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Abstract

:

The panel performance of a prefabricated cabin-type substation under the impact of fires plays a vital role in the normal operation of the substation. However, current evaluations of the panel performance of substations under fire still focus on fire resistance tests, which seldom consider the relationship between fire behavior and the mechanical load of the panel under the impact of fires. Aiming at the complex and uncertain relationship between the thermal and mechanical performance of the substation panel under impact of fires, this paper proposes a machine learning method based on a BP neural network. First, the fire resistance test and the stress test of the panel is carried out, then a machine learning model is established based on the BP neural network. According to the collected data, the model parameters are obtained through a series of training and verification processes. Meanwhile, the correlation between the panel performance and fire resistance was obtained. Finally, related parameters are input into the thermal–mechanical coupling evaluation model for the substation panel performance to evaluate the fire resistance performance of the substation panel. To verify the correctness of the established model, numerical simulation of the fire test and stress test of the panel is conducted, and numerical simulation samples are predicted by the trained model. The results show that the prediction curve of neural network is closer to the real results compared with the numerical simulation, and the established model can accurately evaluate the thermal–mechanical coupling performance of the substation panel under fire.
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1. Introduction


With the development of the national economy, the demand for electricity, from all walks of life, has increased. After a period of rapid development, large-scale centralized new energy power generation has gradually extended in the direction of decentralization and miniaturization. The requirements of new energy construction cannot be met by conventional transmission substations. Technological development and the improvement of prefabricated substations have become increasingly prominent. As a new type of prefabricated substation [1,2,3], the prefabricated cabin-type substation is becoming an important development direction benefiting from its high degree of integration and high level of intensiveness. Fire has an important effect on the safety of buildings and structures [4,5], thus the performance of the prefabricated substation panel under impact of fires is a guarantee of safety and plays a vital role in the normal operation of the substation. As a structural stress component of the substation panel, at the beginning of the design, the fire safety of the panel needs to be considered to ensure the safety of the overall structure of the substation. A high temperature causes the deterioration of the mechanical properties of the substation panel material, which will bring about different degrees of damage to the substation panel. Therefore, before the construction of the substation, it is necessary to carry out a fire resistance performance test under fire on the panel to ensure the fire resistance safety of the entire project in the event of a fire. Therefore, accurately describing the fire performance of substation panels has become an important issue for the stability of current substations.



Since the substation panels are mainly reinforced concrete structures, the fire performance of the substation panels can refer to the fire resistance test [6,7,8,9,10] and numerical simulation method to analyze fire behavior. Naser and Kodur [11] conducted an experimental study on the fire behavior of composite steel girders subjected to high shear loading. Hawileh et al. [12,13,14] predicted the performance of concrete beams using a finite element model. Aguado et al. [15] used a 3D finite element model for predicting the fire behavior of hollow-core slabs. However, the current research on the performance of substation panels rarely considers correlations, with little consideration of the nonlinear relationship between stress performance and fire resistance under impact of fire.



The neural network, a method of machine learning, is widely used in various fields [16,17,18,19,20,21,22,23]. Abuodeh et al. [24,25] used machine learning techniques to predict behavior of RC beams and compressive strength of ultra-high-performance concrete. Liu et al. [26] established machine-learning-based models to predict shear transfer strength of concrete joints. The neural network also has a precedent in the application of substation [27,28,29,30,31]. Da Silva et al. [32] proposed the use of artificial neural networks to solve the problem of fault location in substations; Wang et al. [33] used deep learning methods to identify the switch status of substations; Jiang Hongyu et al. [34] proposed an adaptive suppression method of transformer noise in substations based on genetic wavelet neural networks for the problem of transformer noise control; Oliveira et al. [35] carried out automatic monitoring on the construction site of substations based on deep learning. Neural networks [36,37,38] with self-learning, self-organization, and extremely strong linear fidelity capabilities can accurately reflect the nonlinear relationship between input and output variables to maintain high accuracy in short-term prediction. Therefore, machine learning is used to establish a non-linear relationship between panel stress and fire resistance from the perspective of thermal–mechanical coupling, which is a worthwhile means for evaluating the performance of substation panels under impact of fire.



To solve the above problem, this paper proposes a machine learning method based on the principle of BP (back propagation) neural networks to analyze the thermal–mechanical coupling performance of substation panels under fire. The evaluation factors are selected, such as the substation panel geometric data, mechanical performance parameters, and fire resistance performance data. After the model training ends, the relationship between panel mechanical performance and fire resistance is established. Finally, predictive samples are input into the model to evaluate the fire resistance performance of the panel. Then, fire resistance test and the stress test of the panel is carried out. A BP neural network model is trained and built through a series of training the samples. Then, numerical simulation of the fire test and stress test of the panel is conducted, and numerical simulation samples is predicted by the trained model and compared with the real results. The results show that predicted samples fit well with the actual output values and better than the result of numerical simulation. Thus, the established model can accurately evaluate the thermal–mechanical coupling performance of the panel under fire.




2. Research Methods and Contents


2.1. The Research Process for Thermal–Mechanical Coupling Evaluation of Prefabricated Cabin-Type Substation Panel Performance


The key to the thermal–mechanical coupling evaluation process of a prefabricated substation panel is to establish an evaluation model based on BP neural networks. By inputting the stress state data of the substation panel into the evaluation model, the corresponding fire resistance parameters can be obtained. The thermal–mechanical coupling performance of the prefabricated substation panel can then be evaluated. The research process of the thermal–mechanical coupling evaluation of prefabricated substation panel performance is shown in Figure 1.




