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Abstract: Most wildland and prescribed fire spread occurs through ground fuels, and the rate
of spread (RoS) in such environments is often summarized with empirical models that assume
uniform environmental conditions and produce a unique RoS. On the other hand, representing
the effects of local, small-scale variations of fuel and wind experienced in the field is challenging
and, for landscape-scale models, impractical. Moreover, the level of uncertainty associated with
characterizing RoS and flame dynamics in the presence of turbulent flow demonstrates the need
for further understanding of fire dynamics at small scales in realistic settings. This work describes
adapted computer vision techniques used to form fine-scale measurements of the spatially and
temporally varying RoS in a natural setting. These algorithms are applied to infrared and visible
images of a small-scale prescribed burn of a quasi-homogeneous pine needle bed under stationary
wind conditions. A large number of distinct fire front displacements are then used statistically to
analyze the fire spread. We find that the fine-scale forward RoS is characterized by an exponential
distribution, suggesting a model for fire spread as a random process at this scale.

Keywords: prescribed fire; infrared; computer vision; optical flow; rate of spread; stochastic

1. Introduction

In many wildland and prescribed fires, the fire is spread through ground fuels. A
typical ground fuel in these fires is dispersed pine straw beds, as pine forests are common
native habitats across large areas of continental landscapes. Various factors determining the
rate of spread (RoS) in pine straw, as well as many other fuels, have been condensed into
fuel models that produce a single RoS value under given conditions (e.g., fuel model TL8
in Scott and Burgan [1]) via a fire spread model (e.g., Rothermel [2]). As is well known, these
spread rates are typically based on uniform conditions and are not meant to represent local
variations of spread in the full range of fuels and wind variability experienced in the field.
Because of the turbulence and complexities of surrounding fire dynamics, characterizing
fire spread under realistic conditions is challenging. Cruz and Alexander [3] analyzed a
large number of fire spread models and observations, and the level of uncertainty that
they reveal demonstrates the need for further understanding of fire RoS in realistic settings.
Alexander and Cruz [4] also discuss the most important factors in fire behavior, such as
fuel conditions, topography, and weather. While a laboratory setting allows for detailed
small-scale measurements to be made, key environmental factors, such as fuel density
variations, wind turbulence, and solar radiation are often absent. At the same time, field
measurements of prescribed fires emphasizing the larger scale aspects of spread may not
resolve important small-scale features [5].

This work investigates low intensity fire spread in a 2 m × 2 m pine straw fuel bed.
Fire spread, even in the low intensity limit, is continuously changing in space and time.
Therefore, rather than characterizing fire spread in terms of a single number, there is
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a need for statistical descriptions of the RoS in a natural, open environment. To form
meaningful statistical properties of the RoS, it is necessary to measure velocity at a high
resolution in both space and time across the flaming region. Very high-resolution fixed-
point observations have been acquired in numerous experiments and demonstrate the
rapid evolution of heat fluxes [6]. The movement of the combustion zone or burning front
within the fuel, as opposed to the flaming gases, generally occurs at lower speeds, yet rapid
jumps and bursts nevertheless occur.

Laboratory studies of spread and heat release rate have also been conducted using
infrared and visible images. Using visible imaging and heat flux sensors, Tihay et al. [7]
produced estimates of spread and heat release rate (HRR) in maritime pine (Pinus pinaster
(Ait.)) straw. For no slope and no wind, an RoS of 10−2 m/s was found with a bed loading
of 0.9 kg/m2. The corresponding HRR was roughly 100 kW per meter of fire front. A
similar setup was used by Schemel et al. [8], who related the time of ignition, duration
of combustion, and peak HRR with analysis of variance techniques. Similar to this work,
Martínez-de Dios et al. [9] made infrared and visual recordings of a pine straw fuel bed
with experiments performed indoors and with slope. After applying computer vision
techniques, they report flame height and basic statistics (mean and variance) of the position
and shape of the fire front. As a post-processing step, they computed the RoS, but only of
the leading and rear edge of the fire front. Zhou et al. [10] applied a thermal particle image
velocity algorithm to infrared video to estimate velocities of the gases near a combusting
region in an indoor laboratory.

Infrared and visual video have been widely employed to characterize fire spread
in natural settings. Linn et al. [11] investigated downwind RoS in the 2012 RxCADRE
prescribed burns from observations and with numerical simulations. The RoS results were
compared to wind data collected from a comprehensive suite of sonic anemometers. Large
variations in the RoS were found with no correlation to measured wind. These results
were attributed to the dependence of the RoS on fire ignition patterns. Stow et al. [12] used
infrared images captured of wildfires to compute fire spread rates. Since they investigated
large wildfires, their approach operates at a much coarser resolution than laboratory or typ-
ical prescribed fire experiments. They manually determined the flaming front locations of
each image and the displacement vectors between consecutive images. Prohanov et al. [13]
developed algorithms to detect and track firebrands. They also provide errors, but they do
not provide statistical distributions of their data. Morandini et al. [14] implemented particle
image velocimetry (PIV) to develop techniques to measure the turbulent wind velocities in
and around a fire with video camera mounted on the ground. Their initial results show the
dependence of flow within the fire on the buoyancy regime, with transitions from strong
vertical to horizontal flow.

