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Abstract: Fuel mapping is key to fire propagation risk assessment and regeneration potential.
Previous studies have mapped fuel types using remote sensing data, mainly at local-regional scales,
while at smaller scales fuel mapping has been based on general-purpose global databases. This work
aims to develop a methodology for producing fuel maps across European regions to improve wild-
land fire risk assessment. A methodology to map fuel types on a regional-continental scale is
proposed, based on Sentinel-3 images, horizontal vegetation continuity, biogeographic regions, and
biomass data. A vegetation map for the Iberian Peninsula and the Balearic Islands was generated
with 85% overall accuracy (category errors between 3% and 28%). Two fuel maps were generated:
(1) with 45 customized fuel types, and (2) with 19 fuel types adapted to the Fire Behaviour Fuel Types
(FBFT) system. The mean biomass values of the final parameterized fuels show similarities with
other fuel products, but the biomass values do not present a strong correlation with them (maximum
Spearman’s rank correlation: 0.45) because of the divergences in the existing products in terms of
considering the forest overstory biomass or not.

Keywords: fire risk; wildland fires; fuel; fuel types; fuel map; fuel mapping; Fire Behaviour Fuel
Types (FBFT); Iberian Peninsula; FirEUrisk; Sentinel-3 Synergy

1. Introduction

Wildland fires play an important role in the dynamics of terrestrial ecosystems. Al-
though they have positive effects on biodiversity and plant succession [1], wildland fires
are also a critical disturbance factor in forests, affecting the structure, function [2], adapta-
tion, and distribution [3] of ecosystems, as well as degradation of water quality, erosion,
and land cover change [4,5]. In addition, wildland fires constitute a serious threat to
the environment and society when they are not well managed [6–8]. It is estimated that
4–4.5 million km2 is burnt annually in the world [9,10], but this estimation is most likely
conservative. These areas include agricultural and pasture burns, and wildland fires, which
have a strong impact on societal and economic value. This is particularly clear in Southern
Europe (Spain, Portugal, Greece, Southern France), where most European fires occur, but
these patterns may be extended to Northern Europe as a result of global warming [11,12].
In fact, Europe’s wildland fire vulnerability has recently increased due to the effects of
climate change [13–15].

The origin of wildland fires can be natural (mainly lightning) or human. For fires to
spread, continuity of living or dead vegetation is required to maintain the fire, as well as
oxygen and heat transfer for ignition. Moreover, suitable environmental, meteorological,
and topographic conditions must be met [16]. Fuel types, which refer to vegetation cate-
gories with similar behaviour in fire propagation [17], are a primary factor in the behaviour
of wildland fires and their prevention [18,19]. Consequently, mapping fuel types is critical
to characterize risk conditions and plays an important role in wildland fire risk prevention,
where it is essential to have quality maps that are easily and regularly updated. Fuel
parameterization is performed throughout fuel models, which are numerical descriptions
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of the physical parameters of each fuel type. Fuel models involve parameterizing fuel types
to estimate their fire behaviour. They are widely used in fire risk assessment and behaviour
programmes [20,21]. Many efforts have been made to develop methodologies to generate
and map fuel types. The methods used to obtain fuel types and their parameters strongly
depend on their input data, final use, and the detail of the work scale [16,20].

Mapping the updated distribution of fuels and describing their properties improves
decision-making, evaluation, and risk management of wildland fires because it considers
vegetation changes due to previous fires and the dynamic nature of forest fuels [16,22,23].
Currently, the problem is the development of cost-efficient methods for updating fuel maps
and their parameters, which will be used in fire behaviour modelling [16,24]. Therefore, it
is essential to improve the current fuel mapping methodologies to amend wildland fire
assessment, by providing an optimal allocation of resources [25–28] to mitigate the adverse
effects of wildland fires through early response and strategic planning [16].

The vegetation characteristics that are usually considered when describing fuel types
are crown height, crown base height, percentage of vegetation covered area, forest canopy
density (proportion of the ground covered by the projection of the crown of the trees to the
ground), apparent crown density, canopy bulk density (mass of available canopy fuel per
canopy volume unit), number of trees by area, vertical and horizontal continuity, moisture
content, live and dead fuel load, and biomass [16,20]. Standardized fuel classification
systems based on vegetation characteristics have been proposed in recent decades for
several world regions: Southeast Asia [26], United States [21,29], Canada [30], and the
Mediterranean region [24,31]. One of the most used is the Fire Behaviour Fuel Types
(FBFT) [21], prepared by the United States Forest Service Rocky Mountain Research Station
for the United States. It uses field measures and photo series to describe 40 fuel types based
on the 13 types of the Northern Forest Fire Laboratory (NFFL) system [29], widely used
for fire propagation modelling [19,24]. FBFT [21] improves the accuracy of fire behaviour
predictions for surface fires outside the fire season (June–October). It also considers the
humidity of the climate in which the fuel is included. Some works have adapted the FBFT
fuel types to European islands [32,33].

The original 40 FBFT fuel types are divided into seven large groups: grass (GR),
grass-shrub (GS), shrub (SH), timber-understory (TU), timber-litter (TL), slash-blowdown
(SB), and non-burnable (NB). For each fuel type, the parameters to be used in fuel and fire
propagation models are defined, except for the NB category. For each fuel type, the system
provides an estimation of the fuel load, fire spread rate, and flame length based on generic
climatic conditions [21]. The fuel load refers to the amount of fuel potentially available for
combustion [20]. The fire spread rate is the rate of the fire head advance [34]. The flame
length is the distance between the midpoint of the flame depth at the base of the flame and
the flame tip [35].

Traditionally, field samples, photointerpretation of aerial images, and remote sensing
methods have been used to perform mapping of fuel types and their parameterization.
Recent bibliographic reviews [36,37] show a growing utilization of remote sensing for fire
risk assessment, using passive optical sensors, Radio Detection And Ranging (RADAR), and
Laser Imaging Detection And Ranging (LiDAR) (including ground, airborne, and satellite
systems [38]). Remote sensing presents the advantages of global systematic coverage
(easily updateable) and information on non-visible regions of the spectrum [16,20]. Remote
sensing has mainly contributed to characterizing the conditions of fuel types—moisture
content, biomass, canopy coverage, and vertical and horizontal continuity—evidencing the
considerable capabilities of this technique in evaluating the multiple variables involved in
fire risk assessment. A common approach to fuel mapping using remote sensing is to firstly
map the vegetation types and secondly generate the fuel types using auxiliary information
to refine the vegetation types [36]. Second-order variables, such as fire spread rate and
flame length, have also been mapped [39].

