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Abstract: The horizontal storm structure surrounding 92,512 lightning-ignited wildfires is examined
in the mid to eastern sections of the United States from 2003 to 2015 using Vaisala’s National
Lightning Detection Network (NLDN), NCEP’s Stage IV gauge-corrected radar precipitation mosaic,
and the US Forest Service’s Fire Occurrence Database. Though lightning flash density peaks strongly
around fire ignitions on the instantaneous 1 km scale, on the hourly 10 km scale, both the lightning
and precipitation peaks are typically offset from fire ignitions. Lightning density is higher, and
precipitation is lower around ignition points compared to non-ignition points. The average spatial
distribution of total lightning flashes around fire ignitions is symmetrical, while that of precipitation
and positive flashes is not. Though regression is consistent with the claim that positive flashes have a
stronger association with ignition than negative flashes, the statistical significance is ambiguous and
is contradicted by an unchanging positive flash fraction in the vicinity of wildfires.
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1. Introduction

In the last two decades, lightning has been responsible for roughly 14% of the reported
forest fire ignitions in the United States (Schultz [1] as extracted from the dataset of Short [2]).
In contrast to the more common human-caused ignitions, lightning ignitions are nearly
equally likely to occur in sparsely inhabited areas where the response time is often slower
or nonexistent so that the total acreage burned by lightning ignition outweighs that due to
human causes [3,4]. Most such ignitions are attributed to “dry lightning”, i.e., lightning
flashes in the presence of little or no rain [4–6]. Our previous work [7] demonstrated that
for data binned on regional and annual scales, the correlation between dry lightning and
wildfire ignitions can be increased by including a regionally adjustable dry period before
each candidate flash. This current work examines storm structure associated with lightning
ignition at the km and hourly scale, including differences between positive and negative
flash patterns.

Previous authors have examined dry lightning primarily in the context of large-scale
atmospheric patterns, such as a dry layer below the convectively active layer, finding
an increase in ignitions per flash for such conditions [6]. Modeling that accounts for
large-scale transport affecting moisture and stability has shown skill in predicting wildfire
breakouts [4,5,8]. An alternate way for dry lightning to occur is the horizontal displacement
of flashes from the precipitation associated with it, which has rarely been studied and will
be examined to some extent in this work.

Flash ignition is also dependent on the current magnitude and duration, and it is
commonly assumed that a long continuing current (LCC) is necessary for ignition [9].
Positive flashes are four times more likely to have an LCC than negative flashes [10,11],
so should be more likely to cause ignitions, yet the literature shows mixed results. For
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example, Anderson [9] modeled wildfire ignitions based on the assumption that only LCC
would ignite fires and found correlation coefficients ranging from 0.3 to 0.76, though other
complicating variables, such as rainfall, moisture content, and survival time, were modeled
rather than observed. Nausler [12] found a significant increase in the ratio of positive to
negative strikes in the vicinity of fire ignitions, though cautioned that the greater tendency
of positive strikes to land outside the precipitation core could contribute to the relationship.
Schultz et al. [1] found that 90% of the lightning flashes closest to ignition points were
negative, mirroring the ratio of all negative to positive flashes, and thus, indicating ignition
is independent of LCC, agreeing with Flanagan and Wooten [13].

This work examines average horizontal patterns of lightning and precipitation as-
sociated with lightning-ignited wildfires compared to those not associated with wildfire
ignition. The spatial coincidence of lightning and precipitation peak density relative to
individual fire ignitions is part of the pattern analysis. The differences between positive
and negative flash patterns and ignition efficiency complete this examination. Our light-
ning dataset employs radio time-of-arrival and triangulation [14] to single out flashes that
strike the ground, matched to a gauge-adjusted radar precipitation product for a gridded
estimate of the amount of precipitation that reaches the ground [15]. This work focuses
on atmospheric phenomena only rather than the equally crucial fuel condition [16,17],
which will be treated as random background noise, an approach that is only feasible when
thousands of observations can be averaged together for each point displayed.

