>290,000 km2).
Combining Landsat-8 imagery with Sentinel-2 increased the annual clear-sky observation count from
17 to 46 in 2016 and from 16 to 78 in 2019. When validated with WorldView imagery, the Sentinel-2
burned area had a 29% and 30% omission and commission rates of error for burned area, respectively,
compared to the US Geological Survey Landsat-8 Burned Area Product (L8 BA), which had a 47%
and 8% omission and commission rate of error, respectively. The Sentinel-2 algorithm and the L8 BA
mapped burned area within 78% and 60% of wetland fire perimeters (n = 555) compiled from state
and federal agencies, respectively. This analysis demonstrated the potential of Sentinel-2 to support
efforts to track the burned area, especially across challenging ecosystem types, such as wetlands.

Keywords: drought; Everglades; Google Earth Engine; machine learning; prescribed fire; wildland
fire; wetlands

1. Introduction

Wetland ecosystems, characterized by permanent or seasonal saturation with water,
hydromorphic soils, and aquatic plants [1], play critical global functions in providing
clean water, supporting biodiversity, and regulating climate [2]. Wetlands are essential
carbon sinks where saturated soils create anoxic conditions that limit decomposition rates
and increase subsurface carbon storage [3–6]. Thus, although wetlands cover only 6% of
the Earth’s land cover [7], they store between 20 and 30% of the global soil carbon [8].
Wetlands in the conterminous US, for example, store a total of 11.52 PgC, with palustrine
wetlands storing nearly ten-fold more carbon than tidal wetlands [9]. Despite typically high
fuel moisture, prescribed fire in wetlands is frequently used to control plant biomass and
non-native species, as well as to improve habitat. Wildfires in wetlands are also common,
especially during dry periods across the Everglades, Brazilian Pantanal, peat bogs in
Indonesia, boreal forests, and other global wetlands [10–12]. Fires drive key ecosystem
processes (e.g., nutrient cycling, seed scarification, and plant growth) [13], but also consume
biomass, emit particulate matter that impacts air quality, and release carbon dioxide to the
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atmosphere [14–16]. In wetland ecosystems, important carbon storage is vulnerable to loss
via fire events, especially during droughts when deep organic fires can burn for weeks to
months [12,17,18].

Satellite imagery has been used extensively to map and track active fires and burned
areas [16,19–21]. Existing burned area products, however, underestimate the frequency
and total area of fires across the Southeastern US, which burns more area than the rest of
the conterminous US combined [22–24]. For example, high annual precipitation across the
region causes regular cloud cover that reduces the frequency of clear images [25]. This
precipitation also supports the rapid regrowth of fire-adapted plant species, limiting the
time over which a burned area is visible [25,26]. Prescribed fires are also common across the
region, ignited purposely in support of agriculture, silviculture, and wildlife management
to decrease wildfire ignitions, spread, burn severity, and control fuel loads [26,27]. However,
prescribed fires are typically surface fires that are lower in burn severity and can be
challenging to remotely detect [21,28,29].

In wetlands, specifically, it can be challenging to spectrally distinguish open water
from burned area, so open water is often masked when producing burned area prod-
ucts [21,30,31], potentially masking wetland fires [32,33]. The US Geological Survey (USGS)
Landsat Burned Area Product (BA), for example, documented lower accuracy in emer-
gent and woody wetlands (78% and 51% omission errors, respectively), relative to other
land-cover types [34]. Efforts to remotely track wetland fires have predominantly mapped
and tracked post-fire spectral recovery within known wetland burn perimeters [12,35–37].
Meanwhile, efforts to find and map wetland fires with satellite imagery, alone, have been
very limited and have primarily relied on unsupervised classification approaches [11,38].
The probability of mapping wetland fires will depend in part on the persistence of the burn
signal, which can be much shorter for wetlands relative to upland forests, and shorter for
wet and warm southeastern ecosystems, relative to drier western ecosystems (Figure 1).
In wetlands, the persistence of the burn signal is influenced by the season in which the
fire occurs [25,39], as well as the burn severity and site wetness [12], but is often negligible
one-to-three months post-fire [11,32,39]. These challenges demonstrate the need for new
approaches to improve our understanding of burned-area extent in wetland ecosystems.

Sentinel-2 satellites (2A launched 23 June 2015 and 2B launched 7 March 2017) can
provide clear-sky imagery, in complement with imagery collected by Landsat-8, to meet
these wetland-specific challenges across the Southeast. In addition, Sentinel-2 imagery
maintains a moderate spatial resolution (10–20 m), relative to existing global burned area
products (≥250 m) [40]. While global products, such as MCD45, are derived from near-daily
imagery, the coarse spatial resolution (500 m) produces a high omission error in temperate
ecoregions, with documented omission errors of 87% in temperate grassland and savanna
and 99% in temperate forest [41]. Global burned area products have not been explicitly
validated in wetland ecosystem types [41]. In recent years, approaches to track burned
area have emerged by using Sentinel-2 alone [42–44] or using both Landsat-8 and Sentinel-
2 [45–47]. However, the Sentinel-2 efforts to date have focused on a subset of land-cover
types, using Sentinel-2 to track burned area across African savannah ecosystems [42,45,48]
and forests [44,46].

The timing of wetland fire ignitions across the Southeastern US is driven by the
climate conditions and the cause of the fire. Climate has a strong influence on wildfires
by controlling the fuel quantity and moisture, fuel connectivity, and lightning ignition
potential [49]. Drier and warmer conditions increase the total wetland area burned [36,50].
However, humans also play a strong role in the timing and cause of fires [51]. For example,
unlike wildfires, prescribed fires tend to be set during wetter conditions [11], so that
prescribed fires extend the fire season beyond what would otherwise occur. Most wildfires
across southeastern wetlands occur during the early growing season (April/May) near
the end of the dry season when fuels are dry, ground water levels are low and lightning
frequency is relatively high, while prescribed fires are typically closer to the beginning of
the dry season (January/February) [10,52,53].
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p46r31 (b), 26 April 2018 p16r42 (c), and 28 August 2017 p41r28 (d). In the forest examples the NBR observations were 
restricted to 1 May 1 to 30 September 2017. The graphed NBR observations were averaged across the burned area poly-
gons. FL = Florida, OR = Oregon, MT = Montana. 
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ecosystems by using the Sentinel-2 image archive across Florida and the coastal portions 
of Alabama, Georgia, and South Carolina. The USGS Landsat BA [34] is currently the fin-
est resolution burned area product operationally produced across the US. However, Land-
sat-7 is 22 years into its mission and is likely to be de-commissioned soon. It is critical, 
therefore, to explore the extent to which Sentinel-2 may supplement the Landsat-8 (L8) 
BA, particularly in regions with rapid regrowth such as the Southeastern US. To do so, we 
addressed the following research questions: (1) What is the contribution of clear-sky ob-
servations from Sentinel-2, relative to Landsat-8? (2) Can Sentinel-2 effectively map 
burned areas in wetland ecosystems? (3) What are the individual and combined contribu-
tions of Sentinel-2 and Landsat-8 to burned area extent in wetlands, and how do they 
compare to verified wetland fire perimeters?  