At the local-regional scale, the input data to classify fuel types have usually been
generated using optical remote sensing images. Their high temporal resolution facilitates
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the updating of the derived cartography, although they require calibration and validation
efforts. The most used sensors have been Landsat Thematic Mapper (TM) [31,40,41] and
Sentinel-2 MultiSpectral Instrument (MSI) [42–44]. High spatial resolution sensors, such
as those onboard the QuickBird [39,45,46] and WorldView-2 [47,48] satellites, have also
been used. Visible, NIR, and SWIR bands, spectral indexes [32,39,41,42,45,49,50], and
multi-temporal analysis [31,43] have also been used, which have provided classification
improvements [51]. Different classification algorithms have been used: maximum likeli-
hood [31,46], decision trees [39], random forest [42], Support Vector Machine (SVM) [42],
and Object Based Image Analysis (OBIA) [43–45].

At the continental-global scale, cartography of fuel types has usually been generated
from the integration of land use databases and pre-existing maps as input data. How-
ever, using databases does not consider phenological changes. There are examples of
continental-scale works (South America [52] and Africa [53]) that generate fuel maps from
the integration of databases and pre-existing products. With a similar approach, a global
fuel type map was recently proposed [54] by combining land cover and biogeographic
region databases with optical remote sensing-derived products for tree vegetation, such as
vegetation continuous field collection 5 from Terra MODIS (Moderate Resolution Imaging
Spectroradiometer).

The main objective of this work is to develop a methodology to map fuel types at a
regional scale for modelling fire propagation behaviour. We selected the FBFT system [21]
because it provides a standard set of parameters for fire behaviour estimation. This work
is focused on the Iberian Peninsula and the Balearic Islands but aims to extend similar
methods to other European regions. We first describe the methods used to generate the
vegetation map. Then, we describe the methods used to generate the map of fuel types and
the parameters for the different fuel types. Since validation of the fuel map was not feasible,
we present a first assessment of the result by comparing the fuel parameters with those
derived from a European fuel map produced under the European Forest Fire Information
System (EFFIS) programme [55] and a global product derived from [54]. This work is part
of the European project FirEUrisk, which aims to generate a European integrated strategy
for fire risk assessment, reduction, and adaptation.

2. Materials and Methods
2.1. Study Case: Spatial Delimitation

The study area is the Iberian Peninsula and the Balearic Islands, with 587,198.93 km2

(Figure 1). Other archipelagos belonging to Spain and Portugal were not considered to
focus the work on the European Mediterranean region. Wildland fires in European Union
countries for the 2000–2017 period have affected 480,000 ha/year, 34 people/year, and
have implied costs of 3 billion euros/year [56]. The Mediterranean European countries are
the most affected by wildland fires, with an annual average of about 45,000 wildland fires
and 478,900 burnt hectares. Spain and Portugal have been for decades the two countries in
Europe most affected by wildland fires, especially in the fire season (June–October). For
2009–2018, the average annual statistics were 12,182 fires and 99,083 burnt hectares for
Spain, and 18,345 fires and 138,841 hectares for Portugal [15,57–59].
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Figure 1. Study area, its biogeographic regions [60], and burnt areas from 1 January 2009 to 21 May
2021 [61].

A relationship between fires in the Iberian Peninsula and its long-term climatic condi-
tions has been observed [62]. The study area has three biogeographic regions, which are
stable over time (Figure 1): (1) Alpine, with a high mountain climate, (2) Atlantic, with
mild temperatures and humid summers, and (3) Mediterranean, characterized by hot and
dry summers. Their different climatic conditions favour different degrees of vegetation
development [63], and therefore different fuel types.

2.2. Materials, Data, and Analysis Techniques

The development of the cartography and characterization of fuel types was based
on the integration of multi-seasonal images (spring, summer, autumn) of the Sentinel-3
Synergy product, MODIS vegetation continuous field collection 6 maps, a map of biogeo-
graphic regions, and a biomass map. Two main steps were followed: (1) the generation of
the basic vegetation cartography, and (2) the generation of the cartography of fuel types
(Figure 2).

2.2.1. Generation of the Basic Vegetation Cartography

To avoid relying on external land cover maps as in [52–54] and to base our approach
on updated data, a vegetation map was generated from Sentinel-3 Synergy product images.
Sentinel-3 is part of the European Space Agency’s (ESA) Copernicus programme [64]
and was conceived for land monitoring and security applications, and climate change
detection [65]. It is composed of a pair of optical satellites, Sentinel-3A and 3B, in orbit
since 2016 and 2017, respectively. It includes two main instruments: OLCI (Ocean and
Land Colour Instrument, 21 channels, 300 m spatial resolution) and SLSTR (Sea and Land
Surface Temperature Radiometer, 9 channels, 500 m resolution). Sentinel-3 images have
already been used for wildland fire detection and mapping. Works exist that analyse the
capabilities of the Sentinel-3 SLSTR sensor for active fire detection [66–69], especially for
forest biomass burning events [66].
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In this, work, the Sentinel-3 Synergy product [65] was used, as it combines OLCI and
SLSTR data. This product offers geometrically, atmospherically, and Top of Canopy (TOC)
reflectivity corrected daily images at 300 m resolution for 26 spectral bands. The Sentinel-3
Synergy product has already been used, in combination with other Sentinel-3 products, for
the generation of a moderate spatial resolution global burnt area product under the ESA’s
Fire Climate Change Initiative (CCI) project [70]. However, the potential of this product to
contribute to fuel modelling and mapping has not been exploited yet. In this work, we aim
to use the relatively recent product of Sentinel-3 Synergy in the context of fuel modelling,
especially for the generation of updated vegetation maps, which are expected to be useful
for fuel mapping.
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Sentinel-3 Synergy images were downloaded from the Copernicus Open Access
Hub [71] for the study area: 20 images for summer 2020, 27 images for autumn 2020, and
20 images for spring 2021. For each season, cloud-free mosaics were performed at 300 m
resolution in SNAP 7.0 (Sentinel Application Platform), which uses the nearest neighbour
(Figure 3). The mosaics were projected from WGS84 Geographic latitude/longitude coordi-
nates to ETRS89 Albers equal-area conic projection with central meridian in 3◦ W, which
preserves the area measure, and is appropriate to represent the study area.
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We selected the following categories to create the vegetation map: conifers, evergreen
broadleaves, deciduous broadleaves, shrubs, grasses, and other uses. In the study area, the
conifers only refer to evergreen conifers because deciduous conifers only grow in boreal
climates. However, broadleaves can be evergreen or deciduous [63]. Conifers, evergreen
broadleaves, and deciduous broadleaves have different moisture content and amount of
leaves in summer and winter, and therefore different responses to fire [72]. The other uses
category refers to non-natural vegetation surfaces, including crops. This classification was
selected for an easy adaptation to the FBFT system [21].
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(A) Classification training sample

First, a total of 403 pure training pixels were visually selected with the help of
Google Earth for 14 initial categories: conifers, evergreen broadleaves, Atlantic deciduous
broadleaves, Mediterranean deciduous broadleaves, landa (Atlantic shrubs), thermophilic
Mediterranean shrubs, grasses, water, burnt areas, urban areas, bare soil, rainfed crops,
irrigated crops, and floodplains. These categories consider the variability of land use and
vegetation due to the biogeographic regions of the study area.