To our knowledge, the only other study closely aligned to that presented here is
the 2020 work of MacNamara et al. [18], which examined the fine-resolution statistics of
lightning and rainfall in the vicinity of lightning-ignited fires. They found that fire ignitions,
spatial lightning, and rain peaks were rarely co-located, with lower rain rates and slightly
higher flash densities found in the immediate vicinity of ignition points. Positive flashes
were no more likely to cause ignitions than negative flashes. Though our work uses a
different fire dataset and a coarser precipitation dataset over a different (and larger) time
and space domain, it is important to recognize that we independently confirm nearly all
their qualitative results and are in reasonable agreement with their numerical results. The
main analytical extension in this current work is the comparison of the characteristics of
storms that are and are not associated with fire ignitions, while MacNamara et al. compared
lighting and rain that is immediately adjacent to ignitions to that which is nearby.

Following a description of the datasets, the temporal and horizontal distributions of
lightning around ignition points are examined on the km scale. Precipitation is introduced,
and its horizontal distribution relative to lightning is explored on the scale of tens of km.
After a statistical assessment of the effects of positive versus negative flashes on lightning
ignition, this paper concludes with a comparison of the characteristics of storms that are
and are not associated with fire ignitions.

2. Data Sets and Methods
2.1. Data Sets

This study is built around a fire ignition dataset with associated lightning and rain.
The dataset includes CONUS data east of 114 W longitude and from years 2003 to 2015 to
avoid irregularities in the precipitation and lighting databases as discussed below.

2.1.1. Fire Occurrence Database

The fire database is extracted from the US Forest Service’s Fire Program Analysis
Fire Occurrence Database (FPA-FOD) produced by the National Fire Incident Reporting
System [2]. It includes reporting from federal, state, and local agencies, and as reporting is
voluntary, the database is best described as extensive rather than comprehensive. Reporting
times are recorded without attempt to estimate the ignition time, which is taken to be
typically within the same day as the reporting time. Though the ignition point of fires on
federal lands would be estimated via ground survey, the majority of fires in this dataset are
east of the Rocky Mountains, thus primarily on private land. The locations of fires in these
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cases are given by the street address of the property, unlikely to align closely with the fire
locations on large properties. Only those fires reported as caused by lightning are used for
this analysis, totaling 92,712. By associating this dataset with lightning strikes (as carried
out in this work), Schultz et al. [1] found that 95% of fire ignitions were within ~5 km of
the stated location. Roughly half could not be associated with lightning on the same day,
attributed to smoldering before breaking out into full fire.

In addition to the attributes used in this study as listed above, the fire database also
includes the reporting source, name of fire (if one is given), eventual fire area, and assumed
cause, including debris burning, recreation, vehicular, power generation, etc. Lightning
ignitions are termed “natural”.

2.1.2. National Lightning Detection Network

Lightning data are derived from Vaisala’s National Lightning Detection Network
(NLDN), which consists of a network of about 200 VLF/LF radio frequency receivers over
CONUS that combine time-of-arrival and triangulation technologies to locate the location
of lightning flashes to an accuracy of 0.5 km and several microseconds [13,19,20]. Flash
detection efficiency is estimated at 90–95% [19]. Peak current of the first return stroke,
polarity, and multiplicity (i.e., the number of strokes per flash) are available in the dataset.
The best accuracy is achieved for flashes, with currents exceeding 15 kA [20,21], but this
restriction is only applied for the gridded data described below to provide a continuous
current distribution from positive to negative. A significant upgrade to the NLDN occurred
in 2002–2003, which motivated us to restrict our analyses to NLDN data from 2003 to
later [20]. The data are available from Vaisala as annual files in text format, with one line of
records per flash in chronological order.