2. Materials and Methods 
2.1. Study Area 

The study was focused on a subset of the Southeastern US, defined here as Florida, 
and the coastal portions of Georgia, South Carolina, and Alabama (up to 200 km from the 
coast, total area = 293,821 km2) (Figure 2). The region has a humid, subtropical climate. 
Annual precipitation averages 1315 mm, and annual temperature maximum and mini-
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Figure 1. A visual comparison of the Normalized Burn Ratio (NBR) values from Landsat-7, Landsat-8, and Sentinel-2
for burned area polygons before and following fire events (indicated by the red dashed line) in wetland systems (a,c) as
compared to fire events in forest systems (b,d). Landsat-8 images used included 27 March 2017 p19r39 (a), 31 August 2017
p46r31 (b), 26 April 2018 p16r42 (c), and 28 August 2017 p41r28 (d). In the forest examples the NBR observations were
restricted to 1 May 1 to 30 September 2017. The graphed NBR observations were averaged across the burned area polygons.
FL = Florida, OR = Oregon, MT = Montana.

In this study, we developed an algorithm to map the burned area extent in wetland
ecosystems by using the Sentinel-2 image archive across Florida and the coastal portions
of Alabama, Georgia, and South Carolina. The USGS Landsat BA [34] is currently the
finest resolution burned area product operationally produced across the US. However,
Landsat-7 is 22 years into its mission and is likely to be de-commissioned soon. It is
critical, therefore, to explore the extent to which Sentinel-2 may supplement the Landsat-8
(L8) BA, particularly in regions with rapid regrowth such as the Southeastern US. To
do so, we addressed the following research questions: (1) What is the contribution of
clear-sky observations from Sentinel-2, relative to Landsat-8? (2) Can Sentinel-2 effectively
map burned areas in wetland ecosystems? (3) What are the individual and combined
contributions of Sentinel-2 and Landsat-8 to burned area extent in wetlands, and how do
they compare to verified wetland fire perimeters?

2. Materials and Methods
2.1. Study Area

The study was focused on a subset of the Southeastern US, defined here as Florida,
and the coastal portions of Georgia, South Carolina, and Alabama (up to 200 km from the
coast, total area = 293,821 km2) (Figure 2). The region has a humid, subtropical climate.
Annual precipitation averages 1315 mm, and annual temperature maximum and minimum
average 26 and 14 ◦C, respectively [54]. Across the region, emergent and forested wetlands
are the dominant land-cover type (32%, Figure 2a), followed by evergreen forests (22%)
and agriculture (19%, cultivated crops, hay/pasture) [55]. Wetland extent within this study
was defined by using the National Wetland Inventory (NWI, version 2.0) dataset. Wetland
extent averaged 29 ha km−2 across the region with wetland area dominated by freshwater
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forested/shrub wetlands (50%), estuarine and marine wetlands (21%), and freshwater
emergent wetlands (11%) [56].
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Figure 2. Distribution of (a) National Land Cover Database (2016) wetland and water classes, extent of training data, and
distribution of validation images, and (b) burn perimeters by fire year. Training data extent are shown in red boxes and
labeled as the (1) Florida panhandle, (2) Florida Everglades, (3) Eastern Florida–Georgia border, and (4) coastal plains of
South Carolina.

2.2. Clear-Sky Contributions of Sentinel-2

Clear-sky observation counts were calculated in Google Earth Engine [57]. All Landsat-
7 (non-gap filled) and 8 surface reflectance, and Sentinel-2 top-of-atmosphere images
collected in 2016–2019 across the study area were used. Values identified as cloud or
cloud shadow in Landsat-7 and Landsat-8 images were masked using cFMask [58]. Cloud
and cloud shadow masks were applied to the Sentinel-2 image collection, as described
in Section 2.3.1. The Normalized Difference Vegetation Index (NDVI) was calculated
for all unmasked pixels across the three image collections. The per-pixel observation
count of NDVI was summed annually and for March/April of each year (2016–2019).
This two-month period represents the seasonal peak in fire activity [24]. For multisensor
comparisons, the per-pixel observation count was summed across sensors. Because Landsat-
7 is still active, contributing clear-sky observations from this sensor were also calculated
for comparison purposes.

2.3. Burned Area Algorithm Development

For burned area, we trained and validated the algorithm entirely on burned pixels
within wetlands identified by using the National Wetland Inventory dataset and limited
to estuarine and marine wetlands, as well as freshwater emergent, shrub, and forested
wetlands [56]. For unburned areas, we trained and validated the algorithm across both
wetland and non-wetland land-cover types. Because wetlands often occur in a mosaic with
other land cover types, fire events frequently extend beyond a wetland boundary. To avoid
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mapping only parts of fire events, the burned area algorithm was applied across the entire
study area.

2.3.1. Image Collection Preprocessing

All Sentinel-2 top-of-atmosphere (TOA) image collection (Level 1C) images acquired
within the study area between 1 January 1 2016, and 31 December 31 2019, were processed.
To mask clouds, we used the Sentinel-2 cloud probability layer [59], where pixels with a
probability of >50% were classified as clouds and were masked out. Because the Level 1C
image collection lacks a cloud shadow mask, cloud shadows were identified and masked
by modifying code provided through the Google Earth Engine Community, “Sentinel-2
Cloud Masking with s2cloudless”. Cloud shadows were defined as the intersection of the
predicted cloud shadow area, derived from the cloud probability layer and the mean solar
azimuth angle, and dark areas, identified as low-reflectance, near-infrared (NIR) pixels. To
compensate for potential atmospheric contamination, we avoided using single spectral
bands as variables and instead relied on normalized spectral indices. Google Earth Engine
sets image count limits to control memory use. As Sentinel-2 is delivered as tiles, image
stacks can rapidly exceed memory limits. Consequently, all images collected on the same
date were mosaicked into a single image to reduce image counts.

2.3.2. Training Data

Training pixels were sampled from Sentinel-2 training images selected to represent
four subregions across the Southeast that experience high amounts of wetland fire: (1) the
Florida panhandle, (2) the Florida Everglades, (3) the coastal plains of South Carolina,
and (4) the Eastern Florida–Georgia border (Figure 2). In each training image, burned
points were randomly sampled within burn perimeters mapped by or created from
(1) the Geospatial Multi-Agency Coordination (GeoMAC) [60], now National Incident
Fire Services (NIFS), (2) the Wildland Fire Decision Support System (USGS WFDSS,
https://wfdss.usgs.gov/wfdss/WFDSS_Data.shtml (accessed on 12 May 2021), or (3) clus-
ters of points identified by the MODIS Active Fire Product (MCD14) [20]. All burned
points were restricted to palustrine emergent, palustrine forested/scrub–shrub, or estu-
arine and marine wetlands, as defined by the NWI dataset, and were checked to ensure
that the burned signal was visually observable in the training image. Unburned points
were randomly selected outside the burn perimeters to represent all unburned conditions
(e.g., unburned wetland, forest, urban, grassland, and agriculture). In each of the four
regions, we selected 400 burned training points and 400 unburned training points spread
across six images representing seasonal variability (two December–February images, two
March–May images, one June–August image, and one September–November image). The
one exception was South Carolina, where an extra spring image was added to increase
the number of images with burned points present. A total of 3200 training points across
25 images were generated. All training images, as well as the number of burned points per
image, are shown in Appendix A Table A1. The variable values for the pixel corresponding
to each training point were extracted and used to train the burned area algorithm.