2.2. Thermal–Mechanical Coupling Evaluation Model of the Panel Performance Based on BP Neural Networks


2.2.1. Establishment of Evaluation Factors


In theory, the performance state of the prefabricated substation panel can be better described by the more comprehensive evaluation indexes. However, in practical engineering, on the one hand, it is very difficult to collect data. On the other hand, the more indexes there are, the more complex the nonlinear relationship of the thermal–mechanical coupling evaluation of the prefabricated substation panel performance is. Therefore, the determination of evaluation indexes cannot be simply generalized but should be analyzed in specific cases. As a complex system, the thermal–mechanical coupling evaluation of panel performance is affected by many factors. This study, adhering to the principles of representativeness, integrity, and desirability, takes the geometric parameters, mechanical performance, and fire resistance performance of the panel as evaluation factors of the thermal–mechanical coupling evaluation of the panel’s performance.



	
The geometric parameters of the panel include length, width, and height.



	
The fire resistance performance parameters of the panel include the heating time, average furnace temperature, average temperature of the backfire surface, and pressure parameters.



	
The mechanical performance parameters of the panel include time and bending load.







2.2.2. Construction of BP Neural Network


The BP neural network as a method of machine learning is suitable for addressing complex nonlinear problems, such as the nonlinear relationship between the mechanical performance and the fire resistance performance of substation panels. The research process of the BP neural network model for the thermal–mechanical coupling evaluation of substation panel performance is shown in Figure 2. Firstly, the data parameters are input into the BP neural network for training. Secondly, the thermal–mechanical coupling evaluation results of the panel performance can be obtained through the model after model training. After that, we carried out numerical simulation of fire resistance test and stress test on the panel. We used the curve data of numerical simulation as sample data to predict the sample of numerical simulation. Finally, the correctness of the model is verified by comparing the real results with the numerical simulation results and the neural network prediction results.



As shown in Figure 3, the BP neural network used for the thermal–mechanical coupling evaluation training of the prefabricated cabin-type substation panel performance is composed of three layers, representing the input layer, hidden layer, and output layer, respectively.



The input layer has seven impact indicators corresponding to the identification indicators, which are the length, width, height, heating time, average furnace temperature, average temperature, and pressure of the backfire surface. The output layer represents time and bending load. Therefore, there are seven input layer nodes in this model, six hidden layer nodes, and two output nodes. Each node is a specific output function, and each connection between two nodes represents a weighted value (weight) for the signal passing through the connection. The learning rate determines the amount of weight change generated in each cycle. The fixed learning rate in this research is 0.1, the training target is 0.00001, and the maximum number of learning iterations is 100. Through repeated iterative calculations, the correlation coefficient and threshold are determined. After that, the learning and training process ends, which means the model is successfully established. After the BP neural network model training, the actual value is compared with the predicted value. In order to solve the problem of inconsistency in the units and magnitudes of the input variables in the BP neural network, normalization is used to control the sample data to 0–1.



The normalization formula is as follows:


   Y i  =    X i  −  X  m i n      X i  −  X  m a x     α + β  



(1)







In the formula,    X i    and    Y i    represent the variables before and after normalization, respectively;    X  m i n     and    X  m a x     are the minimum and maximum values of    X i   , respectively;  α  is a parameter with a value between 0–1, and   β = 1 −  α 2   .






3. Case Application Analysis


3.1. Substation Panel


3.1.1. Fire Resistance Test of Panel


The fire resistance test of panel refer to the requirements of GB/T 9978.1-2008 “Fire resistance Test Methods for Building Components part 1: General Requirements [39]” and GB/T 9978.8-2008 “Fire resistance Test Methods for Building Components Part 8: Characteristics of non-load-bearing vertical dividers [40]”, as shown in Table 1. The test conditions and test plan were formulated according to the requirements of GB/T 9978.1-2008 [39] and GB/T 9978.8-2008 [40].



The length (m) width (m) × height (m) of the special panel for a box-type substation is 2.0 × 1.0 × 0.12. Ten temperature measurement points are set on the backfire surface of the panel with the vertical side on a free side, as shown in Figure 4.



According to the test requirements, the test uses vertical component fire test furnace device in Beijing Gequ fire test laboratory. The device can meet the requirements of the furnace temperature and pressure in Table 1. This device also can measure the temperature and pressure change value of the panel specimen. The data changes during the test can be visually displayed on the display screen of the equipment.



The experiment was terminated at 181 min. The test process was observed and recorded. The test phenomena are shown in Table 2.



The fire resistance data of the panels are shown in Figure 5 and Figure 6.




3.1.2. The Stress Test of the Panel


The same panel specimen as Section 3.1.1 was used in this experiment. Static loading is carried out by force control. A hydraulic jack was used for loading. During the test, the load is acted on the mid-span position of the panel through the actuating head. Once the specimen was destroyed, the test was over. The data of the stress test of the panel are shown in Figure 7.





3.2. Thermal–Mechanical Coupling Evaluation of Panel Performance


The values were recorded every minute from the origin of the coordinates. Figure 5 and Figure 6 show that the test specimen was damaged when heated to the 183rd minute. Figure 7 shows that the test specimen was damaged under stress at 329.052 s. The time from loading to failure was divided into 183 segments for the values recorded every 1.798 s. The fire resistance and stress performance data of the panel are shown in Appendix A. It should be emphasized that the temperature measured in Table A1 has subtract the ambient temperature. The data of columns 1 represent the number of samples; the data of columns 2 represent the heating time of panel; the data of columns 6 represent the load time of the panel.



According to the BP neural network structure constructed in Section 2.2, the thermal–mechanical coupling evaluation model of the panel performance was learned and trained:




	
Initialize the BP neural network. We randomly selected 100 sets of data from Table A1 as the input node data of the training sample, and the remaining 84 sets of data in Table A1 were used as prediction samples. Then, the weights and offsets of the neural network were initialized. Finally, the sample data were normalized.



	
Train the BP neural network. The BP neural network was used to train 100 sets of training sample data until the calculations at the end of the network training. The thermal–mechanical coupling evaluation model of the panel performance based on the BP neural network was obtained when the BP neural network converged after learning and training.