2.1.3. Stage IV Precipitation Radar Data

Precipitation data are taken from NCEP’s Stage IV blended radar/gauge gridded mo-
saic. The hourly accumulated NexRad base scan radar data are calibrated to accumulated
gauge data at 4 km resolution by the regional River Forecast centers [15], including manual
quality control. From 2004 to 2015, many of the regional centers would not certify results
over much of the Rocky Mountains, and so our work is restricted to east of 114 W longitude
(Figure 1). The original mosaic is on a 4 km area preserving grid that matches weather
models but does not align with the lat/lon grid. For ease of comparison to other data sets
in this study, it was rebinned to a 0.1-degree square grid.
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Figure 1. National Inter Agency Coordination regions (a) with rectangular approximations (b). The 
two-letter initials shown in (b) will be used throughout this report. The image (a) is adopted from 
Figure 1. National Inter Agency Coordination regions (a) with rectangular approximations (b). The
two-letter initials shown in (b) will be used throughout this report. The image (a) is adopted from
the National Interagency Coordination Center Wildland Fire Summary and Statistics Annual Report,
2003. The total number of lightning ignitions (2002–2015) is listed below for each region.
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Due to the inclusion of human quality control, the dataset is passed from the River
Centers to NCEP with a lag time of up to 12 h, so may not be available as a monthly
bundled dataset until weeks later, making it not useful operationally but ideal for a climate
and research dataset, as it extends from 2001 to the present.

2.2. Methods
2.2.1. Collating Data to Ignition Events

Each fire ignition was associated with all flashes within a 0.1-degree box centered on
the ignition point that fell within +/− 2 days of the reported fire. Distances between flashes
and the reported ignition point were calculated, as were area-weighted averages of flash
rate and current in radius bins of 1 km up to 5 km. For each flash, the time to a preceding
rainfall of 0.1, 0.2, and 0.5 mm/h was tabulated up to a maximum of 7 days (a procedure
similar to Vant-Hull et al. [7]).

To include the coarser precipitation data, the procedure pivots to an examination of
overall storm pattern in the vicinity of fire ignitions. Fire, lightning, and precipitation data
were binned into 5 × 5 grids at 0.1-degree resolution centered on each fire ignition point. A
separate analysis was performed similar to the above, but for which spatial lightning density
maxima were used as grid centers so that fire and non-fire cases could be compared. A
lightning peak was classified as “fire” if an ignition occurred at any point in the 5 × 5 grid
within +/− 1 day.

All the gridded analyses with related figures were performed using the following
procedure:

1. A fixed grid of 0.1 × 0.1 degrees is imposed on CONUS, with data within each spatial
bin accumulated over each hour;

2. Points of interest are detected, defined either by (a) fire ignitions or (b) spatial lightning
maxima within this grid system;

3. Grids of 5 × 5 are retained centered on each of these points of interest, used to form the
spatial average environment around either (a) fire ignitions or (b) lightning maxima.

Since the ignition data is only available at the daily resolution, all occurrences of
lightning and rainfall within +/− 24 h of noon on the day of ignition are associated with
it. Lightning maxima are classified and averaged separately depending on whether a fire
ignition is present within the 5 × 5 grid surrounding it. Since fires tend to cluster, this
procedure of recentering on each ignition point means that many features will be counted
several times. But as we are interested in defining average local environments, this repeat
counting is not a distortion.

For the gridded data, lightning is restricted to currents greater than 15 kA and precipi-
tation greater than 0.5 mm/h. In the interest of space, the gridded analysis is not broken
down by region.

In many cases, the average pattern is very different from most individual patterns.
Since individual cases are of primary interest, statistics of the location of fires and rain
peaks relative to spatial lightning peaks are compiled. The data is filtered by Julian day,
retaining only those from mid-May to mid-September, reducing the proportion of frontal
storms as well as frozen precipitation. The fine-scale analysis is subdivided into regions
corresponding to the National Forest Service divisions, as shown in Figure 1. The use
of rectangular areas greatly speeds the calculations without a large impact on regional
differences. The colors shown are used throughout the analysis to represent various regions,
with the entire area denoted in black. The coarse scale analysis is CONUS wide.