2.3.3. Variables Considered

Spectral indices that have been shown to be helpful in identifying burned area were
considered as potential variables and are listed in Table 1 [34]. Because Sentinel-2 lacks ther-
mal bands, indices that included thermal bands were excluded from consideration. Single
spectral bands (i.e., blue, red, and NIR) were also excluded from consideration, because we
found that random forest models fit to the training data with single bands tended to show
higher rates of error when applied to the imagery time series. For each of the 14 spectral
indices, we considered the (1) single scene variable, (2) z-score value of the variable, and
(3) monthly change value of the variable (14 spectral indices × 3 versions = 42 variables).
The z-score values were calculated by subtracting the per-pixel mean and dividing by the
per-pixel standard deviation over the time series. Monthly mean values for each predictor

https://wfdss.usgs.gov/wfdss/WFDSS_Data.shtml
https://wfdss.usgs.gov/wfdss/WFDSS_Data.shtml
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were calculated, and change from the monthly mean was calculated by subtracting the
specific monthly mean over the time series from the pixel value. To account for potential
spectral confusion between increases in wetland water level and burned areas, we also
included two Standardized Precipitation Index (SPI) [61] variables, where precipitation
was aggregated for the last 30 days (spi30d) and 90 days (spi90d), respectively, relative to
the date of the image acquisition. The data were derived from 4 km daily Gridded Surface
Meteorological (GRIDMET) data [62]. The precipitation data were standardized relative to
1981–2016, assuming an inverse-normal distribution. The 42 spectral variables combined
with the two precipitation variables produced a total of 44 variables that were considered
for inclusion in the model. The values of each of the variables for all training points were
extracted and exported from Google Earth Engine.

Table 1. Spectral indices included as potential predictors to identify burned area. NIR = near infrared, SWIR = shortwave
infrared. Environ. = Environmental, Diff. = Difference.

Name Acronym Formula Source

Burned Area Index BAI 1/((0.1 − Red)2 + (0.06 − NIR)2) [63]
Char Soil Index CSI NIR/SWIR2 [64]

Enhanced Vegetation Index EVI 2.5 × (NIR − Red)/(NIR + (6.0 × Red) − (7.5 × Blue) + 1.0) [65]
Global Environ. Monitoring Index GEMI (2 × (NIR2 − Red2) + (1.5 × NIR) + (0.5 × Red))/(NIR + Red + 0.5) [66]

Mid InfraRed Burn Index MIRBI (10.0 × SWIR2) − (9.8 × SWIR1) + 2.0 [67]
Normalized Burn Ratio NBR (NIR − SWIR2)/(NIR + SWIR2) [68,69]

Normalized Burn Ratio 2 NBR2 (SWIR1 − SWIR2)/(SWIR1 + SWIR2) [68,69]
Normalized Diff. Moisture Index NDMI (NIR − SWIR1)/(NIR + SWIR1) [70,71]

Normalized Diff. Vegetation Index NDVI (NIR − Red)/(NIR + Red) [72]
Normalized Diff. Wetness Index NDWI (Green − NIR)/(Green + NIR) [73]
Soil-Adjusted Vegetation Index SAVI 1.5 × (NIR − Red)/(NIR + Red + 0.5) [74]

NIR/red ratio VI43 NIR/Red [72]
NIR/SWIR1 ratio VI45 NIR/SWIR1 [75,76]

SWIR1/SWIR2 ratio VI57 SWIR1/SWIR2 [75,76]

2.3.4. Model Variable Selection and Application

We used the Python package, geemap to access, analyze, and visualize the Sentinel-2
image collection, as well as the GRIDMET data, in the Jupyter environment [77]. Random
forest classifiers were fit using the Scikit-learn Python module [78]. We sequentially tested
the suite of potential predictors and, in each step, selected the predictor that increased
the Random Forest’s Area Under the Curve (AUC) the most. In each step, predictors
were removed if they had high correlation (≥0.95) with any of the selected predictors.
Predictors were selected until the increase in AUC of additional variables was <0.0001.
We also evaluated how model accuracy changed with the number of training points to
ensure our sample size was sufficient (100 iterations, 20% randomly selected each time as
validation set). The selected predictor variables were then used to train a final Random
Forest model, using Scikit-learn in a Jupyter Notebook environment (https://jupyter.org/,
accessed on 12 May 2021), accessed through Miniconda 3 (https://docs.conda.io/en/
latest/miniconda.html, accessed on 12 May 2021). We ran 300 trees with bootstrapping.
The trees were translated into text and compiled into a list of trees readable to Google Earth
Engine, using the ee.Classifier.decisionTreeEnsemble method, and applied to all Sentinel-2
images. Variable importance was calculated with Python Scikit-learn as the permutation
importance, which reports the mean decrease in accuracy.

Temporary turbidity in open water was a source of commission error and was masked
out by identifying permanent open water. Long-term (2016–2019) open water was defined
as having a median Normalized Difference Wetness Index (NDWI, normalized difference
of green and NIR bands) value of >0.14, where water values tended to be positive and land
values tended to be negative. This threshold was selected by iteratively testing threshold
performance across the study area to mask out open water bodies but avoid masking out
wetlands. During the study period, this region experienced two category 5 hurricanes:
Hurricane Irma made landfall on 10 September 2017 and traveled up the western coast of

https://jupyter.org/
https://docs.conda.io/en/latest/miniconda.html
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Florida, and Hurricane Michael made landfall on the Florida panhandle on 10 October 2018.
Hurricanes of this magnitude cause substantial flooding and damage; therefore, Sentinel-2
images for the Florida panhandle were excluded between October and December 2018, and
Sentinel-2 images within the Everglades and the western coast of Florida were excluded
between October and December 2017 to reduce post-hurricane commission error. Both
hurricanes showed extended impacts, however, into the following spring, primarily along
riparian corridors in the path of the hurricane. To reduce riparian commission error along
the path of the hurricane, a pixel was masked out if the normalized difference of the
NIR and coastal bands averaged between −0.05 and 0.25 across December, January, and
February in the winter following each hurricane. This value range and months maximized
distinguishing documented burned area from hurricane-related impacts. In addition, very
limited manual editing was performed, but only after the validation analysis was complete.
In this step, the direct paths of Hurricane Irma and Hurricane Michael were reviewed for
false positives in the spring following each hurricane.

For each year, the classified Sentinel-2 images were consolidated into the burn count
for January–May and the burn count for June–December. Because both wildfires and
prescribed fires were most common in the January–April period, burn counts of 2 or more
were reclassified as burned for this 6-month period. In contrast, burn counts of 3 or more
were reclassified as burned for the June–December burn count raster in each year. This
enabled us to limit the inclusion of TOA images with a lower than average signal to noise
ratio. To reduce commission error, only burned polygons >1 ha were retained. Finally, the
spring and fall burned areas were combined to produce an annual raster that was filtered
by using a 5 × 5 bit error adaptive filter to reduce noise while preserving edges [79].