In one of the most detailed prescribed fire RoS studies, Paugam et al. [15] used infrared
cameras, in one case mounted 10 m above a 1 m× 1 m plot, and in another on an helicopter
pointed at a 45 m × 21 m natural fuel bed. For the larger burn, they estimated the RoS
by assuming that the fire spreads in the normal direction. A later paper [16] showed
that this method agrees well with an accepted standard for RoS that is computed with a
thermocouple grid array. Clements et al. [17] made several measurements of a prescribed
fire of 155 acres of grassland. Measurements were made using IR video, sonic anemometers,
thermocouples, and sodars, and the data were used to calculate in situ turbulence and
moisture enhancement within a grass fire. Very intense wildland fires have been studied
by Coen et al. [18] and Clark et al. [19] using infrared imagery to explore crown-fire
dynamics of the FROSTFIRE experiment carried out in Alaska. They apply image flow
analysis to infrared images of the fire, but at a distance of more than 2.5 km from the
combustion zone. By assuming that the temperature field is transported solely by the wind
they calculate the wind velocity along with fire front characteristics.

An interesting application of stochastic methods to fire spread was performed
by Zhang et al. [20] who developed a stochastic model for a very small-scale paper burning
experiment. Their results lend support to the idea that the small-scale frontal motion is a
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chaotic process. The approach outlined below leads to a statistical description of the small-
scale chaotic spread in a simplified but realistic setting. This approach provides a similar,
but alternative view of fire spread as a random process, as a step toward a more complete
physical and statistical framework for fire spread in the complex natural environment.

Section 2 explains the experimental setup and the data that are collected. The videos
are captured by a visual camera and an infrared camera mounted above the fuel bed to
compute velocities. To convert the infrared images to velocities, computer vision techniques
are applied to individual frames. Because of the chaotic nature of the frontal motion,
standard computer vision techniques require modification. Our algorithm first defines a
single-pixel-wide approximation of the combusting region of each frame. This is performed
by segmenting and cleaning each frame, and then finding the shortest path passing through
the combusting region. Then, the assignment problem between consecutive frames is
solved, and this defines the displacement vectors of the fireline that are then converted
to velocities. The computer vision techniques that are applied are described in Section 3.
Using this methodology, velocity and burn time distributions are generated and discussed
in Section 4. A discussion of the results is presented in Section 5.

2. Data

The data used in this paper were recorded in the early afternoon of 22 November 2019
at the Tall Timbers Research Station in northern Florida (see Figure 1). The reported
ambient temperature was 22 ◦C with a relative humidity of 66% and a mean wind speed
of 1.3 m/s with gusts up to 3 m/s. Meteorological data were collected using a Campbell
Scientific automatic weather station (Campbell Scientific, Inc. Logan, UT) located at Tall
Timbers Research Station. A 2 m × 2 m bed of dry long-leaf pine straw with a moisture
content of about 15% was constructed by hand. The density distribution of needles was
made roughly uniform by re-arranging needles for a visibly constant depth of 10 cm and
apparent average needle separation. No obvious gaps or hollows were apparent. We
refer to this as quasi-homogeneous to distinguish it from a perfectly uniform fuel bed
(e.g., Bebieva et al. [21]). The fuel bed was marked with metal pieces at each corner of the
plot. The corners are marked so that they can be used in conjunction with the camera
resolution to determine the physical dimensions of a pixel. A low-temperature infrared
image of the setup was taken before the prescribed burn to capture the location of the
metal corners in the infrared camera’s frame; the cool metal corners are difficult to discern
once burning takes place. After capturing this reference image, the infrared camera’s lower
limit was set to record temperatures at or above 100 ◦C. Large metal sheets were placed
to block crosswinds and minimize their effect on the direction and RoS. A fan was placed
approximately 7 m behind the setup and blew in the direction of the ambient wind. The
fan was used to maintain a stationary and roughly uniform wind field and made strong
enough to guarantee that a head fire was present at all times. The resulting experimental
wind direction is shown in Figure 1.

The ambient wind speed and fan speed combined to produce an overall mean wind
speed estimated to be 3.4± 0.8 m/s, causing the flame to stretch and tilt as described in
Section 4. Some variations occurred as small gusts in the ambient wind. The wind speed
estimation calculations are described below. The experiment took place on flat ground,
with negligible slope effects. A drip torch was used to ignite a line along the lower portion
of the plot. The fire does not reach the end of the fuel bed at a fixed time, but rather over
an interval from about 50 s to 80 s. This implies rates of spread ranging from 2–4 cm/s.
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Figure 1. The experimental setup is a 2 m × 2 m plot of dry pine straw. The setup components are
labeled. A fan is used to generate a nearly-uniform wind velocity, and metal sheets eliminate any
crosswind effects.

A visual camera and an infrared camera were situated on a tripod 6 m above the plot,
looking straight down. This is a similar setup as others (O’Brien et al. [22]; Loudermilk et al. [23]).
The time variable is calibrated using the frame rate of the cameras. The visual video was captured
using a Hero 7 Silver (GoPro, Inc., San Mateo, CA, USA) recording at 30 Hz, and the infrared video
was captured with a FLIR A655sc camera (Teledyne FLIR, LLC., Wilsonville, OR, USA) recording
at 1 Hz, an emissivity of 0.95, and a spectral range of 7.5–14.0 µm. The temperature range of the
infrared camera was 100–900 ◦C. Since the visual camera has a higher frame rate than the
infrared camera, it resolves shorter time scales and higher frequencies. The temperature
calculation from emitted radiation assumes a constant emissivity, while the emissivity
of the various components of the fire environment, unburnt fuel, burning fuel, flames,
and gases, varies (e.g., Àgueda et al. [24]). As our methodology tracks the neighborhood
of an individual isotherm of a single component it minimizes the effect of variations
in emissivity.