	
Predict the BP neural network. The randomly selected 84 sets of test sample data were predicted through the trained BP neural network to finally obtain the prediction result output. The graph is drawn as shown in Figure 8.








It can be seen from Figure 8 that the predicted output values of the 84 groups of predicted samples fit well with the actual output values for the trend of the sample points showing basically the same, which indicates that the thermal–mechanical coupling evaluation model of panel performance based on a BP neural network is reasonable and accurate.



The mechanical performance data of the panel corresponding to the heating time of the 162nd minute to the 183rd minute were collected, as shown in Figure 9.



It can be seen from Figure 9 that, when the test specimen reaches the maximum bending load of 21.443 KN, the corresponding stress time of the substation plate is 294.888 s. When the time is 325.456 s, the bending load drops sharply from 18.664 KN, which means the material is damaged at this time. The prediction sample data of the fire resistance performance of the substation are input into the thermal–mechanical coupling evaluation model of the panel performance. The corresponding panel performance parameters can then be obtained. The test specimen reaches the maximum bending load of 21.128 KN when the predicted value of the neural network is displayed for 297.147 s. The bending load drops sharply from 18.683 KN for the material being damaged at the time of 323.658 s. By comparing the predicted value and actual value of the time and bending load, it is found that the maximum bending load and the corresponding stress time from the thermal–mechanical coupling evaluation model and actual test is very close, and the two values essentially satisfy the error requirements. This further demonstrates the accuracy and reliability of the thermal–mechanical coupling evaluation model of the panel performance.




3.3. Numerical Simulation


In order to verify the results of neural network calculation, we carried out numerical simulation on the specimen. The length (m) × width (m) × height (m) of the special panel for numerical simulation is 2.0 × 1.0 × 0.12, as shown in Figure 10. The fire resistance test and pressure test of numerical simulation model are consistent with the actual situation in Section 3.1.



The numerical simulation results are shown in Figure 11 and Figure 12.



The curve of the fire resistance test and pressure test parameters for the panel is shown in Figure 13 and Figure 14. Each step in the diagram represents a unit of time.



The failure time step of numerical simulation corresponds to the failure time of fire resistance test and pressure test in real time, and the simulated result curve is also divided into 183 sections. Corresponding values are recorded in each section and 184 sample data of numerical simulation can be obtained.



According to the BP neural network structure trained in Section 3.2, we conduct neural network learning, training and prediction using the sample data of numerical simulation. According to the sample data of numerical simulation, the prediction results of numerical simulation are obtained. By converting the failure time of the real stress curve into the corresponding time step, we plotted the prediction curve of the neural network, the prediction curve of the numerical simulation and the real stress test curve in the same figure, as shown in Figure 15.



It can be seen from Figure 15 that the curve of prediction result of neural network and array simulation is basically consistent with the curve of real pressure test. The force increases gradually and decreases rapidly after reaching the peak value. Numerical simulation results show that when the time step is 15,850, the maximum bending load is 18.11064 kN. The neural network prediction results show that when the time step is 14,687, the bending load reaches the maximum value of 19.963 KN. The actual test results show that when the time step is 15,889, the bending load reaches the maximum value of 21.443 kN. Compared with the results of numerical simulation, the prediction curve of neural network is closer to the real pressure curve. The percentage error of the maximum bending load calculated by numerical simulation is 15.5%, the percentage error of the maximum bending load calculated by neural network prediction is 6.9%, and the error of neural network prediction is about half smaller than that of numerical simulation. The prediction result of neural network is better than that of numerical simulation. Thus, the accuracy and rationality of the neural network prediction model can be proved.




3.4. The Functional Relationship between Fire Resistance and Stress Resistance


The relationship between the parameters of fire resistance and stress resistance can be obtained by deriving the training parameters of the neural network, as shown in Equations (2)–(5):


   α h  =   ∑   i = 1  M   v  i h    x i  +  r h   



(2)






   b h  = f  (   α h   )   



(3)






   y j  =   ∑   h = 1  q   w  h j    b h  +  θ j   



(4)






  f  ( x )  =  1  1 +  e  − x      



(5)







M refers to the number of nodes in the input layer, M = 7;      x i    (i = 1, 2, ……, M) refers to length (m), width (m), height (m), heating time (min), average furnace temperature (°C), average temperature of backfire surface (°C), and pressure parameter (Pa); h refers to the number of hidden layer nodes, h = 6; q is the number of nodes in the output layer, q = 2;    y j     (  j = 1 , 2  )    refers to the values of the time (s) and bending load (KPa), respectively. v refers to weight parameters from input layer to hidden layer of neural network; rh refers to threshold parameters from input layer to hidden layer of neural network; W refers to weight parameters from hidden layer to output layer of neural network; θj refers to threshold parameters from hidden layer to output layer of neural network.


  v =  [             0     0           0     0           0     0         0   0   0     0   0   0            4.4136     − 1.6295         − 0.0460     − 0.1070           0.8386     − 0.7978         − 2.0962     0.1305               − 1.4522       0.1633             − 1.0707       − 0.3356                 − 0.3682     − 0.0326               − 0.6002     − 0.0347                          0     0           0     0           0     0                        1.0436       1.1642               − 0.0877       − 0.2854                     − 0.4381       − 0.3663             − 0.0416         0.1397                  ]   










   r h  =    [      − 3.3526     − 1.0328         − 0.2724     0.6572         − 0.1576     0.9250              ]   T   










   θ j  =    [      0.2891     − 1.0308      ]   T   










  w =  [      0.0798         − 0.1080     − 0.0044         − 0.7329     0.9450     0.2738               − 1.4042             0.0712     − 0.6059         − 0.4502         0.7257     0.0036              ]   