2.4. Validation

We evaluated the Sentinel-2 burned area classification by using validation points
(burned and unburned) derived from WorldView-2 and WorldView-3 images (Figure 2a).
Worldview-2 (2 m resolution) and Worldview-3 (1.4 m resolution) images (n = 27) were
selected by using disproportionate sampling [80,81] to ensure that enough wetland burned
area was considered in the validation (Appendix A Table A2). The image acquisition dates
ranged from 26 February 2017 to 6 December 2019. The images were acquired via the
NextView License as Level 2A 8-band images. Within each high-resolution image, burned
area that occurred within or overlapped wetlands, as defined by the NWI dataset, was
manually delineated as (1) visually distinguishable from the high-resolution imagery and
(2) verified as a burned area by a secondary source, specifically MODIS active fire points [20]
or historical high-resolution imagery available in Google Earth Pro, for burns missed by
the MODIS active fire dataset. A total of 319.8 km2 of burned area across 54 fires, within
or overlapping wetlands was delineated, which represented 5.3% of the non-overlapping
high-resolution image extent. We then randomly generated validation points with the class
proportionate to the amount of burned area cover (5%), so that 1000 points were randomly
selected within the burned perimeters and 20,000 points were randomly selected outside
the burned perimeters. Each point was visually checked to ensure the accuracy of the
assigned class and points were reassigned as needed. The creation of the validation dataset
was completed independent of the Landsat BA and the Sentinel-2 burned area produced
in this analysis. Points used to train the algorithm did not overlap with points used to
validate outputs. For the validation points associated with each high-resolution image, the
nearest date, relatively cloud-free Sentinel-2 image was processed to burned/unburned
and used to evaluate the Sentinel-2 burned area (Appendix A Table A2). For comparison,
we also validated the L8 BA, using the same set of validation points (Appendix A Table A2).
Because of variable timing in the fire activity relative to the image collection, the Sentinel-2
and L8 BA images selected for validation were not necessarily the closest date match,
but instead, the single image that best mapped the burned area. This decision was made
because the nearest date image sometimes had substantial cloud cover. In addition, this
approach helped avoid cases in which a burned area was visible in a high-resolution
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image, but the fire event had not yet occurred in a Sentinel-2 or L8 image collected several
days prior. NA values within the selected images were excluded from inclusion in the
accuracy statistics.

Omission (OE) and commission (CE) errors were calculated for the “burned” cate-
gory [82]. The Dice coefficient was calculated as the conditional probability, presented as
a percentage, that if one classifier (product or reference data) identifies a pixel as burned,
the other one will as well, integrating omission and commission errors [83,84]. The rela-
tive bias was also calculated, providing the proportion, presented as a percentage, that
burned area is under or overestimated relative to the total burned area of the reference
product [41]. To account for the influence of validation points being clustered within each
high-resolution image, standard errors were calculated by using the stratified combined
ratio estimator [85,86]. Using the numerator and denominator of the accuracy metric for
the set of validation points associated with each high-resolution image individually, this
approach calculated the variance and standard error of each regional accuracy metric
(survey R package) [87].

2.5. Analysis

The potential contribution of the Sentinel-2 burned area was evaluated by comparing
the annual Sentinel-2 burn area raster to wetland burn perimeters compiled from multiple
fire databases (Figure 2b). All burn perimeters were compiled from datasets where they
were verified manually. Sources of burn perimeters included (1) the Monitoring Trends in
Burn Severity (MTBS) [88], (2) GeoMAC, (3) WFDSS, and (4) perimeter datasets including
prescribed fires compiled from the US Forest Service, National Park Service, the Florida
Forest Service, and the Nature Conservancy. The burned perimeters were required to
overlap an NWI polygon, and burn perimeters < 1 ha were excluded to match the minimum
unit size of the Sentinel-2 burned area. A total of 555 wetland fire perimeters were included
across the study area, totaling almost 537,000 ha over the four-year period. The Sentinel-2
burned area, the L8 BA, and the combined burned area, all compiled as annual composites,
were compared to the wetland burned polygons and evaluated for detection count, defined
as the number of burn perimeters that showed an overlap between the burn perimeter and
burned area, as well as the total area of the burn perimeters classified as burned. Detection
by wetland type and by burned area perimeter size were also evaluated. Wetland type
was defined by the majority NWI wetland type within the burned perimeter [56]. For this
analysis, wetland types were restricted to (1) freshwater (palustrine) forested and shrub
wetland, freshwater (palustrine) emergent wetland, and estuarine and marine wetlands,
while riverine, lake, and pond NWI wetland types were excluded.

3. Results
3.1. Sentinel-2 Clear-Sky Observation Contribution

Sentinel-2 can contribute to monitoring burned area by increasing the frequency of
clear-sky observations across the Southeast. Adding Sentinel-2 observations to Landsat-8
observations in the peak fire period, March/April, increased the observation count between
43% in 2016 and 313% in 2018 across the study area (Figure 3). On an annual time-step,
adding Sentinel-2 to Landsat-8 in 2016 increased observation count from 17 to 46. With
the launch of Sentinel-2B in 2017, the observation count increased from 16 with Landsat-8
alone to 78 by 2019 (Table 2). The increase in Sentinel-2 observation count in 2018 and 2019
relative to 2016 and 2017 was evident not only in observation count (Table 2) but also the
net contribution of burned area extent, relative to the L8 burned area extent. In Figure 4,
for example, we observed a greater “new burned area” identified by Sentinel-2 in 2018 and
2019 across the Everglades, relative to 2016 and 2017.



Fire 2021, 4, 52 9 of 25

Fire 2021, 4, x FOR PEER REVIEW 10 of 26 
 

 

 
Figure 3. The number of cloud-free observations (2016–2019) using just Landsat-8 (L8) or Landsat-8 and Sentinel-2 satellites. Percentiles represent increase in the cloud-
free observations when including Sentinel-2, relative to using Landsat-8, alone. Observation count for March and April was selected to represent the regional peak in 
wetland fire frequency. Avg = average. 

Figure 3. The number of cloud-free observations (2016–2019) using just Landsat-8 (L8) or Landsat-8 and Sentinel-2 satellites. Percentiles represent increase in the cloud-free observations
when including Sentinel-2, relative to using Landsat-8, alone. Observation count for March and April was selected to represent the regional peak in wetland fire frequency. Avg = average.



Fire 2021, 4, 52 10 of 25Fire 2021, 4, x FOR PEER REVIEW 11 of 26 
 

 

 
Figure 4. Examples from the Florida Everglades showing the contribution of burned area extent from Sentinel-2 in (a) 2016 
and (b) 2017 with Sentinel-2A only, relative to (c) 2018 and (d) 2019 with both Sentinel-2A and Sentinel-2B. Background 
images include Landsat-8 images from 24 January 2016 and 22 March 2017, and Sentinel-2 image from 17 March 2017. 
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and (b) 2017 with Sentinel-2A only, relative to (c) 2018 and (d) 2019 with both Sentinel-2A and Sentinel-2B. Background
images include Landsat-8 images from 24 January 2016 and 22 March 2017, and Sentinel-2 image from 17 March 2017.
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Table 2. Average count of annual clear-sky observations across the study area by sources of imagery.
S2 = Sentinel-2, L8 = Landsat-8, L7 = Landsat-7.