Frames sampled at approximately 10 s intervals from the visual and infrared videos
are shown in Figure 2. In the visual images, the black, apparently burnt areas are still
undergoing combustion underneath a superficial char layer. This confined layer of burning
fuel is fanned by the movement of the ambient wind through the fuel and produces intense
heat and high temperatures. The IR camera reveals these high temperatures of the fuel
surface and hot gases emanating from the combustion layer. Note that the remnant charred
fuels in Figure 2 have attained their maximum surficial temperature and have only just
begun cooling according to their temperature time series.

Wind speed at flame height is roughly estimated using the movement of the smoke
plume between frames. Three example points identified in successive frames are sampled
from portions of the plume away from the combusting region (Figure 3); this is carried out
to minimize motions away from the surface caused by thermal radiation and turbulent
flame motion. The change in longitudinal position is calculated for each set of points, and
then converted to a velocity using the time between visual frames. The three velocities
calculated were 4.4 m/s, 4.4 m/s, and 1.3 m/s for the cyan, green, and yellow points,
respectively. The average of these three samples gives a wind speed of 3.4 m/s along the
positive longitudinal axis. Since the smoke is still buoyant and rises between frames, an
error of 0.8 m/s was calculated using other possible positions for the second set of points in
Figure 3. The smoke parcels chosen were near flame height, so the estimated wind speed is



Fire 2021, 4, 69 5 of 21

appropriate for the flame height region. At this height, the wind speed values 3.4± 0.8 m/s
are generated by both the ambient wind and fire-induced winds. While this estimate for
the wind speed is rough, its purpose is not to calculate the spread, but rather to validate
estimates of the flame tilt angle.

Figure 2. Visual (top) and infrared (bottom) camera frames at four time steps spaced approximately 10 s apart. The frames
of the individual cameras are not perfectly synchronized.

Figure 3. Sample points found in successive frames used to calculate wind speed along the longitudinal axis. The yellow
points yielded a wind speed of approximately 1.3 m/s, the green points yielded a wind speed of approximately 4.4 m/s,
and the cyan points yielded a wind speed of approximately 4.4 m/s; combined, the average wind speed in the positive
longitudinal direction is 3.4± 0.8 m/s.

3. Methodology

To investigate fire propagation at high spatial resolutions, computer vision and graph
theory algorithms are used to calculate velocities of the fireline. Computer vision applied
to motion analysis is a mature subject, but it assumes that the frame rate is sufficiently
high to capture the environment’s dynamics. Prescribed fire environments are turbulent
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and the frame rates of cameras deployed in these environments are typically too low to
capture all the dynamics. Therefore, classic computer vision algorithms are modified so
that velocities in the environment can be reliably estimated. This includes modifying
methods to segment and clean the frames via thresholding [25], find isotherms, and track
the isotherms’ motion. In the coming sections, these modified algorithms are described
for videos captured with either a visual camera or an infrared camera. The head fireline
has an upwind and downwind side, and we characterize the spread of the upwind side
(see Figure 4). The upwind side has, as described below, less variability and a more stable
representation of the fire front. In contrast Paugam et al. [15] calculated the spread of the
downwind side of the flaming region (see also Johnston et al. [16]).

Figure 4. (Left): A schematic of the experimental setup. The RoS of the upwind side of the flaming region is tracked.
(Right): A typical time series of a pixel. The colors coincide with those in Figure 6.

3.1. Segmenting Fuels, Active Combustion, and Gases

Individual frames captured with a visual or an infrared camera must first be seg-
mented into meaningful regions. The natural regions are burning fuels, the active flaming
region, hot gasses being transported through the atmosphere, and fuels that are not yet
burning. Visual images capture surface areas of burning fuel, the flaming region, unburnt
regions and smoke, whereas infrared images capture radiation from burning fuel that may
be heating up (growth stage) or cooling (decaying stage), preheated (unburnt) fuels, and
heated gas and particles. Separating frames into these regions allows the dynamics of the
fireline and the growth of the fire scar to be tracked.

Due to stark differences in color between elements in fire videos, standard color
segmentation is sufficient to segment visual images. The segmentation algorithm starts by
choosing characteristic pixels in a single frame that represent each of the three regions. A
pixel is then defined to be charred burning fuel, actively combusting, or a hot gas if each
of its RGB channels are within a specified tolerance of the corresponding characteristic
pixel. Portions of an image that are not categorized into one of these regions are considered
unburnt fuel, and these points are not of interest. These points include vegetation that is
sufficiently downwind from the combustion region. A visualization of the points that are
classified as combusting is shown in Figure 5.
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Figure 5. Regions from the frames in the top row of Figure 2 that are part of the active combustion zone. The RGB value of
(255, 181, 147) is sampled from a pixel that is known to be in the combustion region. After experimenting with different
tolerances for a single frame, tolerances of 15 (R), 60 (G), and 40 (B) are chosen, and these are used to define actively
combusting pixels in every frame.