4. Conclusions


Based on the evaluation factors such as the geometric data of the substation panel, the stress performance, the fire resistance performance data, etc., a BP neural network, a method of machine learning, was used to establish the nonlinear relationship between panel performance stress and fire resistance under impact of fire. This model can quickly predict the performance of the substation panel under fire. The prediction of the thermal–mechanical coupling evaluation model is very close to the actual test, and satisfy the error requirements. Additionally, the specimen was verified by numerical simulation. Comparing the neural network with numerical simulation, the result indicates the error of neural network prediction is about half smaller than that of numerical simulation, the prediction result of neural network is better than that of numerical simulation. The correctness and reliability of the thermal–mechanical coupling performance evaluation model is verified. If meeting the requirements of the test itself and the amount of data required by the structure of the neural network, the thermal–mechanical coupling evaluation model constructed in this study can be directly used for similar models. It does not need to conduct additional tests. As the types and quantities of data for training become richer, the models we build will become more and more refined. Therefore, this can provide a reference for exploring more thermal coupling evaluation models and complex functional relationships of materials based on neural networks under different loading modes in the future.
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Table A1. Fire resistance and stress performance data of the panel.






Table A1. Fire resistance and stress performance data of the panel.





	Sample
	Heating Time (min)
	Average Furnace Temperature (°C)
	Average Temperature of Backfire Surface

(°C)
	Pressure (Pa)
	Time (s)
	Bending Load (KN)