Imagery Time 2016 2017 2018 2019

L8 Annual 17.4 17.7 16 15.9
S2 Annual 28.9 28.8 60.8 61.7

L8 + S2 Annual 46.4 46.6 76.9 77.7
L7 + L8 + S2 Annual 57.9 59.8 88.6 86.4

Change from L8 to
L8 + S2 (%) Annual 167% 163% 381% 389%

3.2. Model Performance and Burned Area Validation

When the model score was related to the number of training points, by 1400 training
points, we saw limited further improvements in model score, suggesting that the number
of training points used in the development of the burned area random forest model was
sufficient (Figure 5a). Out of the 44 potential independent variables tested, nine variables
were selected for inclusion in the Sentinel-2 Random Forest model (Figure 5b). The z-
score of the NIR-red ratio vegetation index (VI43) and the change from monthly mean of
the shortwave infrared and NIR ratio (VI45) showed both high variable importance and
the biggest contributions to the AUC. The change from monthly mean of the Enhanced
Vegetation Index (EVI) also showed high variable importance but lower contribution to the
AUC (Figure 5b). In total, one z-score variable, three change from monthly mean variables,
three single scene variables, and both the 30- and 90-day SPI variables were all selected
for inclusion in the Random Forest model (Figure 5). We tested the Spearman correlation
values between the selected variables and found a maximum correlation of −0.85 between
the change from monthly mean EVI and change from monthly mean NDWI. The average
absolute correlation value between all of the selected variables was 0.37. The model’s AUC
was 0.998, while the model’s cross-validation score was 0.92 (Figure 5).
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Figure 5. (a) Impact of training point count on model score (i.e., overall accuracy) using cross-validation (100 iterations,
20% randomly selected each time as validation set); shaded area shows ± 1 standard deviation. (b) Variable importance
values using permutation importance and the contribution of each variable to the AUC for the Random Forest model. VI43
= vegetation index (VI) near infrared (NIR)–red ratio, VI45 = NIR–Shortwave infrared (SWIR) 1 ratio, SPI = Standardized
Precipitation Index, MIRBI = Mid InfraRed Burn Index, EVI = Enhanced Vegetation Index, MC = change from monthly
mean, BAI = Burned Area Index, NBR = Normalized Burn Ratio, NDWI = Normalized Difference Wetness Index.

Strong model fit metrics, however, do not necessarily indicate how well the model
will perform when applied to a time series of imagery; additional validation is necessary.
The absolute average date gap between Sentinel-2 and the high-resolution validation
images was 7.0 days, while the absolute average date gap between the Landsat-8 images
and the selected high-resolution images was 11.6 days (Appendix A Table A2). The L8
BA showed a 47 ± 5% and 8 ± 3% error of omission and commission for burned area,
respectively (Table 3). Sentinel-2 burned area, in comparison, showed a lower error of
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omission (29 ± 7%) but a higher error of commission (30 ± 4%). However, the Dice
coefficient (70 ± 5% relative to 67 ± 5%) and relative bias (2 ± 8% relative to −42 ± 4%)
were both stronger in the Sentinel-2 burned area validation relative to the L8 BA validation
(Table 3).

Table 3. Accuracy of Sentinel-2 (S2) burned area as validated from WorldView-2 and WorldView-3 imagery. The top part of
table shows the agreement of validation points by count, while the bottom part of the table presents accuracy statistics.
Accuracy statistics for the burned area (BA) product, derived from Landsat-8 (L8) only, also provided for comparison
purposes. Standard errors (SE) for accuracy metrics in parentheses. Ref. = Reference.

Ref. Burned Ref. Unburned Total

Sentinel-2: Burned 615 268 883
Sentinel-2: Unburned 252 15,797 16,049

Total 867 16,065 16,932
L8 BA Product: Burned 446 39 485

L8 BA Product: Unburned 395 16,132 16,527
Total 841 16,171 17,012

Accuracy Metrics (%) S2 (mean (SE)) BA L8 (mean (SE))
Omission error for burned area 29.1 (6.7) 47.0 (5.4)

Commission error for burned area 30.4 (3.9) 8.0 (3.4)
Overall accuracy 96.9 (1.0) 97.4 (0.5)
Dice coefficient 70.3 (4.8) 67.3 (5.2)

Relative bias 1.8 (7.7) −42.3 (4.3)

3.3. Burned Area Extent and Analysis of Burn Perimeter Detection

Burned area impacts a small proportion of land area annually; therefore, burned area
products are often difficult to view at a regional scale. To improve visibility, the proportion
of a moving window mapped as burned was generated to indicate the burned area patterns
(Figure 6). Across the study area, the Sentinel-2 burned area showed a similar geographical
burn pattern between 2016 and 2019 as the L8 BA Product (Figure 6). However, some
differences were visible, for instance, the Sentinel-2 BA showed a higher proportion of
burned area in Southwestern and Southeastern Georgia, while the Landsat-8 BA showed
a higher proportion of burned area at the Southern Georgia border and Eastern Florida.
Across the study area, averages of 2.1% and 1.1% of the NWI wetlands, defined as estuarine
and marine wetlands, as well as freshwater emergent, shrub, and forested wetlands, were
mapped as burned each year by Sentinel-2 and the L8 BA, respectively. In comparison, The
Landsat Burned Area product mapped 0.4% of the conterminous US as burned each year,
with 0.6% of CONUS mapped as burned in 2012, the highest fire year [34].

We compared the Sentinel-2 and L8 burned area to the wetland burn perimeter dataset
(n = 555) to quantify the relative contribution of Sentinel-2 burned area. Sentinel-2 exceeded
Landsat-8 in all four years in the percent of the wetland burn perimeters detected and in
all years except 2016 for the percent of the wetland burn perimeters mapped as burned
(Table 4). An example of this finding is shown in Figure 7, where Sentinel-2 identified
additional burned area relative to the L8 BA, but showed a similar burn pattern as MODIS
active fire points and the L8 BA across the Apalachicola National Forest in the Florida
panhandle. Across the four-year period, by count the L8 BA detected 60% of the perimeters,
while Sentinel-2 detected 79% of the perimeters and together 79% of the perimeters were
detected (Table 4). Although burn perimeters are typically an overestimate of burned area
and include unburned areas within the burn perimeter, mapping more area as burned
suggests the detection of burned area across a larger range of burn severities. By area, the
L8 BA detected 32% of the perimeter area compared to 39% detected by Sentinel-2, and
together the two sensors mapped 50% of the perimeter area as burned (Table 4).
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Table 4. Detection of burned area within wetland fire perimeters (perim.) by year, fire count, and area for the Landsat-8 (L8)
Burned Area (BA) Product; the burned area detected by Sentinel-2 (S2); and the combined efforts (L8 + S2 BA).

Year Fire Perim.
(Count)

L8 BA
(Count) S2 (Count) L8 BA + S2

(Count)
L8 BA

(Count %)
S2

(Count %)
L8 BA + S2
(Count %)

Increase
with S2

(%)

2016 137 99 117 120 72.3 85.4 87.6 15.3
2017 232 129 166 166 55.6 71.6 71.6 16.0
2018 127 75 110 110 59.1 86.6 86.6 27.5
2019 60 33 44 44 55 73.3 73.3 18.3
Total 556 336 437 440 60.4 78.6 79.1 18.7

Year Fire Perim.
Area (km2)

L8 BA
(km2) S2 (km2)

L8 BA + S2
(km2)

L8 BA
(Area %)

S2
(Area %)

L8 BA + S2
(Area %)

Increase
with S2
Area (%)

2016 824.3 303.7 277.4 397.5 36.8 33.7 48.2 11.4
2017 2922.6 1153.4 1196.5 1436.5 39.5 40.9 49.2 9.7
2018 1071.8 214.1 481.4 582.1 20.0 44.9 54.3 34.3
2019 550.7 41.0 145.6 258.6 7.5 26.4 47.0 39.5
Total 5369.3 1712.2 2101.0 2674.6 31.9 39.1 49.8 17.9

The detection of wetland burn perimeters by Sentinel-2 varied by wetland type and
burn perimeter size. Burn perimeters overlapping palustrine forested or scrub–shrub wet-
lands represented 52% of the perimeters, while the remaining were split between palustrine
emergent wetlands (26%) and estuarine and marine wetlands (22%). The Sentinel-2 burned
area detected 97% of the palustrine forested or scrub–shrub wetland burn perimeters,
compared to 74% of the palustrine emergent wetland burn perimeters, and only 37% of
the estuarine and marine wetland burn perimeters (Table 5). An example of burned-area
detection in South Carolina across an area dominated by forest/scrub–shrub wetlands
shows that Sentinel-2 contributes burned area relative to not only L8 BA but also Landsat-7
BA (Figure 8). In addition to patterns by wetland type, we also observed a pattern by
burn perimeter size. While only 40% of the perimeters between 1 and 10 ha were detected,
68% of the burn perimeters 11 to 20 ha were detected, and >97% of the burn perimeters
200–500 ha in size were detected (Table 5). Sentinel-2 burn polygons <1 ha in size were
filtered out in postprocessing to reduce speckling, which reduced noise but likely increased
omission of smaller (1–10 ha) burn perimeters.