(B) Input bands

A total of 21 bands were used as classification input. For each season, 5 nadir observa-
tion bands (which minimize geometric distortions) were used: 555 nm (green), 659 nm (red),
865 nm (NIR), 1610 nm (SWIR 1), 2250 nm (SWIR 2). These spectral regions have been
widely used in previous studies [32,41,42,49–51] as they have shown the potential to
discriminate vegetation types. To improve the classification performance, the NDWI
index ((NIR band − SWIR 2 band)/(NIR band + SWIR 2 band)) and the SAVI index
(((NIR band − Red band)/(NIR band + Red band + L)) * (1 + L)) were also calculated for
each season and used as input bands. We used the standard soil brightness correction
parameter L = 0.5 [73–75].

(C) Classification algorithm

The classification was performed using Support Vector Machine (SVM), a supervised
non-parametric statistical machine learning algorithm, for the 403 pure training pixels and
the 21 input bands. It finds the optimal hyperplane to separate the input dataset into the
categories defined by the training sample [76]. The classification was performed in Orfeo
ToolBox of QGIS 3.10 assigning the most similar category to each pixel. We used SVM kernel
RBF (Radial Base Function), which offers optimal results for classifying vegetation with
remote sensing [76], and cost parameter 100 [42]. The classification was also performed
using random forest. As in [42], 100 trees and 3 as the minimum number of samples
per node were used. Then, some classified categories were merged to fit the final target
categories (Table 1).

Table 1. Merger of categories.

Initial Training Categories Final Target Categories

Conifers Conifers

Evergreen broadleaves Evergreen broadleaves

Atlantic deciduous broadleaves, Mediterranean
deciduous broadleaves Deciduous broadleaves

Landa, thermophilic Mediterranean shrubs Shrubs

Grasses Grasses

Water, burnt areas, urban areas, bare soil, rainfed crops,
irrigated crops, floodplains Other uses

(D) Validation

The vegetation map was validated using as the reference a mosaic of TOC reflec-
tivity images from the Sentinel-2 MSI sensor (resolution 20 m) for the same period as
the Sentinel-3 images. A validation dataset was generated for 500 independent validation
points, which were selected by stratified random sampling (this compensates for differ-
ences in surface area covered by each category). A vector net of the dimensions of the
classified image (300 m × 300 m) was generated, and each point was visually assigned to
the category with the largest extension of the Sentinel-2 reference mosaic in the square of
the net in which it is included (Figure 4). Visual qualitative analysis was also performed,
comparing with (1) the Sentinel-2 reference mosaic and (2) vegetation maps for the study
area [63,77].
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2.2.2. Generation of the Cartography of Fuel Types

To facilitate the integration of the raster vegetation map with the auxiliary maps, the
vegetation map was vectorized to obtain vegetation polygons. Non-vegetation categories
(other uses: water, burnt areas, urban areas, bare soil, rainfed crops, irrigated crops,
and floodplains) were not considered. The vegetation map was integrated with data of
vegetation horizontal continuity [78] and biogeographic regions [60]. The resulting fuel
map was reclassified to obtain the target FBFT categories [21].

(A) Horizontal fuel continuity

Horizontal fuel continuity is considered an important factor influencing fire be-
haviour [16] and therefore is commonly considered in the classifications of fuel types [54].
We used 2019 global MODIS vegetation continuous field collection 6 version 1 [78]. This
dataset indicates the percentage of tree and non-tree vegetation cover (0–100%) at 250 m
resolution with 7.87–9.40% mean absolute error [79]. A mosaic of the study area was per-
formed and projected to ETRS89 Albers equal-area conic projection with central meridian
in 3◦ W.

The 5 vegetation categories of the vegetation map were split into tree (conifers, ever-
green broadleaves, deciduous broadleaves) and non-tree (shrubs, grasses) categories. For
each vegetation polygon, zonal statistics (mean and standard deviation) were calculated for
(1) the percentage of tree vegetation cover for the tree categories and (2) the percentage of
non-tree vegetation cover for the non-tree categories. Afterwards, the horizontal continuity
percentage was used to divide each vegetation type into categories according to their fire
spread occurrence possibility: (1) 0–40%, (2) 40–70%, and (3) 70–100%. The 0–40% category
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refers to sparse vegetation cover density. The 40% threshold was assigned because it is the
percentage used in the Fire Characteristic Classification System (FCCS) to decide if canopy
fire spread can occur. To divide the rest of the cover percentage, the 70% threshold was
assigned. The 40–70% category refers to dense cover density, while the 70–100% category
refers to very dense cover density [43,54].

(B) Biogeographic regions

Environmental and climatic conditions affect fire spread [16], as a relationship be-
tween fires in the study area and its long-term climatic conditions has been observed [62].
Moreover, differences in species richness [80,81], total fuel biomass [82–85], and fire be-
haviour [86,87] within biogeographic regions have also been shown. To account for the
biomass variations of fuels in our study area, we used the 2016 dataset of Europe’s biogeo-
graphic regions generated by the European Environment Agency (EEA) [60]. The study
area was divided into Alpine, Atlantic, and Mediterranean regions (Figure 1). Through
overlapping, each polygon with a given vegetation type and horizontal continuity per-
centage was assigned the biogeographic region in which it was included. If a polygon
belonged to more than one biogeographic region, it was split into as many polygons as
biogeographic regions it belonged to.

(C) Generation of the customized Iberian fuel types

Polygons with the same vegetation type, percentage of horizontal vegetation cover
group, and biogeographic region were merged to generate the customized Iberian fuel
types. Therefore, the description of each Iberian fuel type is based on its vegetation type,
horizontal continuity percentage, and biogeographic region. The Iberian fuel types were
mapped to create the Iberian fuel map. The fuel types’ area, and their horizontal continuity
mean and standard deviation were calculated.