2.2.2. Multi Variable Linear Regression

The most common way to demonstrate dependence between variables is linear regres-
sion, which requires converting discrete events such as lighting flashes and fire ignitions to
continuous variables. This is carried out by averaging counts into area densities. In our
case, the 5 × 5, 0.1-degree grids described above will contain counts of flashes and fire
ignitions relative to each fire ignition, summed over 12 years. The 5 × 5 grid averages will
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provide 25 paired data points. Using the rule of thumb that there must be at least 10 data
points for each predictor variable [22] affords us 2 predictor variables. The natural choice is
negative and positive flashes to assess their relative importance to ignition, as shown in the
following equation:

Ignition density = kp • (pos flash density) + kn • (negative flash density) + Io (1)

With Io, kp, and kn as coefficients to be determined, ideally, Io should equal zero.
As described in the analysis section, other variables such as precipitation and com-

pound variables such as (flash density) × (current) were discarded due to the low correla-
tion between the predicted and observed ignition density.

3. Results and Analysis
3.1. Flash Density versus Days from Ignition

The frequency of lightning flashes as a function of days relative to the stated day of
ignition appears in Figure 2. The normalized compilation of all flashes exhibits a very
similar peaked pattern among all the regions except the southeast, which is skewed towards
flash densities prior to the stated ignition day. Typically, 90% of flashes that occur do so
within +/− 1 day of the fire ignition, so the analysis is limited to +/− 2 days (note that
for roughly 50% of fires not attributed to human causes, there are no associated flashes in
this time range, hence the attribution to smoldering lightning ignitions referred to in the
introduction). Storms may occur multiple times during this 5-day period, so to assess the
accuracy of the storm ignition data, it is best to look at periods with only one storm.
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Figure 2. Temporal distribution of lightning flashes relative to reported day of fire ignition. (a) Distri-
butions for the case of any number of storms during the 5-day period. (b) Distributions for the case
of only one storm during the 5-day period. (b) is weighted by the same total flashes as (a).

This is carried out on the right side of Figure 2, still weighted by the total number
of flashes. This indicates that the Northern Rockies are most likely to have one storm
during a 5-day period, while the South-East region is highly likely to have multiple storms,
dropping to the lowest percentage of flashes. All patterns remain peaked, though less so in
the southern regions. The SE outlier curve on the left is attributed to the Florida peninsula,
host to the highest flash density in CONUS [23]. This makes it less likely to have lone
storms in a 5-day period, so the SE fraction is greatly reduced on the right. The magnitudes
of other regions behave in a similar manner. On average, there are six flashes on the same
day within 0.05 degrees of each fire ignition.
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3.2. Flash Density versus Distance from Ignition

Flash density and total current are shown as a function of distance on the top row of
Figure 3, with regional differences shown in color. The densities are greatest in the vicinity
of the fire, falling off immediately (in the first km) to low density with a slow decline with
distance, resembling the results of MacNamara et al. [18]. The Great Basin and Northern
Rocky regions have the most pronounced peak, consistent with the temporal peaks of
Figure 2, as densities in space and time are related.
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correspond to the regions of Figure 1.