Fire 2021, 4, 52 14 of 25

Fire 2021, 4, x FOR PEER REVIEW 14 of 26 
 

 

We compared the Sentinel-2 and L8 burned area to the wetland burn perimeter da-
taset (n = 555) to quantify the relative contribution of Sentinel-2 burned area. Sentinel-2 
exceeded Landsat-8 in all four years in the percent of the wetland burn perimeters de-
tected and in all years except 2016 for the percent of the wetland burn perimeters mapped 
as burned (Table 4). An example of this finding is shown in Figure 7, where Sentinel-2 
identified additional burned area relative to the L8 BA, but showed a similar burn pattern 
as MODIS active fire points and the L8 BA across the Apalachicola National Forest in the 
Florida panhandle. Across the four-year period, by count the L8 BA detected 60% of the 
perimeters, while Sentinel-2 detected 79% of the perimeters and together 79% of the pe-
rimeters were detected (Table 4). Although burn perimeters are typically an overestimate 
of burned area and include unburned areas within the burn perimeter, mapping more 
area as burned suggests the detection of burned area across a larger range of burn severi-
ties. By area, the L8 BA detected 32% of the perimeter area compared to 39% detected by 
Sentinel-2, and together the two sensors mapped 50% of the perimeter area as burned 
(Table 4).  

 
Figure 7. (a) Compiled wetland burn perimeters, (b) MODIS active burn points, (c) burned area 
mapped using Sentinel-2 by year, and (d) the Landsat-8 Burned Area Product and the Sentinel-2 
burned area. Legend colors in (c) apply to (a,b) as well. Wetlands in (a) represent National Wetland 
Inventory data, including estuarine and marine wetland, as well as freshwater emergent, shrub, and 
forested wetlands. Base imagery was from Landsat-8 collected on 27 April 2019 and 14 March 2018. 

Figure 7. (a) Compiled wetland burn perimeters, (b) MODIS active burn points, (c) burned area
mapped using Sentinel-2 by year, and (d) the Landsat-8 Burned Area Product and the Sentinel-2
burned area. Legend colors in (c) apply to (a,b) as well. Wetlands in (a) represent National Wetland
Inventory data, including estuarine and marine wetland, as well as freshwater emergent, shrub, and
forested wetlands. Base imagery was from Landsat-8 collected on 27 April 2019 and 14 March 2018.

Table 5. The distribution of the reference burn perimeters by size class and wetland type, and the number and percent of
the reference burn perimeters mapped as burned by the Sentinel-2 (S2) burned area. Pal. = palustrine.

Wetland Size (ha) Burn Perimeter Count (% of All) Mapped by S2 as Burned
(Count) Mapped by S2 as Burned (%)

1 to 10 126 (23%) 50 39.7
11 to 20 40 (7%) 27 67.5
21 to 50 52 (9%) 39 75

51 to 200 73 (13%) 60 82.2
201 to 500 91 (16%) 88 96.7

>500 173 (31%) 173 100

Wetland Type

Estuarine and marine 121 (22%) 45 37.2
Pal. Emergent 147 (26%) 108 73.5

Pal. forested/scrub–shrub 287 (52%) 278 96.9
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Although the algorithm was trained using data points from four distinct wetland 
regions, the burned area algorithm was applied across the entire study area. Figure 9 
shows examples of how the Sentinel-2 burned area algorithm performed, relative to the 
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was trained, including mapping burned area in wetlands along Florida’s eastern coast 
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Figure 8. Burned area mapped across South Carolina wetlands, including (a) a background image
from Landsat-8 collected on 28 March 2019; (b) active fire Moderate Resolution Imaging Spectrora-
diometer (MODIS) points; (c) Sentinel-2 burned area; and (d) layered from top to bottom, burned
area product from Landsat-8, Landsat-7, and Sentinel-2.

Although the algorithm was trained using data points from four distinct wetland
regions, the burned area algorithm was applied across the entire study area. Figure 9 shows
examples of how the Sentinel-2 burned area algorithm performed, relative to the Landsat-8
burned area and the MODIS active fire points, outside of the areas in which it was trained,
including mapping burned area in wetlands along Florida’s eastern coast (Figure 9a–c),
and mapping burned area in forest and scrub/shrub land-cover types (Figure 9d–i).
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Figure 9. Examples of applying the Sentinel-2 (S2) burned area algorithm (a,d,g) to areas beyond the training point extent
and in areas where the burned area occurred predominantly in non-wetland vegetation types (2016–2019) compared to
the Landsat-8 Burned Area Product (b,e,h), and the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire
points (c,f,i). Land-cover types assigned to the Sentinel-2 burned area were derived from the 2016 National Land Cover
Database [55].

4. Discussion

Fires in wetland ecosystems are common across the Southeastern US, as well as
globally [11,12,52]; however, existing burned-area products underestimate wetland burned
area [24,34], which contributes to error in accurately tracking changes in terrestrial carbon
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storage and carbon emissions [8,18]. In this effort, we used a machine learning algorithm,
trained on wetland fires, to map burned area extent (2016–2019), using the Sentinel-2
archive across Florida, as well as parts of Alabama, Georgia, and South Carolina. Burned
area in wetlands can go undetected when a burned area is visible but omitted by a burned
area algorithm due to low burn severity, burnable wetlands being masked out, or an
atypical burn signal [11,38]. Burned area in wetlands can also go undetected when the
burned area was never visible during image collection dates because of rapid vegetation
recovery and cloud cover [25,26]. The finer spatial resolution and greater frequency of the
Sentinel-2 imagery collection can help improve estimates of carbon emissions [89] from
wetland fires. With the imminent decommissioning of Landsat-7, and Landsat-9 not yet
launched or operational, Sentinel-2 or the harmonized Landsat and Sentinel-2 dataset [90]
can potentially be used at a national scale to enhance the USGS BA Product. By training the
algorithm using burned area in wetlands only and designing the open water mask to avoid
masking burnable wetlands to the extent possible, we demonstrated that Sentinel-2 can
be effectively used to support regional-scale efforts to find and track wetland burned area.
Additionally, modifying the algorithm to include wetland burned area in other burnable
wetland types, such as peat bogs, could improve the model transferability to other regions
where wetland fires are common.