(D) Adaptation of the Iberian fuel types to the FBFT system

The Iberian fuel types were adapted to the fuel categories of the FBFT system [21].
We based this translation on the different fuel types’ definitions, using the variables of
vegetation type, climatic conditions, and horizontal fuel continuity. The vegetation type is
both defined in the Iberian and standard FBFT fuel types. For the Iberian fuel types, we
derived this information from the SVM classification of the Sentinel-3 Synergy mosaics,
while for the FBFT system, this information is derived from field work and photo series.
The climatic conditions are defined by the biogeographic regions for the Iberian fuel
types (distinguishing 3 regions for the study area from [60]), while the FBFT system only
distinguishes between fuel types from sub-humid/humid climates (adequate rainfall in
all seasons) and arid/semi-arid climates (rainfall deficit in summer). Because the FBFT
system only distinguishes between sub-humid/humid and arid/semi-arid climates, we
assigned the study area’s Alpine and Atlantic fuels to the sub-humid/humid group and
the Mediterranean to the arid/semi-arid group. The horizontal fuel continuity information
is derived from the dataset of [78], and for the FBFT system, information on fuel density
and load is based on field measures and photo series. We also visually analysed the
United States FBFT map [88], extracting similar covers to those existing in the study
area. The input data caused some Iberian fuel types to be assigned to various FBFT fuels.
However, not all original FBFT fuels were found in the study area. The FBFT-adapted fuel
mapping generated the FBFT fuel map. To improve this map’s readability, the non-burnable
categories were not mapped (not considered fuel).

Then, the parameters from the original FBFT fuel types were translated to the FBFT-
adapted fuel types for the study area. For each fuel type, mean biomass load, spread rate,
and flame length values (Table A1 in the Appendix A) were extracted from the original
FBFT fuel descriptions. These values refer to the mean fuel conditions and serve to predict
fire behaviour inside and outside the fire season (June–October). Local and short-term
variations in fire risk caused by changes in the weather conditions and the amount of fuel
moisture, among other variables, are expected to be considered in posterior analysis for
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fire behaviour modelling. FBFT describes the total surface biomass for non-tree fuels and
only timber litter and understory biomass for tree fuels [21]. Fire potential spread rate and
flame length were mapped. The FBFT fuel types were characterized by their FBFT category,
area, biomass, potential spread ratio, and potential flame length.

2.2.3. Fuel Parameters: Biomass

For tree-vegetation fuels, original FBFT biomass load descriptions only refer to timber
litter and understory [21], which affect surface fires. Thus, further analysis was performed
to obtain the biomass load that would affect crown fires. We completed biomass load values
from the original FBFT descriptions with the 2018 global CCI (Climate Change Initiative)
Biomass dataset [89], recently made available. This product was derived from observations
from the Copernicus Sentinel-1, Envisat’s ASAR (Advanced Synthetic Aperture RADAR),
and the Japanese Advanced Land Observing Satellite (ALOS-1 and ALOS-2) missions. It
estimates tree-cover Above Ground Biomass (AGB) in Mg/ha, not including small-medium
shrubs and grasslands, with 100 m resolution and a relative error of less than 20% for
AGB > 50 Mg/ha and an error of 10 Mg/ha when AGB < 50 Mg/ha [90]. A mosaic of the
study area was performed and projected to ETRS89 Albers equal-area conic projection with
central meridian in 3◦ W. For the tree-vegetation categories, for which FBFT only describes
timber litter and understory biomass, zonal statistics (mean and standard deviation) were
calculated from CCI Biomass. For the other parameters of the different fuels, we relied on
the FBFT standard values, but they could be easily updated if field measurements of local
analysis were available.

2.2.4. Intercomparison of the FBFT Fuel Map

Strict validation of the final FBFT fuel map was not feasible because of the lack of
fuel reference data and the practical difficulties of performing alternative field work. Thus,
as a first assessment of the final product, we compared our FBFT fuel map with two fuel
maps covering the same region: (1) the 2015 global map of Pettinari and Chuvieco [54,91]
classified with the Fuel Characteristic Classification System (FCCS), and (2) the European
Forest Fire Information System (EFFIS) fuel map classified with NFFL [55]. To enable
the comparison of different fuel classification systems, we compared fuel biomass, which
is parameterized for each fuel type in FBFT, FCCS, and NFFL. We also compared our
results with CCI Biomass values. We performed a statistical analysis: (1) mean and
standard deviation of the biomass values for every FBFT-adapted fuel type polygon for
the study area, (2) Spearman’s rank correlation, a non-parametric measure to compare the
monotonical relation of two variables even if they have a non-linear relationship [92], and
(3) box plots. We compared biomass for every fuel type polygon of our FBFT fuel map for
the following groups: grass, shrub, and tree fuels.

3. Results
3.1. Vegetation Map

The Support Vector Machine (SVM) vegetation map (Figure 5) shows the study area’s
general spatial distribution of vegetation. It shows a wide presence of coniferous species
in the northern and eastern mountainous regions of the study area. Evergreen deciduous
species dominate in the central and southern regions. Deciduous species predominate in
the northern and western regions. Shrubs are represented almost all over the study area,
standing out in the eastern region. Grasses have a wide presence in the central and western
Iberian Peninsula, mostly associated with agroforestry (dehesa) ecosystems.

The SVM vegetation classification provided an overall accuracy of 85% and kappa 0.81
(Table A2 in the Appendix A), much higher than the random forest, with an overall accuracy
of 56% and kappa 0.44. Thus, we chose the SVM map as the vegetation cartography on
which to base the fuel type mapping. The qualitative validation confirms the adjustment of
the SVM map to the vegetation patterns observed in the Sentinel-2 images used as reference
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data. Quantitative validation indicates high agreement between the reference data and the
classification.
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3.2. Fuel Type Map

The customized Iberian fuel map has 45 fuel types adapted to the study area and input
data (Figure 6). Each fuel type is identified by its vegetation type, vegetation horizontal
continuity percentage, and biogeographic region.

The five Iberian fuel types with the largest area belong to the Mediterranean region.
The largest area belongs to Mediterranean shrubs with 40–70% continuity (83,831 km2),
followed by Mediterranean grasses with 70–100% continuity (55,696 km2). These fuel
types relate to the arid/semi-arid steppe and the dehesa ecosystems, respectively. No
significant differences were observed in means and standard deviations of the vegetation
horizontal continuity between biogeographic regions or vegetation types (Table A3 in the
Appendix A). Fuel types with 0–40% vegetation horizontal continuity presented greater
internal variability (highest standard deviation) and therefore greater heterogeneity. Fuel
types with 70–100% vegetation horizontal continuity showed less internal variability
(lowest standard deviation) and therefore are more homogeneous.
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Figure 6. Iberian fuel map for the Iberian Peninsula and the Balearic Islands (2020–2021). The colours are based on the 
global fuel map of [54]. Figure 6. Iberian fuel map for the Iberian Peninsula and the Balearic Islands (2020–2021). The colours are based on the

global fuel map of [54].