	1
	0
	0
	0
	0
	0.000
	0



	2
	1
	79.84
	3.29
	3.0577
	1.798
	0.0152



	3
	2
	173.4
	3.06
	4.349
	3.596
	0.0619



	4
	3
	267.91
	3.12
	5.4032
	5.394
	0.0949



	5
	4
	360.6
	4.9
	5.8117
	7.192
	0.1097



	6
	5
	433.88
	2.36
	5.1342
	8.991
	0.1888



	7
	6
	468.52
	3
	11.858
	10.789
	0.287



	8
	7
	504.38
	2.5
	6.7311
	12.587
	0.3562



	9
	8
	535.65
	1.09
	8.499
	14.385
	0.4535



	10
	9
	577.35
	3.45
	7.9913
	16.183
	0.5464



	11
	10
	625
	2.94
	10.133
	17.981
	0.6664



	12
	11
	634.44
	2.04
	11.221
	19.779
	0.8527



	13
	12
	643.43
	1.94
	9.6595
	21.577
	0.9194



	14
	13
	664.89
	1.28
	11.8
	23.375
	1.0552



	15
	14
	690.58
	1.9
	9.017
	25.173
	1.1762



	16
	15
	705.34
	3.27
	11.87
	26.972
	1.2974



	17
	16
	721.01
	3.77
	9.6982
	28.770
	1.4346



	18
	17
	734.37
	3.24
	8.1376
	30.568
	1.5541



	19
	18
	742.72
	2.88
	11.704
	32.366
	1.7039



	20
	19
	750.87
	2.65
	12.759
	34.164
	1.8248



	21
	20
	757.59
	3.6
	10.145
	35.962
	1.9602



	22
	21
	763.69
	3.13
	12.014
	37.760
	2.114



	23
	22
	773
	2.27
	13.136
	39.558
	2.3759



	24
	23
	780.88
	2.33
	15.751
	41.356
	2.5796



	25
	24
	794.49
	3.52
	12.086
	43.154
	2.7826



	26
	25
	802.42
	2.67
	14.159
	44.953
	2.9971



	27
	26
	809.7
	2.96
	16.672
	46.751
	3.2553



	28
	27
	817.29
	2.32
	13.244
	48.549
	3.4676



	29
	28
	828.68
	1.68
	11.989
	50.347
	3.659



	30
	29
	840.37
	4.26
	11.958
	52.145
	3.8044



	31
	30
	844.53
	3.45
	14.878
	53.943
	4.0017



	32
	31
	851.16
	3.73
	17.732
	55.741
	4.3081



	33
	32
	857.39
	4.34
	15.323
	57.539
	4.5063



	34
	33
	854.14
	5.18
	13.932
	59.337
	4.6692



	35
	34
	861.78
	6.84
	13.22
	61.135
	4.9182



	36
	35
	867.05
	3.7
	12.95
	62.934
	5.1096



	37
	36
	871.16
	6.4
	14.14
	64.732
	5.3131



	38
	37
	876.67
	5.2
	18.894
	66.530
	5.4892



	39
	38
	881.12
	5.24
	15.398
	68.328
	5.7004



	40
	39
	884.83
	4.83
	14.108
	70.126
	5.8432



	41
	40
	887.87
	4.21
	13.907
	71.924
	5.9585



	42
	41
	889.97
	2.81
	13.67
	73.722
	6.0633



	43
	42
	893
	1.73
	12.992
	75.520
	6.4429



	44
	43
	898.57
	1.2
	12.621
	77.318
	6.692



	45
	44
	900.57
	1.55
	13.437
	79.116
	6.9692



	46
	45
	905.35
	1.64
	14.015
	80.915
	7.1593



	47
	46
	908.14
	3.61
	13.948
	82.713
	7.3998



	48
	47
	910.72
	2.79
	13.949
	84.511
	7.6056



	49
	48
	914.22
	2.12
	13.951
	86.309
	7.9198



	50
	49
	914.51
	4.92
	13.954
	88.107
	8.1175



	51
	50
	919.4
	3.94
	13.989
	89.905
	8.3583



	52
	51
	922.69
	6.19
	14.364
	91.703
	8.634



	53
	52
	925.51
	6.38
	14.84
	93.501
	8.8009



	54
	53
	929.22
	6.44
	14.399
	95.299
	9.002



	55
	54
	933.64
	7.51
	14.027
	97.097
	9.2243



	56
	55
	938.97
	9.24
	14.843
	98.896
	9.3998



	57
	56
	942.03
	11.24
	16.543
	100.694
	9.5576



	58
	57
	944.37
	12.45
	18.004
	102.492
	9.7716



	59
	58
	947.88
	14.54
	16.851
	104.290
	9.937



	60
	59
	944.27
	17.79
	13.966
	106.088
	10.116



	61
	60
	947.25
	15.6
	13.934
	107.886
	10.237



	62
	61
	949.48
	13.49
	14.342
	109.684
	10.439



	63
	62
	952.08
	13.32
	15.022
	111.482
	10.679



	64
	63
	954.15
	16.91
	16.586
	113.280
	10.9



	65
	64
	955.83
	19.37
	17.402
	115.078
	11.103



	66
	65
	958.84
	18.06
	18.863
	116.877
	11.379



	67
	66
	962.18
	21.68
	15.877
	118.675
	11.6



	68
	67
	966.24
	20.39
	14.384
	120.473
	11.794



	69
	68
	969.58
	20.66
	13.91
	122.271
	12.07



	70
	69
	967.65
	21.86
	14.387
	124.069
	12.231



	71
	70
	970.98
	19.67
	16.629
	125.867
	12.374



	72
	71
	973.61
	23.63
	16.834
	127.665
	12.742



	73
	72
	976.41
	24.6
	16.088
	129.463
	12.884



	74
	73
	978.48
	26.5
	14.731
	131.261
	13.016



	75
	74
	978.69
	28.38
	14.053
	133.059
	13.21



	76
	75
	981.34
	29.56
	16.432
	134.858
	13.381



	77
	76
	982.55
	31.64
	18.029
	136.656
	13.548



	78
	77
	983.33
	31.82
	18.777
	138.454
	13.693



	79
	78
	986
	32.33
	17.387
	140.252
	13.835



	80
	79
	985.67
	37.18
	13.891
	142.050
	13.985



	81
	80
	986.19
	34.77
	15.217
	143.848
	14.102



	82
	81
	987.83
	37.34
	16.949
	145.646
	14.218



	83
	82
	989.37
	38.31
	17.731
	147.444
	14.448



	84
	83
	992.76
	40.21
	14.677
	149.242
	14.555



	85
	84
	997.82
	43.91
	13.965
	151.040
	14.666



	86
	85
	999.42
	42.37
	15.563
	152.839
	14.86



	87
	86
	1001.8
	47.47
	16.311
	154.637
	15.123



	88
	87
	1004
	47.86
	17.738
	156.435
	15.303



	89
	88
	1005.8
	50.86
	16.551
	158.233
	15.469



	90
	89
	1009.2
	52.06
	14.923
	160.031
	15.585



	91
	90
	1006.1
	45.67
	16.52
	161.829
	15.71



	92
	91
	1007.6
	46.3
	17.301
	163.627
	15.968



	93
	92
	1008.8
	48.17
	16.862
	165.425
	16.002



	94
	93
	1011.3
	50.79
	16.047
	167.223
	16.039



	95
	94
	1013
	55.77
	15.029
	169.021
	16.167



	96
	95
	1014.3
	55.85
	14.896
	170.820
	16.339



	97
	96
	1016.1
	57.01
	15.814
	172.618
	16.428



	98
	97
	1017.8
	58.17
	14.865
	174.416
	16.512



	99
	98
	1020.6
	56.41
	14.865
	176.214
	16.596



	100
	99
	1020.3
	56.48
	14.935
	178.012
	16.681



	101
	100
	1022.5
	58.42
	16.329
	179.810
	16.74



	102
	101
	1025.1
	53.55
	17.756
	181.608
	16.865



	103
	102
	1026.3
	56.35
	15.992
	183.406
	16.986



	104
	103
	1028.8
	58.47
	15.757
	185.204
	17.071



	105
	104
	1029.3
	61.61
	17.863
	187.002
	17.123



	106
	105
	1031.7
	58.83
	15.589
	188.801
	17.229



	107
	106
	1031.5
	60.25
	14.911
	190.599
	17.369



	108
	107
	1034.3
	60.88
	16.814
	192.397
	17.487



	109
	108
	1036.5
	60.93
	14.881
	194.195
	17.605



	110
	109
	1035.1
	64.07
	14.881
	195.993
	17.577