Assessment of algorithm accuracy is a critical component of burned area algorithms.
The accuracy of our Sentinel-2 burned area (29% OE, 30% CE) was similar to other efforts
that used Sentinel-2 to track burned area, for instance, a 33% OE and 31% CE from mapping
fires with Sentinel-2 across Tropical and Subtropical African savannah sites [48], and a 27%
OE and 19% CE mapping fires from Sentinel-2 across Sub-Saharan Africa [42]. However,
in converting from single-image classification, on which our validation was performed,
to annual composites of burned area, we observed that a small percentage of images in
the time series introduced a disproportionate amount of error. To remove potentially
problematic images, we used a seasonally specific burn count threshold. This step, while
reducing commission error in the annual mosaic, also contradicted our original argument
that observation count is key to wetland fire detection [11,12,25]. An alternative approach
is to threshold and segment burn area from predicted burn probability surfaces instead of
using burn count [27,34]. Using burn probability instead of burn count potentially retains
burned areas that are only visible in a single image. However, when testing this approach
in the algorithm development stage, we found that this approach also missed documented
burns. This source of error highlights the challenge of minimizing commission error in
algorithms applied to dense stacks of imagery, while also minimizing omission error when
the burn signal is often subtle in wetland ecosystems. While additional preprocessing,
such as conversion to surface reflectance, could potentially reduce noise, other efforts have
shown that surface reflectance does not necessarily outperform TOA imagery in wetland
and water environments [91,92]. Alternative approaches to identify and remove images
with a lower-than-average signal-to-noise ratio may therefore be necessary [93].

Relative to other land-cover types, wetlands show both a high diversity in vegetation
type and structure, and a high amount of temporal variability, attributes that make it
especially challenging to distinguish burned area extent. This challenge is made more
difficult because water and burned area show substantial overlap in their spectral re-
flectance [21,30,31]. Forested wetlands are abundant across the study area but can be
difficult to discern, as they occur under the forest canopy. Water levels in this wetland
type respond not only to variability in precipitation, but also typically show an inverse
relationship with leaf-cover and leaf-out attributable to tree evapotranspiration [94]. Tidal,
emergent wetlands are typically vegetated with salt-tolerant species that change with
height above sea level, and experience constant tidally induced changes in water level [1].
Freshwater emergent wetlands, in contrast, primarily respond to variability in precipita-
tion, but wetland vegetation types, such as cattails, bulrushes, saw grass, and maidencane,
differ in height and structure from other types of wetland vegetation, such as bladder-
worts and water lilies, which can float on the water’s surface [1]. These differences, which
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are attributable to wetland type, may be why we found that the Sentinel-2 burned area
performed unevenly across different wetland types. For example, while most palustrine
forested or scrub–shrub wetland burn perimeters were detected, less than 40% of the
estuarine or marine wetland burn perimeters were detected (Table 5). This finding suggests
that algorithms focused on wetland areas need to be sensitive to post-burn changes in spec-
tral reflectance that are not typical for other vegetation types (e.g., forests). For example,
wetland vegetation can burn off during a fire event, leaving open water, and a fire event can
also initiate a rapid burst of vegetation growth leaving the area temporarily greener than
nearby unburned areas [32,35]. In the algorithm development stage, we found that these
types of post-fire transitions did not represent most wetland fires. However, consideration
of non-traditional changes (e.g., to open water or greener) may need to be considered in
future efforts to map a more complete record of wetland burned areas. Doing so requires
spatially coincident information about land-cover and vegetation types, as well as expected
timing in water level and phenology.

Algorithms also need to be sensitive to lower burn severity, which is often associated
with prescribed burns [21,28,29]. Explicitly training algorithms on both prescribed fires
and wildfires can help improve an algorithm’s performance, which we saw, by the Sentinel-
2 burned area identifying more area of the perimeter dataset as burned, relative to the
Landsat-8 BA. However, mapping prescribed fires as distinct from wildfires will require
relating remotely sensed BA products to prescribed fire records and datasets [51], which
remains challenging [27].

Wetlands are dynamic systems that experience structural changes from seasonal
shifts in water level, episodic fire events, and, in the Southeastern US, tropical storms
and hurricanes. In this effort hurricane related flooding and vegetation damage was a
substantial source of error. For instance, we observed an increase in commission error in
wetlands along the southern and western edge of the Everglades starting in September
2017 with the timing of the error coinciding with the landfall of Hurricane Irma on 10
September 2017 that caused substantial flooding and sediment movement as it traveled
up the western coast of the Everglades [95]. When we tracked wetlands misclassified as
burned, we found a shift in the spectral signature that persisted from September 2017 until
February 2018. In contrast, because the area where Hurricane Michael made landfall was
dominated by forest, the region experienced substantial blow-down [96], meaning that the
damage persisted for a longer period post-hurricane relative to Hurricane Irma. In both
cases, we observed an increase in commission error that was most prominent along riparian
corridors. The hurricanes complicated efforts to accurately map burned areas near where
the hurricane made land fall; however, we saw a rapid reduction in commission error as the
hurricanes moved farther inland. In response to this source of error, we removed imagery
at the site where each hurricane made landfall for the October–December post-hurricane
period and implemented a temporary riparian mask for December–February to further
reduce hurricane-related error. However, sustained impacts from the hurricane remained a
source of error for the burned area mapping effort. Specifically training the algorithm on
storm damage and impacts may help reduce this type of error.

Increasingly, cubesats and other commercial satellites are collecting multispectral
imagery that may have potential applications for mapping burned area [97,98]. However,
often these satellites are restricted to visible and NIR bands, which enable algorithms to de-
tect changes in greenness [63,70], but prevent the calculation of some of the most common
burn related indices, such as the Normalized Burn Ratio (NBR), which requires shortwave
infrared bands [66,67]. In wetlands, using satellites that provide shortwave infrared bands
may be especially important. As water levels rise in vegetated wetlands, the spectral
reflectance in the NIR declines [38], meaning that saturated wetlands can look very similar
to burned areas. Even NBR, however, tends to perform less consistently in unforested
areas [73], where the index may respond more to soil wetness than plant coverage [12].
Using Landsat satellites, indices that incorporated the thermal band were found to reduce
confusion [34,38]. For sensors that lack the thermal band, such as Sentinel-2, we demon-
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strated that ancillary sources of data, such as GRIDMET standardized precipitation index
can potentially help the algorithm identify when darker-than-normal ground conditions
may be attributed to an increase in wetness instead of a burn event. Using precipitation
data can also potentially support efforts to identify burned areas where vegetation burned
off, revealing open water underneath. However, precipitation datasets, such as GRIDMET,
are typically coarse in resolution (4 km), while one of the advantages to using Sentinel-2
is its moderate spatial resolution (20 m) relative to existing global burned area products
(≥500 m). Alternatively, it is possible that using a synthetic aperture radar (SAR) satellite,
such as Sentinel-1, to estimate changes to water level, or a Sentinel-2 or Landsat-based
estimate of inundation extent, could serve a similar role in helping distinguish an increase
in wetness from a burn event or when a change from vegetated to non-vegetated water may
be attributable to a burn event instead of a rise in water level. As Sentinel-1 now provides
regularly collected imagery, opportunities exist to develop burned area algorithms from
SAR sensors [48,99]. Although the algorithms, to date, have tended to underperform rela-
tive to Sentinel-2 [48], SAR sensors, such as Sentinel-1, have the added benefit of not being
sensitive to cloud cover or smoke and therefore would provide many more viable images
for burned area mapping across the frequently cloudy Southeast, and can potentially help
support efforts to monitor burned area and track disturbance-related changes in wetland
biomass [100].