Next, the Iberian fuel types were converted to the FBFT fuel types (see Table 4 in
the Appendix A). The FBFT fuel map was generated (Figure 7) with 19 fuel types, and
the fuel types were characterized and parameterized (Tables 2–4). The FBFT fuels’ spatial
distribution is similar to that of the customized Iberian fuel map (Figure 6). The fuel types
with the largest area Tables 2–4) are related to the largest Iberian fuel types (Tables 4 and A3
in the Appendix A). The fuel type with the largest area (83,831 km2) is SH2, corresponding
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to Mediterranean shrubs with 40–70% horizontal continuity. The second fuel type with
the largest area (55,696 km2) is GR4/GR7, corresponding to Mediterranean grasses with
70–100% horizontal continuity.
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Table 2. Characterization and parameterization of the FBFT-adapted grass fuel types. The values refer to mean fuel
conditions and serve to predict fire behaviour inside and outside the fire season.

FBFT Fuel Type Brief Fuel type Description Area (km2)
Mean Biomass

(Mg/ha)
Potential Spread

Rate
Potential

Flame Length

GR1 Short patchy grass, A-SA 814 0.99 M L

GR2 Moderately coarse continuous
grass, A-SA 4139 2.72 H M

GR3 Very coarse grass, SH-H 7926 3.95 H M

GR4/GR7 Moderately coarse continuous
grass, A-SA 55,696 10.56 VH VH

GR5/GR8/GR9
Dense, heavy, and very heavy

coarse continuous grass,
SH-H

59 17.05 VH-E VH-E

A-SA: arid/semi-arid climate, SH-H: sub-humid/humid climate. VL: very low, L: low, M: moderate, H: high, VH: very high, E: extreme
(Table A1 in the Appendix A). Source: original FBFT fuel descriptions [21]. Area has been calculated for the extension occupied by each fuel
type for the study area. Note that for non-tree fuels, biomass values are only derived from the original FBFT fuel descriptions [21] and refer
to total surface biomass.
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Table 3. Characterization and parameterization of the FBFT-adapted shrub fuel types. The values refer to mean fuel
conditions and serve to predict fire behaviour inside and outside the fire season.

FBFT Fuel Type Brief Fuel Type Description Area (km2)
Mean Biomass

(Mg/ha)
Potential Spread

Rate
Potential

Flame Length

SH1 Low shrub fuel load, A-SA 1632 4.20 L VL

SH2 Moderate shrub fuel load,
A-SA 83,831 12.85 L L

SH3 Moderate heavy shrub load,
SH-H 2303 16.43 L L

SH4 Low to moderate shrub and
litter load, SH-H 9402 8.40 H M

SH5/SH7 Heavy and very heavy shrub
load, A-SA 45,459 16.56 VH VH

SH6/SH8/SH9 Dense shrubs, SH-H 367 19.56 H H-VH

A-SA: arid/semi-arid climate, SH-H: sub-humid/humid climate. VL: very low, L: low, M: moderate, H: high, VH: very high, E: extreme
(Table A1 in the Appendix A). Source: original FBFT fuel descriptions [21]. Area has been calculated for the extension occupied by each fuel
type for the study area. Note that for non-tree fuels, biomass values are only derived from the original FBFT fuel descriptions [21] and refer
to total surface biomass.

Table 4. Characterization and parameterization of the FBFT-adapted tree fuel types (SD: standard deviation). The values
refer to mean fuel conditions and serve to predict fire behaviour inside and outside the fire season.

FBFT Fuel
Type

Brief Fuel Type
Description Area (km2)

Biomass (Mg/ha) Potential
Spread

Rate

Potential
Flame
LengthMean Mean

(CCI Biomass)
SD

(CCI Biomass)

TL2 Low broadleaf
load 55,211 3.46 36.81 34.23 VL VL

TL3/TL8 Moderate load
conifer litter 3095 7.78 100.78 55.48 VL-M L

TL5 High load conifer
litter 21 2.84 152.15 65.12 L L

TL6 Moderate
broadleaf load 37,353 5.93 95.89 48.22 M L

TL9 Very high load
broadleaf litter 43 16.43 136.03 57.58 M M

TU2/TU3
Moderate litter

load with
grass/shrub, SH-H

636 4.94 37.19 34.95 M-H L-M

TU4
Short conifer trees
with grass or moss

understory
36,601 16.06 29.07 29.41 M M

TU5/TL3/TL8

Moderate-high
conifer load litter

with/without
shrub

8934 12.54 95.41 66.55 VL -M L-M

A-SA: arid/semi-arid climate, SH-H: sub-humid/humid climate. VL: very low, L: low, M: moderate, H: high, VH: very high, E: extreme
(Table A1 in the Appendix A). Source: original FBFT fuel descriptions [21], except when the Climate Change Initiative (CCI) Biomass
dataset [89] is specified as a source. Area has been calculated for the extension occupied by each fuel type for the study area. Note that for
tree fuels, biomass values are derived from the original FBFT fuel descriptions [21], where biomass refers to timber litter and understory
biomass; and from the CCI Biomass dataset [89], where biomass refers to Above Ground Biomass (AGB).

The mean biomass of the FBFT-adapted fuel types for the study area (Tables 2–4) varies
between 1 and 136 Mg/ha, with differences of up to two orders of magnitude between the
FBFT-adapted [21] values and the CCI Biomass [89] values. The fuel type with the highest
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FBFT-adapted mean biomass is SH6/SH8/SH9 (19.56 Mg/ha) followed by GR5/GR8/GR9
(17.05 Mg/ha), corresponding to dense shrubs and grasses from sub-humid/humid cli-
mates, respectively. The FBFT-adapted fuel types with the highest mean biomass values
extracted from CCI Biomass are TL9 or very high broadleaf litter (136 Mg/ha), and TL5
or high load conifer litter (152 Mg/ha). The more heterogeneous FBFT-adapted fuel
types (greater internal variability) are TU5/TL3/TL8 or moderate-high conifer load litter
with/without shrub (standard deviation = 66.55), and TL5 or high load conifer litter (stan-
dard deviation = 65.12). Non-tree vegetation biomass values could not be extracted from
CCI Biomass because this product only indicates tree-vegetation biomass.