3.3. Flash Current

Figure 4 examines lightning currents in the vicinity of fire ignitions. The normal-
ized shape of the current histogram (Figure 4a) remains unchanged with the region,
i.e., shifted towards the negative current, with a smooth transition into the positive
current. If the negative flashes are separated out (Figure 4c), their average current with
distance from the fire location decreases slightly with distance [18], and the averages
vary up to 20% with the region, with the Southeast currents being the largest. The
fraction of the total current that is positive does not show a clear pattern with distance
from the fire (Figure 4d), though there are clear regional differences, with the Southeast
having the smallest fraction of the positive current. A drop in positive current with
distance from a fire ignition (bottom right) is only clear in the Northeast and Southeast.
The fraction of positive flashes roughly mirrors the current amplitude of these flashes
(Figure 4b). It should be noted that the Southeast region has a much higher negative
current and much lower positive current than the other regions, reflecting the same
anomalous behavior seen in Figure 2. It should be noted that the division of regions
in Figure 1 breaks up an unexplained region of positive lightning in the Great Plains
while highlighting the low positive fraction in the Southeast [23].
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3.4. Spatial Patterns of Precipitation and Lightning

For comparison to precipitation, the 5 × 5 grids at 0.1-degree resolutions were formed
for averages of precipitation, flash count, maximum current (positive and negative), and
positive flash fraction. These grid averages appear in Figure 5, showing these values
accumulated in the vicinity of each fire ignition (refer to Section 2 for a description of how
these are formed). Since the box is roughly half the size of the 0.05 deg radius used above
(though flashes are strongly peaked), the number of fires drops to 72,411. The flash rate and
current peak at the fire ignition points in the center, while the precipitation peak is offset
to the Northeast. Though both flash rate and precipitation tend to peak in the convective
core of storms, the precipitation continues for a longer period [24], so the hourly average
will become displaced in the prevailing direction of travel. The positive flash count is
less strongly peaked than the total flash count because positive flashes are more likely to
originate in the anvil rather than the core [25].
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averages of values in a 5 × 5 grid, each bin 0.1 degree on a side. The fire ignition is located in the
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Positive flashes are rarer than negative flashes but tend to have longer-lasting current
flows, thus assumed to be more likely to ignite fires [10,11]. In Figure 6, the ignitions per
flash in the vicinity of each ignition are shown. If all ignitions that occurred per each hour
period were spaced more than 0.3 degrees apart, the fire density on the left of Figure 6
would be a single spike at the center, as would be the ignitions per positive or negative
flashes. Given that fires and flashes cluster around an ignition point, it is rather surprising
that the ignitions per negative flash actually are lower at the point of ignition, while the
ignition ratio for positive flashes is higher at the center than expected. There are several
possible reasons for this. Our approach examines each fire in turn so that the total ignition
probability for the central fire is a binary variable always equal to 1, while the flash rate
is strongly peaked at the ignition location. This explains the drop in ignition ratio in total
lightning as an artifact of the selection process. But to explain why a similar drop is not
seen in the positive flash count will require a deeper examination of the storm structure, as
carried out in the next section.

All the patterns in Figures 5 and 6 exhibit a peaked pattern (or valley in the case of
ignitions per positive flash). To examine the significance of these peaks, a Student T test
was applied to see if the inner 9 grid values were statistically distinct from the outer ring of
16 values. In all cases, the difference was significant at the three-sigma level or above.
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3.5. Lack in Spatial Coincidence of Ignitions, Lightning, and Precipitation Peaks

The strong central tendency of total flash density should not be confused with the
density of peak locations during individual events. When peak locations alone are examined,
the density of lightning peaks is slightly peaked at ~8% above the average at the fire
location (graphics not shown due to low contrast), even though the total flash density
is strongly peaked over the fire location (Figure 5). This means that for a majority of
events, the lightning peak does not coincide with the point of ignition (compared to
MacNamara et al. [18]). An analogy would be overlapping Gaussian distributions for
which the central peak of the total distribution does not correspond to individual peaks.
The rain and lightning peaks are strongly coincident, despite the total rainfall being shifted
weakly to the NE (Figure 5).