Infrared images are segmented using temperature values. To determine appropriate
threshold values, knowledge of the fuels’ combustion properties is required. For example,
in the controlled burn in Figure 1, the fuel ignites at approximately 250 ◦C and reaches
temperatures greater than 800 ◦C when burning [26]. Simeoni et al. [27] used a slightly
higher threshold temperature for the burning zone of 300 ◦C. Because of the large gradients
in the temperature, other reasonable choices for the ignition temperature do not have a
significant effect on the results.

Appropriate temperature thresholds can be found by analyzing temperature data at
fixed points or by observing the segmented frames resulting from different thresholds.
In a given frame, each pixel above the ignition temperature is classified as a burning
pixel. Pixels that are heated but have yet to reach the ignition temperature are classified as
hot gases and pre-heated fuels. Pixels exceeding the ignition temperature and below the
maximum temperature are classified as fully combusting. Finally, pixels that have exceeded
the ignition temperature and have begun to cool from their maximum temperature are
classified as charred. These categories are illustrated in Figure 6. Infrared images allow the
introduction of cooled fuels as a subcategory of charred fuel, as they are able to detect and
track the cooling rate of charred fuel. Pixels that have reached their maximum recorded
temperature, which ranges between 800 ◦C and 900 ◦C, are first colored in red. They are
colored in dark brown after they have cooled below 550 ◦C. The typical time series of a
pixel’s temperature is in the right plot of Figure 4. We focus on the region between charred
and combusting fuels in order to better represent the fire front.

Figure 6. Regions from the frames in the bottom row of Figure 2 that are heating (gray), fully combusting (between the
ignition and maximum temperature, orange), and cooling (red and dark brown). Fuels in the dark brown region are still
undergoing combustion but have cooled below 550 ◦C.

3.2. Cleaning the Segmented Images

To help identify a single fire front within each frame, the segmented image must be
cleaned. The goal is to isolate the main body of fire from the numerous small regions of
hot gases and embers that are continuously emitted. The cleaning process requires the
segmented image matrix, a search radius, and a threshold. The cleaning algorithm loops
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through each pixel with a nonzero intensity in the segmented image and determines the
number of nonzero pixels within the user-defined radius. If the number of nonzero pixels
exceeds the user-defined threshold, the pixel is deemed to be part of the main body of the
fire, and therefore a relevant pixel for fire spread calculations. If the total count falls below
the threshold, that pixel is deemed outside the main body of the fire. The thresholds are
determined by testing the algorithm on a single frame’s segmented fire image matrix before
applying it to the entire video. This cleaning process returns a logical mask consisting of
0 s and 1 s that correspond to isolated pixels and the main body of the fire, respectively.
Figure 7 shows cleaned versions of sample segmented frames from Figures 5 and 6. In
these frames, the cleaner has removed small patches of heated fuel (gray) on the top left
corner of the infrared image, and small patches of combusting cells on the bottom of the
visual image.

Segmented

Cleaned

Figure 7. (Top): Segmented infrared and visual images. (Bottom): Cleaned infrared and visual images.

3.3. Isolating the Fire Front

After the cleaner removes small regions that are disjointed from the main body of fire,
the edges of the cleaned image need to be formed. Edges are pixels with large gradients in
image intensity, and these are typically found with convolutions and thresholding applied
to the pixel intensity [28]. Before calculating gradients of the image, the logical mask is
combined with the original image; the original image matrix’s pixel intensity values are
changed to zero in every index where the logical mask is 0. By applying this pre-processing
step, only edges of the combusting region will be sought.

After experimenting with different edge detection operators including Prewitt [29],
Sobel [30], and Roberts Cross [31,32] in combination with Gaussian filtering, we determined
that the Sobel 3× 3 edge detection operator achieves the best balance between fine detail
detection and computational expense on sample fire environment images. The Sobel
operator applies a two-dimensional central difference and intensity threshold to estimate
the image gradient. After the convolution process, we reassign a value of zero to all pixels
that originally had zero intensity. Figure 8 shows a segmented and cleaned image (left),
and the result of edge detection (right). In the left plot, points that have been pre-heated,
ignited, or burnt are in white. The dark brown region is the burning region that has begun
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to cool, while the orange region is the actively flaming region. The right plot shows the
edges between the heated gases, combusting region, and burnt area.

Figure 8. (Left): Logical mask representing all points determined to be part of the fire system, whether heated, ignited, or
burnt. (Right): Edge detection results distinguishing the outline of three regions; heated gas, flame, and burnt area. The
isotherm of the upwind side of the flaming region in the gray box is shown in Figure 9.