The fire potential spread rate and flame length intensity values for surface fires vary
between very low and extreme (Tables 2–4, Figure 8). A strong visual correlation exists
for the spatial distribution of both variables, especially for the arid/semi-arid climate
(Mediterranean biogeographic region). The more flammable fuels are moderate-heavy
grasses and shrubs (high-extreme fire potential spread ratio and flame length). The highest
fire potential spread rates and flame length intensities predominate in the central and
western Iberian Peninsula, while the lowest intensity values dominate in the northern and
eastern regions of the study area. The GR5/GR8/GR9 fuel type or Alpine and Atlantic
highly continuous (70–100%) grasses (56 km2) has the highest values for both variables
(very high-extreme).
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Finally, grass, shrub, and tree fuels’ biomass was compared with other fuel products
(Table 5, Figure 9). This work’s FBFT grass biomass mean is 27% higher compared with
the global map [54] and 42% lower compared with the European map [55]. This work’s
FBFT shrub biomass mean is 41% and 34% higher compared with the global and European
maps, respectively. This work’s FBFT tree biomass mean is 542%, 8%, and 39% lower
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compared with the CCI Biomass [89] values, the understory biomass of the global map,
and the European map, respectively. The derived CCI Biomass tree biomass mean is 56%
lower compared with the tree Above Ground Biomass (AGB) of the global map, and 295%
higher compared with the European map. The Spearman’s rank correlation values show
the highest correlation between this work’s non-tree fuels and the European map (0.11
for grass, and 0.13 for shrub fuels), and between the CCI Biomass values and the tree
AGB values of the global map (correlation of 0.45) for the tree fuels. The large differences
between biomass values and their distribution for the compared products is due to (1) the
different methods used to estimate the biomass values and (2) the dissimilar vegetation
parts considered in the biomass estimation.

Table 5. Mean and standard deviation (in parenthesis) biomass (in Mg/ha) of fuel groups (Table 4 in the Appendix A).
Spearman’s rank correlation (in brackets) is used to compare this work with other products.

Fuel Group This Work: FBFT a CCI Biomass b Global Fuel Map c European Fuel Map d

Grass (T) 8.88 (5.02) - (T) 6.99 (5.25) [−0.10] * (T) 12.59 (7.92) [0.11] *

Shrub (T) 8.98 (4.95) - (SH) 15.11 (6.30) [−0.03] * (T) 13.70 (7.92) [0.13] *

Tree (TU) 8.51 (4.89) (TR) 54.60 (46.21) [−0.17] * (TR) 122.77 (147.93) [−0.20] * [0.45] **
(U) 9.23 (4.78) [−0.08] * [0.25] **

(TL) 13.84 (7.69)
[0.17] * [−0.11] **

a [21], b [89], c [54], d [55]. Compared with * FBFT [21] and ** CCI Biomass [89] values. Biomass refers to: (T) total surface, (SH) shrub
primary, (TU) timber litter and understory, (TR) tree above ground, (U) understory, and (TL) timber litter load. All the correlation values
are significant at the 0.01 level (2-tailed).

Fire 2021, 4, x FOR PEER REVIEW 17 of 26 
 

 

Tree (TU) 8.51 (4.89) (TR) 54.60 (46.21) [−0.17]* 
(TR) 122.77 (147.93) [−0.20]* [0.45]** 

(U) 9.23 (4.78) [−0.08]* [0.25]** 

(TL) 13.84 (7.69) 

[0.17]* [−0.11]** 
a [21], b [89], c [54], d [55]. Compared with *FBFT [21] and **CCI Biomass [89] values. 

Biomass refers to: (T) total surface, (SH) shrub primary, (TU) timber litter and understory, (TR) tree above ground, (U) understory, and (TL) 

timber litter load. 

All the correlation values are significant at the 0.01 level (2-tailed). 

 

Figure 9. Box plots of fuel groups’ biomass values for FBFT [21], CCI Biomass [89], and the global [54] and European [55] 
fuel maps. Note that the bottom graph’s scale is logarithmic. 

4. Discussion 

The quantitative assessment of the vegetation map presented an overall accuracy of 

85% (category errors between 3% and 28%), which is aligned with the goal of 85% global 
accuracy and no category less than 70% accuracy when classifying land cover with remote 
sensing [93]. As in [42], the best vegetation map was obtained with SVM versus random 

forest, possibly due to the small size of our training sample. 
The Sentinel-3 Synergy 300 m resolution required some generalization of the 

vegetation map, ignoring the complexity of the real ecosystems. Thus, mixed pixels were 
not considered. The vegetation map’s accuracy results could be improved with the 
optimal search for SVM parameters. The classification was not also performed with Object 

Based Image Analysis (OBIA), for which other authors obtained similar results to 
QuickBird and Sentinel-2 (global accuracy 75–90%, categories 50–100%) [43, 45] as 

compared with this work’s Support Vector Machine (SVM) results. Thus, the 
computational and time costs of OBIA did not seem worth it for the purposes of this work. 

The main errors shown in the validation of the vegetation map were caused by 

Sentinel-3 mixed validation pixels, in which the reflectivity of the different covers was 

Figure 9. Box plots of fuel groups’ biomass values for FBFT [21], CCI Biomass [89], and the global [54] and European [55]
fuel maps. Note that the bottom graph’s scale is logarithmic.



Fire 2021, 4, 59 17 of 26

4. Discussion

The quantitative assessment of the vegetation map presented an overall accuracy of
85% (category errors between 3% and 28%), which is aligned with the goal of 85% global
accuracy and no category less than 70% accuracy when classifying land cover with remote
sensing [93]. As in [42], the best vegetation map was obtained with SVM versus random
forest, possibly due to the small size of our training sample.

The Sentinel-3 Synergy 300 m resolution required some generalization of the vege-
tation map, ignoring the complexity of the real ecosystems. Thus, mixed pixels were not
considered. The vegetation map’s accuracy results could be improved with the optimal
search for SVM parameters. The classification was not also performed with Object Based
Image Analysis (OBIA), for which other authors obtained similar results to QuickBird and
Sentinel-2 (global accuracy 75–90%, categories 50–100%) [43,45] as compared with this
work’s Support Vector Machine (SVM) results. Thus, the computational and time costs of
OBIA did not seem worth it for the purposes of this work.

The main errors shown in the validation of the vegetation map were caused by
Sentinel-3 mixed validation pixels, in which the reflectivity of the different covers was
combined. The omission of conifers was mainly related to the confusion with shrubs,
mostly in low-density forest areas. Evergreen broadleaves offered commission errors
mostly confused with areas of low-density conifers and tall shrubs in agroforestry (dehesas)
and mountainous areas. Deciduous broadleaves were confused with conifers in mixed
forest areas in the northern and western forests. The shrubs’ commission errors were
mainly related to confusion with permanent crops (vineyards, fruit trees). The shrubs’
omission errors were associated with their confusion with annual crops and mixed pixels
of shrubs and grasses. Omission and commission errors for grasses were mainly related to
patchy grass areas.