Individual ignition events can be examined for the occurrence of local peaks in light-
ning flash density and precipitation, as well as the presence or absence of precipitation or
lightning. These statistics appear in Table 1. We see immediately that the most common
scenario is no rain or lightning, and the possibility of not having a lightning flash coinci-
dent within the same day of ignition is 72.4%. Schultz et al. [1] observed a 50–60% lack of
coincidence of lightning within a 5 km radius, which they attributed to smoldering before
the fire became evident enough to be reported. A possible reason for the discrepancy is
the restriction to data largely east of the Rockies in this current work which means lower
reporting rates of small fires in the less inhabited mountains are discounted. It may also be
the exclusion of flashes with currents below 15 kA in our dataset.

Table 1. Occurrence of precipitation, lightning flashes, and their peaks in the vicinity of reported
wildfire ignitions. Statistics based on 92,512 fires.

% No Rain Rain Present Rain Peak Row Totals

No Lightning 61.1 10.0 1.3 72.4

Lightning Present 3.4 14.6 1.7 19.7

Lightning Peak 1.4 5.4 1.1 7.9

Column totals 65.9 30.0 4.1 100%

If the row of Table 1 relating to the no lightning cases is ignored, we see that it is
roughly 2.5 times more likely for ignitions to occur if they are not coincident with a local
peak in lightning, perhaps because the rainfall is typically higher at the lightning peaks.
This helps explain the drop in ignition efficiency for total flashes near the ignition points;
in fact, it is five times more likely for fires to be ignited when offset from the rain peak.
But the positive lightning flash density is less strongly peaked. Due to the tripole charge
structure of storms, positive flashes are more likely to occur in the anvils and stratus shield
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than negative flashes, which concentrate more in the precipitation core [25–27]. The ratio
of negative charges to positive is, therefore, much larger in the core, and so even though
the ignitions per flash are suppressed due to rain, the number of ignitions is higher. The
result is a false sense that the positive flashes are more efficient in producing ignitions in
the center, when instead, the increase in negative flashes is responsible for the increase
in ignitions.

3.6. Regression of Flash Density versus Ignition Density

The other reason why the positive ignition ratio may more closely match the ignition
pattern compared to negative flashes is the longer continuing current, which makes positive
flashes more efficient at ignition and, therefore, more closely correlated to ignitions. This
can be shown via multivariable regression relating the positive and negative flash densities
in Figure 6 to ignition density (Figure 7). The plot of all ignitions vs. all flashes provides a
strong correlation but has a non-zero intercept.
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Figure 7. Plots of ignition density vs. flash density summed over each 5 × 5 0.1-degree grid centered
on each ignition Left: plot of ignitions vs. ALL flashes. Right: Plot of observed ignitions vs. predicted
ignitions from multivariable linear regression model based on positive and negative flash density.
The R-squared values are adjusted to account for the number of predictor variables.

When the flashes are split into positive and negative, it is seen that each positive flash
is roughly 60 times more likely to ignite a fire than a negative flash, and the intercept
is nearly cut in half at the sacrifice of a slightly lower correlation. The sum of absolute
deviations is also about 5% smaller when positive flashes are included in the model, tipping
the balance towards the combined model. These positive indicators, combined with the
drop in adjusted correlation mean model improvement due to the introduction of polarity,
remains ambiguous and must be cross-checked with other indicators as described below.

It should be emphasized that this linear fit to 25 grid points applies to the results of
summing over a large number of cases in which ignition occurred in the immediate vicinity,
preconditioning regional fuel state while averaging out local variability. If the fitting was
performed to individual flashes, the effects of vegetation would be more apparent, and the
correlations would be much lower. The fit would be improved if the point at the top right
was slightly higher in the observations. This point corresponds to the central ignition point
at which average rainfall increases, which dampens ignition efficiency and is not accounted
for in the model. Though removal drops the overall ignition rate ratio of positive/negative
flashes down to roughly 50:1, the change in the quality of fit when the polarity is introduced
remains as ambiguous as before and thus is not reported.
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The more physically reasonable model of relating ignition density to the combined
(flash density) × (average current) was slightly less successful, perhaps because ignitions
are more likely caused by extreme flashes, and the current averaged over 10 × 10 km squares
does not well represent the distribution of individual flashes. A model that included rainfall
was also less successful, presumably for the same built-in assumption of gridpoint-wide
uniformity of rainfall.