	111
	110
	1037.6
	65.42
	16.92
	197.791
	17.662



	112
	111
	1037.8
	60
	15.529
	199.589
	17.877



	113
	112
	1038.9
	58.92
	14.885
	201.387
	17.853



	114
	113
	1040.1
	58.82
	17.807
	203.185
	17.876



	115
	114
	1042.2
	58.58
	15.499
	204.983
	17.968



	116
	115
	1042.9
	60.23
	14.923
	206.782
	18.081



	117
	116
	1043.3
	59.86
	16.86
	208.580
	18.181



	118
	117
	1045.1
	59.06
	14.858
	210.378
	18.182



	119
	118
	1046.5
	58.54
	16.83
	212.176
	18.27



	120
	119
	1045.9
	60.74
	16.83
	213.974
	18.366



	121
	120
	1047.3
	64.13
	16.83
	215.772
	18.392



	122
	121
	1048.9
	58.24
	14.897
	217.570
	18.488



	123
	122
	1051
	58.63
	17.819
	219.368
	18.58



	124
	123
	1052.8
	59.49
	15.749
	221.166
	18.639



	125
	124
	1054.6
	59.2
	14.052
	222.964
	18.655



	126
	125
	1055.7
	60.53
	14.97
	224.763
	18.733



	127
	126
	1057.5
	60.28
	15.006
	226.561
	18.916



	128
	127
	1058.9
	58.28
	19.863
	228.359
	18.961



	129
	128
	1060.6
	57.76
	15.857
	230.157
	18.998



	130
	129
	1060.7
	57
	16.98
	231.955
	19.101



	131
	130
	1063.2
	57.95
	16.98
	233.753
	19.139



	132
	131
	1064.8
	58.31
	15.963
	235.551
	19.271



	133
	132
	1066.1
	57.56
	17.866
	237.349
	19.345



	134
	133
	1068.7
	58.53
	15.933
	239.147
	19.469



	135
	134
	1066.8
	58.26
	18.854
	240.945
	19.456



	136
	135
	1069.3
	58.71
	16.037
	242.744
	19.544



	137
	136
	1070.3
	58.68
	16.853
	244.542
	19.677



	138
	137
	1070.7
	58.49
	17.941
	246.340
	19.674



	139
	138
	1072
	58.11
	15.973
	248.138
	19.672



	140
	139
	1071.6
	58.5
	16.891
	249.936
	19.815



	141
	140
	1073.3
	59.79
	15.738
	251.734
	19.827



	142
	141
	1074
	60.42
	14.925
	253.532
	19.85



	143
	142
	1077.2
	59.75
	15.367
	255.330
	19.961



	144
	143
	1075.3
	58.78
	16.999
	257.128
	20.132



	145
	144
	1077.2
	59.56
	16.185
	258.926
	20.111



	146
	145
	1077.1
	59.34
	15.405
	260.725
	20.281



	147
	146
	1077.6
	60.26
	14.863
	262.523
	20.4



	148
	147
	1078
	58.89
	16.935
	264.321
	20.36



	149
	148
	1077.2
	60.51
	15.918
	266.119
	20.547



	150
	149
	1079.2
	63.73
	17.923
	267.917
	20.555



	151
	150
	1081.2
	61.49
	15.921
	269.715
	20.593



	152
	151
	1083.1
	58.71
	17.925
	271.513
	20.787



	153
	152
	1086
	58.99
	15.991
	273.311
	20.758



	154
	153
	1085.5
	59.37
	17.962
	275.109
	20.805



	155
	154
	1087.8
	59.31
	15.892
	276.907
	20.912



	156
	155
	1090
	59.96
	15.895
	278.706
	21.004



	157
	156
	1090.9
	59.23
	15.895
	280.504
	21.061



	158
	157
	1092.7
	58.71
	15.895
	282.302
	21.038



	159
	158
	1089.6
	58.42
	15.93
	284.100
	21.135



	160
	159
	1093.5
	58.03
	15.933
	285.898
	21.264



	161
	160
	1095.2
	60.64
	15.933
	287.696
	21.275



	162
	161
	1096.7
	58.66
	16.818
	289.494
	21.257



	163
	162
	1098.2
	58.48
	15.868
	291.292
	21.402



	164
	163
	1096
	57.96
	15.868
	293.090
	21.405



	165
	164
	1098.5
	58.82
	15.868
	294.888
	21.443



	166
	165
	1099.2
	60.62
	15.868
	296.687
	20.986



	167
	166
	1099.9
	59.08
	15.943
	298.485
	20.603



	168
	167
	1101.3
	58.55
	15.946
	300.283
	20.502



	169
	168
	1099
	59.65
	15.946
	302.081
	20.263



	170
	169
	1101
	58.56
	15.946
	303.879
	19.9



	171
	170
	1101.8
	61.27
	17.916
	305.677
	19.858



	172
	171
	1102.2
	57.09
	15.982
	307.475
	19.903



	173
	172
	1102.4
	56.92
	19.039
	309.273
	19.868



	174
	173
	1102.4
	57.55
	17.783
	311.071
	19.913



	175
	174
	1104.5
	58.75
	15.985
	312.869
	19.827



	176
	175
	1105
	58.93
	15.037
	314.668
	19.665



	177
	176
	1106.2
	60.01
	16.871
	316.466
	19.445



	178
	177
	1107
	60.76
	16.975
	318.264
	19.301



	179
	178
	1107.5
	60.35
	18.946
	320.062
	19.131



	180
	179
	1107.9
	61.09
	16.06
	321.860
	18.953



	181
	180
	1108.2
	61.39
	19.016
	323.658
	18.834



	182
	181
	1089.3
	61.3
	16.809
	325.456
	18.664



	183
	182
	1089.2
	61.44
	10.868
	327.254
	16.174



	184
	183
	1010.7
	61.69
	10.19
	329.052
	12.114










References


	



Hazel, T.; Norris, A.; Barbizet, M.; Et, A. Designing prefabricated substation buildings according to GOST standards; Record of Conference Papers; Industry Applications Society; Forty-Ninth Annual Conference. In Proceedings of the 2002 Petroleum and Chemical Industry Technical Conference, New Orleans, LA, USA, 23–25 September 2002; pp. 251–259. [Google Scholar]

	



Zhengmao, F.; Xiuhua, S.; Hongzhi, C.; Et, A. Optimization design of box structure for prefabricated substation. Int. J. Res. Eng. Technol. 2018, 7, 85–90. [Google Scholar]

	



Zou, P.L. Comparative analysis of traditional civil construction new energy substation and modular prefabricated cabin substation. Mech. Electr. Inf. 2020, 38, 9. [Google Scholar]

	



Gerges, M.; Demian, P.; Adamu, Z. Customising Evacuation Instructions for High-Rise Residential Occupants to Expedite Fire Egress: Results from Agent-Based Simulation. Fire 2021, 4, 21. [Google Scholar] [CrossRef]

	



Ghodrat, M.; Shakeriaski, F.; Nelson, D.J.; Simeoni, A. Existing Improvements in Simulation of Fire–Wind Interaction and Its Effects on Structures. Fire 2021, 4, 27. [Google Scholar] [CrossRef]

	



Ali, F.; Nadjai, A.; Silcock, G.; Et, A. Outcomes of a major research on fire resistance of concrete columns. Fire Saf. J. 2004, 39, 433–445. [Google Scholar] [CrossRef]

	



Kodur, V.K.R.; Dwaikat, M.M.S.; Dwaikat, M.B. High-temperature properties of concrete for fire resistance modeling of structures. ACI Mater. J. 2008, 105, 517–527. [Google Scholar]