Regarding the conversion from the customized Iberian fuel map to the FBFT fuel map,
several problems were found. For instance, this work assumes an equivalence between
the United States FBFT sub-humid/humid climate and the Atlantic and Alpine European
biogeographic regions, as well as between the United States FBFT arid/semi-arid climate
and the Mediterranean European biogeographic region. Moreover, the Atlantic and Alpine
fuel types were impossible to separate in the FBFT system [21]. This issue could be
improved for the European FBFT fuel map by complementing the information of the
FBFT fuel types with the biogeographic region in which they are included. For this, every
European-adapted FBFT fuel type could be split into as many fuel types as European
biogeographic regions it belongs to.

Some difficulties were also found concerning the broadleaves because the FBFT system
does not distinguish between evergreen and deciduous broadleaves. Thus, we adapted
the broadleaves based on the biogeographic region, horizontal continuity, and fuel load.
Therefore, caution should be taken when using the FBFT fuel map for these vegetation
categories. The Iberian and FBFT fuel maps have a similar general spatial distribution
of fuels because one is based on the other. The fuel types with the largest area are the
Mediterranean types because this is the largest biogeographic region in the study area.

Moreover, in this work we have used the original FBFT descriptions and visual
analysis of the United States FBFT fuel map [88] to convert from the Iberian fuel types to
the standard FBFT fuel types (Table 4 in the Appendix A). A way to improve this in future
works would be to compare the quantitative environmental specifications (such as rainfall,
temperature, evapotranspiration, available water, and drought index) for the United States
FBFT fuel types and the Iberian fuel types. This could be done by comparing these metrics
for the United States, Spain, and Portugal.

Concerning the fuel type parameters, the tree fuels’ biomass values derived from
CCI Biomass [89] presented great differences (up to two orders of magnitude) from those
extracted from the FBFT system [21]. The reason for this is that for the tree fuel types, the
CCI Biomass values refer to total AGB and the FBFT values to timber litter and understory
biomass. Moreover, CCI Biomass values offer pixel-disaggregated information compared
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with the FBFT values, for which the mean biomass values of the fuel types are assigned
to all the extension occupied by an FBFT fuel type. Biomass data are expected to improve
with the upcoming ESA Biomass mission in 2022 [16].

Dense grasslands and shrubs are the most flammable fuel types [94]. This agrees with
the obtained results, which show that the GR5/GR8/GR9 fuel type or Alpine and Atlantic
highly continuous (70–100%) grasses entails the highest fire risk and danger: very high-
extreme fire potential spread rate and flame length. Also, grasses and shrubs occupy much
of the surface of the study area. Thus, the biggest economic and human fire prevention
efforts should be focused here.

In terms of intercomparison with existing vegetation and fuel maps of the study area,
a strict validation was not possible, since the scales, methods, and classification schemes
change between products. Still, the vegetation map’s distribution agrees with that detailed
for the study area [63,77], and its classification scheme is similar to that defined on larger
scales with Sentinel-2 [43,50]. Also, the global [54,91] and the European [55] fuel maps have,
respectively, 41 and 10 fuel types for the study area, while here we mapped 45 (Iberian
fuel map) and 19 (FBFT fuel map) types. This difference may be caused by the use of the
vegetation horizontal continuity to develop fuel types in this work, while in [54] it is only
used to parameterize and the FBFT system uses field measures and photo series.

Furthermore, this work’s comparison with the global [54] and European [55] fuel
maps shows some similarities for the mean biomass values but does not show very strong
associations for the distribution of values, probably caused by the dissimilar biomass
estimation methods. FBFT is based on field measures and photo series, and for tree fuels
describes timber litter and understory [21]; CCI Biomass is derived from RADAR images
and indicates tree AGB [90]; FCCS (global map) infers vegetation parts’ biomass from
expert opinion, scientific literature, photo series, and pre-existing databases [95]; NFFL
(European map) is based on observations and for tree fuels describes only timber litter [35].
Thus, the biomass values differ between products. This may explain the high tree mean
biomass differences when compared with other mean biomass values. However, it is
important to note that there is no reason why the global and European fuel maps should be
considered more accurate than this work’s result. A homogeneous field sampling for the
fuel parameters in the study area would be useful for a strict validation of this work’s fuel
maps. Moreover, CCI Biomass indicates AGB while FBFT, FCCS (except for the tree Above
Ground Biomass parameter), and NFFL describe surface fuel biomass affecting surface
fires. Hence, the fuel parameterization methods and assumptions, usually determined by
the fuel categories of the standard fuel classification systems, stand out as a key aspect to
homogenize fire risk assessment, evidencing the importance of an integrated fuel mapping
strategy across regions.

The final fuel descriptions and maps are influenced by the errors of their inputs. For
the FBFT fuel map, adaptation-derived errors also had an effect. In addition, the original
FBFT system uses field measures and photo series to describe the fuel types, which results
in dissimilar fuel descriptions and difficult adaptation. Thus, the main limitations of this
work are (1) the selected inputs, which limit the disaggregation of fuel types, (2) the errors
of the inputs and the generated vegetation map, which influence the final map’s accuracy,
and (3) the FBFT adaptation difficulties. These aspects limit the utility of the final fuel map
for local studies. It is also limiting not to consider mixed categories and pixels.

The main contribution of our methodology was to derive an easily upgradeable and
reproducible method to map fuel types and estimate fire propagation potential to improve
fire risk assessment. It is expected to be applicable to regional, continental, or global
scales, adapting the methods and data if necessary. Sentinel-3 Synergy images offer an
advantage over higher resolution sensors, which would require a greater computational
effort for regional-continental fuel mapping. The standard FBFT fuel types facilitate the
homogenization of fuel maps across regions. Our methodology is expected to be useful
for fuel mapping that can be updated for short time periods (semi-annual or annual),
usable in fire simulation models to consider the fuels’ high temporal variability in fire risk
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assessment. It serves to optimize the prevention, resource allocation, and management of
wildland fires. This work is relevant because it generates the framework for an updated
large-scale (European) fuel mapping.

Future works should focus on refining the fuel type maps by subdividing categories,
searching for optimal SVM parameters for the vegetation classification, considering mixed
vegetation categories and vegetation vertical characteristics (using LiDAR data), and
comparing with classifiers such as OBIA. Future works should also make efforts to compare
the results with fieldwork or local products. Regarding this, it would be useful to develop
a European database with homogeneous field sampling to help validation and selection of
remote sensing products in future works concerning vegetation and fuel mapping, and
fuel parameterization.

5. Conclusions

This work generated an FBFT [21] fuel map for the Iberian Peninsula and the Balearic
Islands with 19 fuel types, which were also parameterized. Estimated fire behaviour (poten-
tial spread rate and flame length) was also mapped. The input data were Sentinel-3 Synergy
images, MODIS vegetation continuous field collection 6 maps, a map of biogeographic
regions, and the CCI Biomass map. Intercomparison of the final FBFT fuel map with other
fuel products showed some agreement for mean biomass values but did not present a
strong correlation between products in the distribution of values. As intermediate results,
this work generated a vegetation map and a map of 45 customized fuel types, and proposed
an adaptation to the FBFT system [21] for the study area.