Figure 9 is a zoom of the middle third of the right plot of Figure 8. Note that the
edges are often several pixels wide. However, to track the motion of the edges, a clean
one-pixel-thick isotherm that represents the fireline is preferred. Using ideas from graph
theory, an algorithm called Crawler defines this one-pixel wide edge. Crawler uses an
adaptation of Dijkstra’s algorithm [33] to form the shortest path between two endpoints
of the isotherm. Sets of points in each frame are labeled according to temperature region;
for infrared images, this is completed using temperature data and for visual images, this
is completed using burning state (see Section 3.1). If all points in a region are connected,
the start and end points for Dijkstra’s algorithm are detected automatically by finding the
uppermost point at each end of the region. However, because of the ignition pattern, early
frames consist of several disjoint sections of burning fuel. Therefore, as a pre-processing
step, these regions are connected before Crawler is used to define a fireline. Crawler also
crops the image according to the location of nonzero pixels connected to the endpoints.
Though this requires another loop through each video frame, the number of points accessed
in later steps (Section 3.4) is reduced and the code runs significantly faster. Crawler also
assigns each pixel a physical (x, y) coordinate so that future calculations are physical rather
than image-based. Successive firelines found with Dijkstra are superimposed in the left plot
of Figure 9, and their conversion to physical coordinates are in the right plot of Figure 9.

3.4. Displacement through Assignment

Once Crawler has identified firelines of every frame, a correspondence between points
on the firelines from consecutive frames is defined. Since ignition by embers is not ob-
served, points on a fireline are ignited by a nearby point from the previous frame. This
correspondence results in displacement vectors which are converted to velocity vectors
by multiplying by the camera’s frame rate. Letting A and B be the set of fireline points
in consecutive frames, the displacement vector originating at a ∈ A could be defined as
f(a)− a, where f : A→ B minimizes the energy

∑
a∈A
‖a− f(a)‖. (1)

This is the classic assignment problem, but two modifications for the problem at hand
are made.
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Given the spatial and temporal resolutions, large displacements are not expected,
implying small motions between successive frames. Making use of this assumption, we
define the subsets of A

Ai = {a ∈ A | a1 ∈ Xi}, (2)

where a = (a1, a2), Xi is an interval subset of the camera’s x field of view, and Bi is defined
analogously. We seek a collection of mappings fi : Ai → Bi that minimize

∑
i

∑
a∈Ai

‖a− f(a)‖i, (3)

where

‖a− f(a)‖i = min
a∈Ai
‖a− fi(a)‖. (4)

By requiring a ∈ Ai and fi(a) ∈ Bi, the displacement vectors are not unphysically
large. The intervals Xi are chosen to all have the same size, and to avoid edge effects, they
are arranged so that the left and right thirds overlap with neighboring intervals so that
there is a buffer zone (see Figure 10). Because of the overlap, a can be contained in two
neighboring sets, Ai and Ai+1. When this happens, Equation (4) considers both ‖a− fi(a)‖
and ‖a− fi+1(a)‖, and the smaller of the two defines f(a) in Equation (3). To determine an
appropriate size for the intervals Xi, the data are used to determine an appropriate length
scale. After subtracting the mean value, the first zero crossing of the autocorrelation of the
y coordinate of a sample isotherm defines the interval size. The large negative lobes in both
regions are suggestive of larger scale coherent meandering of the fire front, associated with
eddies and whirls. These effects are beyond the scope of the present analysis and will be
reported later. The autocorrelation of sample isotherms is shown in Figure 11 and the first
root is denoted by the blue circle. Using this interval size results in the intervals illustrated
in Figure 10.

Figure 9. (Left): Sample Crawler results for frames at successive time steps overlaid on a portion of the middle third of the
right plot of Figure 8. (Right): Crawler results for two successive frames converted to (x, y) coordinates with physical axes.
The red and blue points are the result of Crawler at the successive time steps.

The second modification is required since the number of points in Ai and Bi are
likely different, and this results in an unbalanced assignment problem. To balance the
problem, nodes with weight 0 are added to the set containing fewer points. These nodes
participate in the assignment problem, but a 0 weight means they do not influence the
energy Function (1).
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Figure 10. A visualization of the subdomain and buffer zone system applied to Figure 9.

To solve the modified assignment problem, the classic assignment problem is solved
in each subdomain. These local problems are solved by converting the assignment problem
to a linear program that is solved with the Simplex method. Sample displacement vectors
between consecutive isotherms are in Figure 12. To demonstrate the importance of choosing
appropriate interval sizes, the modified assignment problem with much smaller and
larger interval sizes are considered. Interval sizes that are too small result in large gaps
with no displacement vectors, while interval sizes that are too large result in unphysical
displacement vectors.

3.5. Algorithmic Complexity

Here, the computational cost of the algorithms described above are discussed. All
calculations are performed on a standard laptop computer. Each frame consists of N
pixels, and a typical fireline contains M = O(

√
N) pixels. The standard computer vision

tasks of segmentation, cleaning, and edge detection each require O(N) operations. The
Crawler, which is applied using Dijkstra’s algorithm, requiresO(M log M) = O(

√
N log N)

operations. Finally, the assignment problem is solved using the Simplex method, and the
implementation requires O(M2 log M) = O(N log N) operations.
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Upwind Flaming Region

Downwind Flaming Region

Figure 11. The mean-shifted autocorrelation of the y coordinate of all isotherms (gray) and their
average (red). The chosen length scale is the first root of the autocorrelation function which is about
48 cm for the upwind side and 46 cm for the upwind side.
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Figure 12. (Top): Displacement vectors using a subdomain length of 10 cm. (Middle): Displace-
ment vectors using a subdomain length of 90 cm. (Bottom): Displacement vectors using a subdo-
main length of 48.3 cm as determined in Figure 11. Connections formed with 0 weight points are
not plotted.