	



Ran, L.; Zhao, H.; Huang, W.; Li, X.; Wang, Y.; Hu, Y. Fire resistance analysis of door and wall composite components. Fire Sci. Technol. 2014, 33, 1031–1033. [Google Scholar]

	



Serrano, R.; Cobo, A.; Prieto, M.I.; Et, A. Analysis of fire resistance of concrete with polypropylene or steel fibers. Constr. Build. Mater. 2016, 122, 302–309. [Google Scholar] [CrossRef]

	



Tian, J.; Zhu, P.; Qu, W. Study on fire resistance time of hybrid reinforced concrete beams. Struct. Concr. 2019, 20, 1941–1954. [Google Scholar] [CrossRef]

	



Naser, M.Z.; Kodur, V.K.R. Comparative fire behavior of composite girders under flexural and shear loading. Thin-Walled Struct. 2017, 116, 82–90. [Google Scholar] [CrossRef]

	



Hawileh, R.A.; Naser, M.Z. Thermal-stress analysis of RC beams reinforced with GFRP bars. Compos. Part B Eng. 2012, 43, 2135–2142. [Google Scholar] [CrossRef]

	



Hawileh, R.A.; Naser, M.; Zaidan, W.; Al, E. Modeling of insulated CFRP-strengthened reinforced concrete T-beam exposed to fire. Eng. Struct. 2009, 31, 3072–3079. [Google Scholar] [CrossRef]

	



Hawileh, R.A.; Naser, M.; Zaidan, W.; Al, E. Transient Thermal-Stress Finite Element Analysis of CFRP Strengthened RC beams Exposed to different Fire Scenarios. Mech. Adv. Mater. Struc. 2011, 18, 172–180. [Google Scholar] [CrossRef]

	



Aguado, J.V.; Albero, V.; Espinos, A.; Al, E. A 3D finite element model for predicting the fire behavior of hollow-core slabs. Eng. Struct. 2016, 108, 12–27. [Google Scholar] [CrossRef]

	



Faridmehr, I.; Nikoo, M.; Baghban, M.H.; Pucinotti, R. Hybrid Krill Herd-ANN Model for Prediction Strength and Stiffness of Bolted Connections. Buildings 2021, 11, 229. [Google Scholar] [CrossRef]

	



Avossa, A.M.; Picozzi, V.; Ricciardelli, F. Load-Carrying Capacity of Compressed Wall-Like RC Columns Strengthened with FRP. Buildings 2021, 11, 285. [Google Scholar] [CrossRef]

	



Abd-Elhamed, A.; Shaban, Y.; Mahmoud, S. Predicting Dynamic Response of Structures under Earthquake Loads Using Logical Analysis of Data. Buildings 2018, 8, 61. [Google Scholar] [CrossRef]

	



Mishra, P.; Samui, P.; Mahmoudi, E. Probabilistic Design of Retaining Wall Using Machine Learning Methods. Appl. Sci. 2021, 11, 5411. [Google Scholar] [CrossRef]

	



Jain, N.; Bansal, V.; Virmani, D.; Gupta, V.; Salas-Morera, L.; Garcia-Hernandez, L. An Enhanced Deep Convolutional Neural Network for Classifying Indian Classical Dance Forms. Appl. Sci. 2021, 11, 6253. [Google Scholar] [CrossRef]

	



Wu, M.; Wang, J. Estimating Contact Force Chains Using Artificial Neural Network. Appl. Sci. 2021, 11, 6278. [Google Scholar] [CrossRef]

	



Jiao, Z.; Hu, P.; Xu, H.; Al, E. Machine learning and deep learning in chemical health and safety: A systematic review of techniques and applications. ACS Chem. Health Saf. 2020, 27, 316–334. [Google Scholar] [CrossRef]

	



Wang, W.; Kiik, M.; Peek, N.; Al, E. A systematic review of machine learning models for predicting outcomes of stroke with structured data. PLoS ONE 2020, 15, e234722. [Google Scholar]

	



Abuodeh, O.R.; Abdalla, J.A.; Hawileh, R.A. Prediction of shear strength and behavior of RC beams strengthened with externally bonded FRP sheets using machine learning techniques. Compos. Struct. 2020, 234, 111698. [Google Scholar] [CrossRef]

	



Abuodeh, O.; Abdalla, J.A.; Hawileh, R.A. Prediction of compressive strength of ultra-high performance concrete using SFS and ANN. In Proceedings of the 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Sanya, China, 9–10 November 2019; pp. 1–5. [Google Scholar]

	



Liu, T.; Wang, Z.; Zeng, J.; Al, E. Machine-learning-based models to predict shear transfer strength of concrete joints. Eng. Struct. 2021, 249, 113253. [Google Scholar] [CrossRef]

	



Chen, C.S.; Tzeng, Y.M.; Hwang, J.C. The application of artificial neural networks to substation load forecasting. Electr. Power Syst. Res. 1996, 38, 153–160. [Google Scholar] [CrossRef]

	



Hsu, Y.Y.; Lu, F.C. A combined artificial neural network-fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation. IEEE Trans. Power Syst. 1998, 13, 1265–1271. [Google Scholar]

	



Borkowski, D.; Wetula, A.; Bień, A. Contactless measurement of substation busbars voltages and waveforms reconstruction using electric field sensors and artificial neural network. IEEE Trans. Smart Grid 2014, 6, 1560–1569. [Google Scholar] [CrossRef]

	



Nguyen, B.N.; Quyen, A.H.; Nguyen, P.H.; Al, E. Wavelet-based Neural Network for recognition of faults at NHABE power substation of the Vietnam power system. In Proceedings of the 2017 International Conference on System Science and Engineering (ICSSE), Ho Chi Minh City, Vietnam, 21–23 July 2017; pp. 165–168. [Google Scholar]