Up-to-date mapping of fuel types is essential for wildland fire prevention. This work
has wide applicability because it proposes a methodology to develop an easily upgradeable
fuel cartography on a regional-continental scale for wildland fire risk assessment. This
is a priority future line of research because it will facilitate, speed up, and optimize wise
decision-making. The proposed methodology can be used to classify fuel types in other
regions, adapting the fuel categories if necessary. The next step should be to apply this
methodology to homogenize fuel maps in the European Union, a vital point to derive an
integrated fire risk strategy adapted to European conditions, which is a key objective of the
FirEUrisk project, in which our present research fits.

Author Contributions: Conceptualization, methodology, resources, writing—review and editing,
E.A. and E.C.; software, validation, formal analysis, investigation, writing—original draft preparation,
visualization, E.A.; supervision, project administration, funding acquisition, E.C. All authors have
read and agreed to the published version of the manuscript.
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Appendix A

Table A1. Predictive fire behaviour intensity categories for surface fires. Adapted from [21].

Intensity Category Rate of Spread (m/min) Flame Length (m)

Very low 0–0.30 0–0.31

Low 0.30–0.75 0.31–1.22

Moderate 0.75–3.00 1.22–2.44

High 3.00–7.50 2.44–3.66

Very high 7.50–22.5 3.66–7.62

Extreme >22.5 >7.62

Table A2. Confusion matrix for the vegetation map.

Category Conif. Evergr.
Broad.

Decid.
Broad. Shr. Grass. Other

Uses Total UA * (%) CE * (%)

Conif. 35 1 1 1 0 2 39 89.74 10.26

Evergr. broad. 0 36 0 1 3 4 44 81.82 18.18

Decid. broad. 4 2 35 3 0 2 46 76.09 23.91

Shrubs 8 1 0 86 5 19 119 72.27 27.73

Grasses 0 1 0 0 47 9 57 82.46 17.54

Other uses 0 0 0 3 4 288 195 96.41 3.59

Total 48 41 36 95 59 222 500

PA * (%) 74.47 87.80 97.22 90.53 79.67 84.68 Overall accuracy = 85.40%

OE * (%) 25.53 12.2 2.78 9.47 20.33 15.32 Kappa = 0.805

* UA: User accuracy, PA: Producer accuracy, CO: Commission error, OE: Omission error.

Table A3. Characteristics of the Iberian fuel types.

Vegetation Horizontal Continuity
Area (km2)

% * Mean SD **

A
lp

in
e

Conifers

0–40 25.71 9.70 284

40–70 53.37 7.50 2699

70–100 71.87 0.87 1

Evergreen
broadleaves

0–40 26.63 8.93 698

40–70 50.49 7.07 196

70–100 70.29 0.06 1

Deciduous
broadleaves

0–40 25.43 9.46 662

40–70 52.08 7.33 1041

70–100 72.20 0.76 1

Shrubs

0–40 24.47 11.00 392

40–70 56.56 8.36 1728

70–100 73.70 2.82 59

Grasses

0–40 33.95 3.23 1

40–70 60.97 5.42 25

70–100 71.69 1.39 1
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Table A3. Cont.

Vegetation Horizontal Continuity
Area (km2)

% * Mean SD **

A
tl

an
ti

c
Conifers

0–40 25.18 9.81 353

40–70 55.62 8.72 396

70–100 71.57 1.29 17

Evergreen
broadleaves

0–40 29.19 8.53 1247

40–70 53.21 7.74 2266

70–100 71.70 1.32 28

Deciduous
broadleaves

0–40 26.81 8.67 3798

40–70 52.45 7.78 25,616

70–100 71.69 1.31 11

Shrubs

0–40 31.48 7.15 1911

40–70 54.56 8.00 7674

70–100 72.58 2.22 308

Grasses

0–40 32.15 6.67 724

40–70 53.23 6.91 7901

70–100 73.64 2.79 59

M
ed

it
er

ra
ne

an

Conifers
0–40 18.21 8.67 36,601

40–70 51.34 7.08 8934

70–100 71.33 0.85 3

Evergreen
broadleaves

0–40 17.29 9.58 34,559

40–70 50.06 6.46 3957

70–100 71.64 1.16 2

Deciduous
broadleaves

0–40 20.08 10.73 14,248

40–70 50.72 6.74 4275

70–100 71.39 1.07 2

Shrubs

0–40 29.45 9.86 1632

40–70 60.41 7.70 83,831

70–100 76.20 4.25 45,459

Grasses

0–40 32.84 8.95 89

40–70 61.58 6.96 4139

70–100 78.20 4.55 55,696
* 40.00% is included in the 0–40% group. 70.00% is included in the 40–70% group. From [78]. ** SD: standard
deviation.
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Table 4. Adaptation of the Iberian fuel types to the FBFT system [21].

Horizontal Continuity (%) * FBFT Fuel Type Category

Ib
er

ia
n

fu
el

ty
pe

s

A
lp

in
e

Conifers

0–40 TU2/TU3

40–70 TL3/TL8

70–100 TL5

Evergreen
broadleaves

0–40 TL2

40–70 TL6

70–100 TL9

Deciduous
broadleaves

0–40 TL2

40–70 TL6

70–100 TL9

Shrubs

0–40 SH3

40–70 SH4

70–100 SH6/SH8/SH9

Grasses

0–40 GR1

40–70 GR3

70–100 GR5/GR8/GR9

A
tl

an
ti

c

Conifers

0–40 TU2/TU3

40–70 TL3/TL8

70–100 TL5

Evergreen
broadleaves

0–40 TL2

40–70 TL6

70–100 TL9

Deciduous
broadleaves

0–40 TL2

40–70 TL6

70–100 TL9

Shrubs

0–40 SH3

40–70 SH4

70–100 SH6/SH8/SH9

Grasses

0–40 GR1

40–70 GR3

70–100 GR5/GR8/GR9

M
ed

it
er

ra
ne

an

Conifers

0–40 TU4

40–70 TU5/TL3/TL8

70–100 TL5

Evergreen
broadleaves

0–40 TL2

40–70 TL6

70–100 TL6

Deciduous
broadleaves

0–40 TL2

40–70 TL6

70–100 TL9

Shrubs

0–40 SH1

40–70 SH2

70–100 SH5/SH7

Grasses

0–40 GR1

40–70 GR2

70–100 GR4/GR7
* 40.00% is included in the 0–40% group. 70.00% is included in the 40–70% group. From [78].
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