5. Conclusions

This analysis represented the largest-scale effort to date, of which we are aware, to
specifically find and map wetland burned area. We demonstrated that Sentinel-2 can be ef-
fectively used to map the wetland burned area, particularly from 2018 onward, as the high
count of clear-sky Sentinel-2 observations provide an improved chance of detecting burned
areas prior to wetland vegetation recovery. The algorithm performed particularly well in
forested and scrub/shrub wetlands. However, greater attention to nontraditional burn
trajectories (e.g., conversion to open water and enhanced greenness relative to unburned
areas) will be essential to further improve the detection of wetland burned area, particu-
larly in tidally influenced estuarine and marine wetlands, where the water level changes
hourly, not just seasonally. While using ancillary datasets, such as precipitation, helped
distinguish wet conditions from burn conditions, the challenge of distinguishing these two
spectrally similar conditions remains, particularly in tidal wetlands. Wetlands, globally,
store a disproportionate amount of soil carbon. This carbon storage is vulnerable to loss
during wetland fire events, yet fires in wetlands remain understudied and under-mapped.
Algorithms, similar to the one developed here, can be adapted for diverse wetland types
across the globe and employed to provide more complete burned-area datasets within
wetland ecosystems. An improved understanding of wetland fire occurrence, frequency,
and extent is critical for the effective management of wetland fuel loads, carbon storage,
and wildlife habitat.
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Appendix A

Table A1. Sentinel-2 images selected for training and the number of burned points randomly selected across each image. In
each image 67 points were selected to represent unburned, except for the South Carolina training images, where 57 unburned
points were selected per image to account for the inclusion of an extra training image. FL = Florida, GA = Georgia, N. = north,
S. = south.

Region Sentinel-2 Tile Sentinel-2 Date Burned (Count) Total (Count)

Everglades 17RNJ 25 February 2017 0 67
Everglades 17RMJ 17 March 2017 182 249
Everglades 17RMJ 25 November 2017 0 67
Everglades 17RMJ 19 April 2018 158 225
Everglades 17RNJ 9 August 2018 15 82
Everglades 17RNJ 17 December 2018 45 112

FL Panhandle 16RGU 2 May 2017 154 221
FL Panhandle 16RFU 16 November 2017 0 67
FL Panhandle 16RFU 30 January 2018 52 119
FL Panhandle 16RGV 3 March 2018 87 154
FL Panhandle 16RFU 23 August 2018 0 67
FL Panhandle 16RGU 18 December 2019 108 175
N. FL/S. GA 17RLP 2 May 2017 169 236
N. FL/S. GA 17RLQ 3 November 2017 0 67
N. FL/S. GA 17RMP 19 January 2018 0 67
N. FL/S. GA 17RLP 17 April 2018 169 236
N. FL/S. GA 17RLP 8 July 2019 62 129
N. FL/S. GA 17RLQ 18 December 2019 0 67

South Carolina 17SPS 29 January 2017 0 57
South Carolina 17SPS 9 May 2017 158 215
South Carolina 17SPS 29 April 2018 145 202
South Carolina 17SNS 28 July 2018 0 57
South Carolina 17SPS 4 April 2019 97 154
South Carolina 17SPS 11 October 2019 0 57
South Carolina 17SNS 5 December 2019 0 57

https://www.sciencebase.gov/catalog/item/603d2d6ed34eb1203117ef8f
https://www.sciencebase.gov/catalog/item/603d2d6ed34eb1203117ef8f
https://doi.org/10.5066/P9S8SLEM
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Table A2. Worldview-2 (WV2) and Worldview-3 (WV3) images used for validation. ARD = Analysis Ready Data, h = horizontal, v = vertical, FL = Florida, SC = South Carolina, GA =
Georgia, L8 = Landsat-8.

Sensor Acquisition Date Image Number State (Region) L8 ARD Tile L8 Image Date L8 Date Gap Sentinel-2 Tile Sentinel-2 Image Date Sentinel-2
Date Gap

WV2 26 February 2017 3 FL (south) h27v18 11 February 2017 −15 T17RMK 25 February 2017 −1
WV2 26 February 2017 4 FL (south) h27v18 27 February 2017 1 T17RNK 25 February 2017 −1
WV3 15 February 2018 12 FL (north) h25v16 28 February 2018 13 T17RLP 18 February 2018, 21 February 2018 3, 6
WV3 15 February 2018 10 FL (north) h25v16 28 February 2018 13 T17RLP 18 February 2018, 21 February 2018 3, 6
WV3 15 February 2018 9 FL (north) h25v16 28 February 2018 13 T17RLP 21 February 2018 6
WV2 13 March 2018 1 SC h27v13 9 March 2018 −4 T17SPS 22 March 2018 9
WV2 13 March 2018 4 SC h27v13 9 March 2018, 3 April 2018 −4, 21 T17SPT 22 March 2018 9
WV2 31 March 2018 2 FL (panhandle) h24v16 23 March 2018 −8 T16RGU 17 April 2018 17
WV3 1 April 2018 22 FL (panhandle) h24v16 7 March 2018 −25 T16RGU 17 April 2018 16
WV3 1 April 2018 21 FL (panhandle) h24v16 7 March 2018 −25 T16RGU 17 April 2018 16
WV3 6 April 2018 2 SC h27v13 9 March 2018 −28 T17SNS 14 April 2018 8
WV3 6 April 2018 3 SC h27v13 9 March 2018 −28 T17SPS 15 March 2018 −22
WV2 28 April 2018 10 FL (south) h26v19 10 April 2018, 26 April 2018 −2, −18 T17RMJ 19 April 2018 −9
WV2 28 April 2018 9 FL (south) h26v19 10 April 2018, 26 April 2018 −2, −18 T17RMK 19 April 2018 −9
WV2 28 April 2018 8 FL (south) h26v19 10 April 2018, 26 April 2018 −2, −18 T17RMK 19 April 2018 −9
WV3 3 May 2018 16 FL (panhandle) h24v16 24 April 2018 −9 T16RFU 7 May 2018 4
WV3 3 May 2018 12 FL (panhandle) h24v16 24 April 2018 −9 T16RFU 7 May 2018 4
WV2 19 June 2018 4 FL central h26v17 29 June 2018 10 T17RML 28 June 2018 9
WV2 19 June 2018 2 FL central h26v17 29 June 2018 10 T17RML 28 June 2018 9
WV2 19 June 2018 1 FL central h26v17 29 June 2018 10 T17RML 28 June 2018 9
WV2 9 January 2019 7 SC h27v13 7 January 2019 −2 T17SPS 9 January 2019 0
WV3 12 March 2019 10 FL (north) h25v16 28 March 2019, 4 April 2019 16, 23 T17RLP 8 March 2019 −4
WV2 26 March 2019 12 FL central h27v17 28 March 2019 2 T17RNM 25 March 2019 −1
WV2 22 April 2019 2 GA h25v15 20 April 2019 −2 T17RLQ 22 April 2019 0
WV2 22 April 2019 7 FL (north) h25v16 4 April 2019 −18 T17RLP 22 April 2019 0
WV2 10 October 2019 1 FL (panhandle) h24v16 4 October 2019 −6 T16RGU 9 October 2019 −1
WV3 6 December 2019 14 FL (south) h26v18 9 December 2019 3 T17RLL 30 November 2019 −6
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