4. Results

We form and analyze velocity distributions from the experiment and methods de-
scribed in Sections 2 and 3. These velocities are decomposed into the longitudinal direction
(in the direction of the wind) and the transverse direction (perpendicular to the wind).
Velocities are taken over 67 frames, and this results in 10,858 velocity samples. The first
15 s after the ignition pattern is laid down is ignored to allow the fire to form into a single
head fire. A large number of velocities are recorded as 0 cm/s, and this is an artifact of
the spatial and temporal resolutions of the experiment. In particular, the camera can view
1.15 pixels per centimeter, meaning the spatial resolution is 0.87 cm. Since the infrared
camera has a sampling rate of 1 Hz, any velocity below 0.87 cm/s will be recorded as
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0 cm/s. Investigating smaller velocities requires a camera with a higher spatial resolution
and sampling rate.

Figure 13. (Left): Longitudinal velocity distribution with mean µL = 4.60 cm/s, standard deviation σL = 6.22 cm/s, and
kurtosis κL = 6.82. (Right): Transverse velocity distribution with mean µT = 0.74 cm/s, standard deviation σT = 7.43 cm/s,
and kurtosis κT = 6.60. The top plots are in logarithmic scale and the bottom plots are in linear scale.

Figure 13 shows the probability distribution of the non-zero longitudinal (left) and
transverse (right) velocities on a logarithmic scale (top) and linear scale (bottom). The
mean longitudinal velocity is 4.60 cm/s which can be interpreted as an average RoS, and
its distribution is dominated by positive values since the positive direction corresponds
to the downwind propagation of the head fire. Negative longitudinal velocities make
up 11% of the total distribution, and these negative velocities are caused by small scale
turbulent behavior that is discussed in detail in Section 4.2. The distribution of transverse
velocities is symmetric, and its mean velocity is 0.74 cm/s, which is below the sampling
threshold of the experimental setup. Therefore, the transverse velocity mean is effectively
0 cm/s, indicating that there is no clear preference in the transverse spread direction. This
is consistent with a quasi-homogeneous fuel bed, and negligible mean cross-wind flow.
Note that both the longitudinal and transverse velocity distribution deviate from Gaussian.

The standard deviation and kurtosis of the velocity field in both directions are also
reported in Figure 13. The ratio of the standard deviation to the mean, 1.4, is a rough
measure of frontal bursts, suggesting that the RoS fluctuates strongly around the mean.
The physical reasons for this fluctuation are discussed in Section 4.3. We focus on spread in
the direction of the mean wind by only considering the longitudinal velocity. Note that the
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transverse velocities are important if considering, for example, the speed in the direction of
frontal movement.

The maximum measured velocity can be bounded by considering the maximum flame
length. In the experiment, the maximum observed apparent flame length in any one frame
is less than approximately 40 cm. Given the frame rate of 1 Hz, velocities larger than
±40 cm/s are not observed in Figure 13. Such large velocities are extremely rare, yet
appear on the logarithmic scale as a rough cut-off in longitudinal velocity. Physically, this
is related to the time-scales of pyrolysis and advection of burning gases by the wind.

4.1. Positive Longitudinal Velocities

Positive longitudinal velocities are used to describe the overall RoS of the primary
frontal zone. Ignoring the negative values, mainly due to fluctuating hot gases and tem-
porary isolated backing fires (Section 4.2), the distribution of the positive longitudinal
velocities are plotted in Figure 14. The resulting values have a mean and standard deviation
of 5.7 cm/s and 5.6 cm/s, respectively, and these depend on several factors, including the
homogeneity of the fuel and the background wind. For comparison, Morandini et al. [14]
described fire front position in a similar fuel bed and showed a nearly uniform RoS of
approximately 6 cm/s for 60 s. Using the measured mean velocity, an approximate ex-
ponential distribution is observed (Figure 14). The normalized root mean square error is
1.9× 10−2 cm/s. Both linear and log scales are used to display the behavior; higher values
at the tail are apparent, possibly due to the sampling limitations at a high velocity.

Figure 14. Positive longitudinal forward RoS distribution in linear scale (left) and log scale (right) with mean µ = 5.68 cm/s,
standard deviation σ = 5.63 cm/s, and kurtosis κ = 7.97. The 95% confidence interval for µ is [5.52, 5.84]. The red curve
is an exponential distribution with rate parameter λ = 1/µ = 1.76× 10−1 s/cm. The normalized root mean square error
between the exponential curve and the data is 1.93× 10−2 cm/s.

Relatively high resolution RoS observations were obtained by Paugam et al. [15] using
IR cameral images of an experimental small-scale fire and a larger scale prescribed fire.
Their method determined a first arrival time based on a pixel temperature threshold. For
the larger fire, the spatial resolution was 18 cm × 18 cm, but this was further averaged
to 1.44 m × 1.44 m to reduce noise in the calculation and to produce maps. Statistical
distributions of these data were presented by Johnston et al. [16] and appear to support an
exponential form. Initial calculations (not shown) using data derived from the RxCadre
experiment (Hudak et al. [34]; Butler et al. [35]) also support exponential behavior at low
to moderate RoS.
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4.2. Effects of the Flame Dynamics

Most of the longitudinal velocities in Figure 13 are positive and no larger than 15 cm/s,
which is a little less than two standard deviations from the mean value. However, large
and negative velocities were observed that are significant. The majority of these large
and negative velocities can be explained by considering how the flame dynamics affect
fire spread velocities. In particular, as the flame oscillates back and forth in the turbulent
atmospheric environment, both direct flame contact and flame radiation create large and
negative velocities [36,37]. Maynard et al. [38] also showed that large velocities are created
when two firelines merge, which may happen in either sense (positive or negative).