	



Dudzik, M.; Jagiello, A.; Drapik, S.; Et, P.J. The selected real tramway substation overload analysis using the optimal structure of an artificial neural network. In Proceedings of the 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018; pp. 413–417. [Google Scholar]

	



Da Silva, A.P.A.; Insfran, A.H.F.; Da Silveira, P.M.; Et, A. Neural networks for fault location in substations. IEEE Trans. Power Deliv. 1996, 11, 234–239. [Google Scholar] [CrossRef]

	



Wang, J.; You, Z.; Xiao, J.; Tan, Z. Deep learning based state recognition of substation switches. In Proceedings of the AIP Conference Proceedings, Kuala Lumpur, Malaysia, 24–26 July 2018; p. 1971. [Google Scholar]

	



Jiang, H.; Liu, S.; Zhou, J.; Zhu, G.; Wang, K.; Shi, Z. Adaptive Noise Reduction of Transformer in Substation Based on Genetic Wavelet Neural Network. Electr. Power Sci. Eng. 2020, 36, 25–31. [Google Scholar]

	



Oliveira, B.A.S.; Neto, A.P.D.F.; Fernandino, R.M.A.; Et, A. Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning. IEEE Access 2021, 9, 19195–19207. [Google Scholar] [CrossRef]

	



Wang, L.; Zeng, Y.; Chen, T. Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 2015, 42, 855–863. [Google Scholar] [CrossRef]

	



Li, J.; Cheng, J.; Shi, J.; Al, E. Brief introduction of back propagation (BP) neural network algorithm and its improvement. In Advances in Computer Science and Information Engineering; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]

	



Singh, A.K.; Kumar, B.; Singh, S.K.; Al, E. Multiple watermarking technique for securing online social network contents using back propagation neural network. Future Gener. Comput. Syst. 2018, 86, 926–939. [Google Scholar] [CrossRef]

	



Fire-Resistance Tests—Elements of Building Construction—Part 1: General Requirements (GB/T 9978.1-2008). Available online: https://gf.1190119.com/list-704.htm (accessed on 15 November 2021).

	



Fire-Resistance Tests—Elements of Building Construction—Part 8: Specific Requirements for Non-Loadbearing Vertical Separating Elements (GB/T 9978.8-2008). Available online: https://www.doc88.com/p-7798292250942.html (accessed on 15 November 2021).








[image: Fire 04 00093 g001 550] 





Figure 1. Research process of thermal–mechanical coupling evaluation of panel performance. 
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Figure 2. Research process of the BP neural network model in the thermal–mechanical coupling evaluation of prefabricated substation panel performance. x1, x2, …, x5, respectively, represents input layer parameters of neural network; u1, u2, …, uk represent hidden layer parameters of the neural network, respectively; yj represents output layer parameters of neural network; Ni represents output results of neural network; ω represents weights of neural network and θ represents thresholds of neural network. 
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Figure 3. Application of the BP neural network in the thermal–mechanical coupling evaluation of substation panel performance. 
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Figure 4. Schematic diagram of the measuring point layout on the backfire surface of the test specimen. 
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Figure 5. Temperature rise curve. 
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Figure 6. Pressure curve at 500 mm below the furnace roof. 
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Figure 7. Stress curve of the panel strength test. Bending load refer to a load that causes bending deformation of a panel during a fixed strength test. 
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Figure 8. Comparison of sample predicted output and actual output. 
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Figure 9. Sample result output of panel performance prediction. 






Figure 9. Sample result output of panel performance prediction.



[image: Fire 04 00093 g009]







[image: Fire 04 00093 g010 550] 





Figure 10. Numerical simulation model. 
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Figure 11. Numerical simulation of fire resistance test. 
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Figure 12. Numerical simulation of stress test. 
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Figure 13. The curve of the fire resistance test. 
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Figure 14. Stress curve of the panel samples. Bending load refer to a load that causes bending deformation of a panel during a fixed strength test. 
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Figure 15. The stress test curve. 
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Table 1. Reference standards for fire resistance.
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Test Items

	
Standard Clause

	
Judgment Criteria






	
Fire resistance

	
Completeness

	
GB/T 9978.8-2008

Article 10

GB/T 9978.1-2008

Article 10.2.2 Article 8.4

	
The duration of the test specimen’s continuous fire resistance performance in the fire test. Any one of the following limited conditions of the test specimen shall be considered as a loss of integrity:

(a) A cotton pad test is conducted, and the cotton pad is ignited.

(b) A gap probe of 6 mm penetrates the specimen into the furnace and moves 150 mm along the length of the crack; a gap probe of 25 mm penetrates the specimen into the furnace.

(c) A flame appears on the backfire surface and lasts for more than 10 s.




	
Thermal insulation

	
GB/T 9978.8-2008

Article 10

GB/T 9978.1-2008

Article 10.2.3

	
If the duration of the fire resistance and heat insulation performance of the test specimen in the fire test as well as the temperature rise of the backfire surface of the test specimen exceeds any of the following limits, it is considered to have lost the heat insulation:

(a) The average temperature rise exceeds the initial average temperature of 140 °C.

(b) The temperature rise at any point exceeds the initial temperature (including the moving thermocouple) by 180 °C (the initial temperature should be the initial average temperature of the back surface at the beginning of the test).




	
GB/T 9978.1-2008

Article 12.2.2

	
If the “integrity” of the test specimen does not meet the requirements, it is considered that the “heat insulation” of the test specimen does not meet the requirements.
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Table 2. Test phenomena.






Table 2. Test phenomena.





	Time
	Observation Record





	0
	Test start.



	30
	No significant change from the previous stage.



	60
	No significant change from the previous stage.



	90
	No significant change from the previous stage.



	120
	Concave deformation.



	150
	No significant change from the previous stage.



	181
	Integrity and thermal insulation are undamaged; test is stopped.
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