Large velocities are also created whenever a new disconnected combusting region
forms away from the main fireline. Some of these new regions can be up to 40 cm from the
main fireline and are created by flame contact. Another process that creates disconnected
combusting regions occurs when hot gases or flames propagate underneath the top layer of
the porous fuel bed structure, and then reappear away from the main fireline. Initially these
disconnected regions are not considered since the algorithm defines a single, continuous
fireline. However, once these regions reconnect to the main fireline, the result is an isotherm
that has undergone a large hop, and this is recorded as artificially large velocities. This
effect is quantified by considering flame lengths between 15 cm and 40 cm igniting patches
of fuel by either direct flame contact or flame radiation. These methods of propagation
are responsible for velocities whose magnitude are greater than 15 cm/s, and this value
depends on wind speed, inclination, and fuel properties such as the fuel thickness [27,37]
and porosity [21]. Note that our methods interpret this hopping phenomenon and spotting
similarly, but spotting was not observed in the experiment. A different experimental setup,
including the fuels, fire intensity, and plot size, would be required to investigate spotting.

The presence of negative longitudinal velocities are also explained by considering
what the isotherm represents—part of a frontal zone comprised of burning material with
fluctuating temperatures. That is, the isotherms are representative of the frontal zone, but
the zone itself does not contain an exact, uniquely defined fire front line. Consequently,
another source of negative velocity values is the existence of occasional small backing
fires throughout the burning region. Despite having a roughly homogeneous fuel bed,
neighboring pieces of fuel will not always ignite in immediate succession. This can be
caused by factors such as fuel moisture [39] and local wind velocity [40]. In the experiment,
negative values occur when material in the lower region of the frontal zone becomes heated
and ignites after the material toward the top of the frontal zone has begun to cool. This is
expected for fire fronts with fuels that are subject to turbulence in the surrounding air, such
as pine straw beds [41]. A detailed examination of the frames indicates that the turbulent
flame oscillations make up the majority of the negative longitudinal velocities.

Ignition by both flame radiation and direct contact depend not only on the flame
length, but also the flame tilt angle. The flame tilt angle is estimated by considering the
apparent maximum flame length and ambient wind speed. Using a wind velocity estimate
of 3.4± 0.8 m/s in conjunction with the results of Morandini et al. [37], an estimate of
the total flame length is between 59 cm and 74 cm. With these lengths, the tilt angle is
calculated to be between 32◦ and 42◦. This is consistent with the conclusion of Albini [42],
who argued that flame tilt angles in pine straw do not normally exceed about 55◦.

4.3. Burn Time and Arrival Time

Once a pixel ignites, another important variable is the burn time, which is related
to the rate of fuel consumption. The burn time is defined to be the time from a pixel’s
ignition until it reaches its maximum temperature. Using two different choices of ignition
temperature, we plot the number of burning pixels of each frame in the left plot of Figure 15.
Both ignition temperatures are plausible for pine straw, and the choice of one over the
other produces little variability in the overall shape.

From the start of ignition until approximately 10 s, a rapid increase in the number
of burning pixels to about 1.5× 104 is observed. This increase is completely attributed to
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the ignition pattern that resembles a small open loop (see green points in the right plot
of Figure 15). Since this region resembles a small ring fire, the unburnt fuel surrounded
by the ignition pattern is quickly ignited. After 10 s, pixels begin to burn out, while new
pixels, mostly located at the head, are ignited. For about 20 s, pixels are extinguished and
ignited at a nearly constant rate, resulting in a nearly constant number of burning pixels.
Then, at around 35 s, there is another increase in the number of burning pixels, associated
with a sudden increase in the flame length, which we expect is caused by an ambient wind
increase. Further evidence of this wind increase is shown in the right plot of Figure 15
where large velocities of the isotherm at t = 30 s are observed. Finally, after about 50 s,
flames begin to reach the boundary of the fuel bed, and the number of burning pixels
begins to decrease. However, combustion continues until about 80 s.

Figure 15. (Left): The number of burning pixels, defined using two different ignition temperatures, as a function of time.
(Right): The per-pixel time of ignition (first arrival time) of the 2 m × 2 m linear spread plot described in Section 2. The
green points correspond to manual ignition positions at time t = 0 s. The three sets of blue points are isotherms calculated
at t = 20 s (lower), t = 30 s (middle), and t = 47 s (upper). Plotted alongside each isotherm are several corresponding
velocity vectors.

The temperature history of each pixel suggests another way to understand fire spread,
by determining the first instance each fuel parcel ignites—this is commonly called the first
arrival time [43]. The first arrival time is computed by determining the first time each
pixel exceeds the ignition temperature of 250 ◦C. The first arrival time of the experimental
burn is illustrated in the right plot of Figure 15, also showing firelines and the spread
velocity at three instances. Both an overall linear fire spread pattern in the direction of
the wind (bottom to top) and also the slow moving backing fires discussed in Section 4.1
are observed. As the ignition line is not exactly on the upwind edge of the fuel bed, the
fireline travels approximately 170 cm in the longitudinal direction to reach the end of the
bed. From the range in final arrival times, one obtains a range in RoS roughly between
2–4 cm/s. These net RoS values do not reflect the bursts of higher velocity that arise during
the complex movement of the front, raising the mean in the distribution (Figure 13) of
instantaneous values.

The fuel and atmospheric conditions not only affect the size of the combustion region
and the RoS, but also condition the burn time. A heat map of the burn time and its
corresponding probability distribution shows that the burn time is far from uniform, with
clusters of longer times distributed apparently randomly over the fuel bed (Figure 16).
These clusters presumably firstly represent variations in fuel density, with slightly higher
packing, slight composition differences (no pine cones were present), or thickness, and
secondly periods of lower wind or higher moisture with correspondingly reduced rates of
combustion. We suggest that small-scale turbulent wind effects exert the largest control on
burn time in this quasi-homogeneous fuel bed.

The histogram resembles distributions observed in the 2012 RxCADRE burns [44] (for
more details on the RxCADRE burns see [22,45]). The data are fit to an Erlang distribution
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with shape parameter k and rate parameter λ. To determine the best fit,the value of λ that
minimizes the normalized root mean square error for k = 1, 2, . . . is found. Values larger
than k = 5 did not result in a good fit. The smallest normalized root mean square error
is 3.2× 10−3 s with shape and rate parameters k = 3 and λ = 0.2 s−1, respectively. The
relevance of this distribution can be understood as a model fundamentally derived from the
exponential spread rate, itself a result of the interaction of turbulence and thermodynamic
combustion processes. Hence, once ignited, the time of arrival of an extinction front
or event follows from the sum of the displacements of intermediate isotherms, which
produces an Erlang distribution. Of course, the parameters of the model depend on the
fuel, atmospheric, and other environmental conditions.

Figure 16. (Left): The number of frames each pixel spent between the ignition temperature and the maximum temperature.
Since the frame rate is 1 Hz, the color also represents the number of seconds each cell spends burning. (Right): The burn
time distribution with mean µ = 18.5 s, standard deviation σ = 11.1 s, and kurtosis κ = 5.2. The red curve is an Erlang
distribution with shape parameter k = 3 and rate parameter λ = 0.2 s−1. The normalized root mean square error between
the points on the Erlang distribution curve and the data is 3.2× 10−3 s.

5. Discussion

Temperature data collected from a small 2 m × 2 m plot of pine straw were used to
derive statistical distributions of dynamical and thermodynamical quantities, including
the RoS and fuel burn time. This approach leads to a statistical description of small-scale
fire spread as a random process. Clearly, additional high-resolution observations with
different fuels and fuel loading and structure, other turbulent wind characteristics, and a
broader range of environmental conditions are needed, but the methodology and statistical
description presented here are expected to provide new insight into the fire spread process.

The distribution for the forward RoS is exponential, consistent with an independent
frontal inter-arrival time random process. The observations of fine-scale RoS differ dra-
matically from a spatially and temporally averaged RoS. The recognition that fire spread
is subject to driving by wind turbulence at small scales as well as at larger scales, and the
impact of random fluctuations in fuel bed characteristics, helps to explain the fine-scale
variations in space and time. Initial comparisons to larger scale prescribed fire statistics
suggests that the results scale up and that IR observational techniques are a promising
route to improve models of fire spread.

The observation of the Erlang burn time distribution can be interpreted as an underly-
ing random process for extinguishing events. However, it can also be interpreted as the
convolution between multiple exponential distributions for the combustion time of a given
fuel element. More general conditions may be represented by a non-homogeneous Poisson
process, for which the rate parameter λ varies in time. This speaks to the complex processes
that play into fire spread, but also the useful synthesis that a statistical description provides.

Datasets such as the one we collected can be combined with machine learning techniques
to develop data-driven models for prescribed fire dynamics. For example, Hodges et al. [46]
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used convolutional neural networks to estimate the time-resolved spatial evolution of wild-
land fire. The deep convolutional network was trained on burn maps from data simulated
from Rothermel RoS and FARSITE. However, the model is trained on semi-empirical models
rather than experimental data. Chetehouna et al. [47] used an artificial neural network to
estimate the RoS, flame height, and flame tilt angle in pine needle beds. In future works,
we plan to use high-resolution datasets such as the one we have collected to train machine
learning models that can be used to parameterize small-scale dynamics.

It is important to recognize that a statistical description does not preclude the use
of underlying physical balances, or physical models, for deterministic constraints on the
spread. In fact, such models are a necessary part of a more complete representation of fire
spread in the complex surface fuel and atmospheric boundary layer. Hence, an alternative
use of datasets such as the one we collected is to couple it with a physics-based model
through data assimilation. This approach is taken by Zhang et al. [48], where they use
a data-driven wildland fire spread model (FIREFLY) introduced by da Silva et al. [49].
Zhang et al. [50,51] used data assimilation to estimate state parameters and spread from the
2012 RxCADRE controlled burn experiment. Progress on data assimilation and machine
learning techniques requires building relevant physical and statistical fundamentals into
the methodology. Otherwise, it is unlikely that any amount of data can adequately train
the system and produce a model capable of responding to the highly variable and complex
natural environment.
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