As a check on whether the 60-fold increase in ignition efficiency implied by the fit
of Figure 7b is meaningful or not, we can apply the following simple test: is the fraction
of fires ignited by positive flashes larger (by a factor of 60) than the fraction of positive
flashes overall? We find that about 5% of flashes within 0.05 degrees (roughly 5 km) of
a fire ignition are positive. Koshak et al. [23], using the same NLDN dataset, found a
national average that varied from 4% to 8% depending on the year, with much of the
variability driven by an, as yet, unexplained peak in positive lightning in the northern
Great Plains. Similar results are reported in MacNamara et al. [18]. The fraction of fires
ignited by positive lightning thus matches the fraction of positive lightning overall,
contradicting the claim that positive lightning flashes are more efficient at ignition.
From this, we conclude that the linear regression, as applied to area averages, is not an
appropriate tool for evaluating the effects of positive lightning, perhaps because the
fraction of positive lightning is so small that the added variable is simply fitting noise
rather than contributing signal.

3.7. Comparison of Lightning Density Peaks: Fire versus No Fire

All the analysis has looked at so far is the conditional statistics in the presence of
wildfire ignition. It would be illuminating to compare ignition events to non-ignition
events, but then we require an independent definition of an event. A good candidate is the
location of flash density peaks so that the properties of lightning peaks with and without
co-located fire ignitions can be compared. A total of 4,024,259 lightning peaks without
fires were compared to 37,325 peaks associated with fires. A spatial comparison appears
in Figure 8, for which each row of fire versus no fire is normalized to the maximum value
of that row. A lightning peak was classified as “no fire” if there were no ignitions in the
5 × 5 grid centered on the peak.

Several of the behaviors in Figure 8 are expected; the average flash density is higher,
and the precipitation is lower in the presence of fire ignitions. Though the trend is slight,
the precipitation does reach a peak coincident with the flash peak if there is no fire, but this
shallow peak is translated to the NE if a fire is present. The average positive flash rate and
average current are also higher during ignition events, though the weighting of positive
flashes to the south while precipitation is weighted to the north (as expected due to storm
motion) remains unexplained. The roughly 50% increase in the peak value of positive flash
counts from the no-fire to the fire cases matches that of the overall lightning count, though
the positive lightning counts exhibit less contrast from the rim to the center peak. From
this comparison, there is no indication that positive flashes are more associated with fire
ignitions than negative flashes, as the positive flash fraction is essentially unchanged in
the peaks.

The same test of peak significance applied to Figures 5 and 6 (end of Section 3.4)
was applied to Figure 8; all peaks shown are statistically distinct at the three-sigma level
or greater.
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4. Discussion: Applicability and Future Work

The most unique aspect of this work is the demonstration that fire ignitions are more
likely to occur when the rainfall peak is spatially offset from the lightning peak. Can this
be applied to fire forecasting systems such as the widely used Wildland Fire Assessment
System (WFAS) [28–31] that estimates wildfire occurrence based on weather predictions
and fuel moisture? Spatial offsets between precipitation and lightning could occur because
surface rainfall is affected by the horizontal wind field more than lightning. Upper-level
wind forecasts are readily available, though, in most cases, lightning would be striking
moistened fuel. Alternatively, differences in the timing of peak occurrence combined
with storm motion would also result in the horizontal displacement of lightning and
precipitation. Since predictions need to include detailed storm modeling, this second
mechanism is less applicable to large-scale forecasting. Both these mechanisms would
be most relevant in the absence of a dry layer below the storm clouds that evaporates
precipitation before hitting the ground [6].

The location of ignitions is relative to lightning peaks, and the storm motion vector
would help establish if lightning striking outside the storm would remain dry due to the
storm path. This aspect may be important, though difficult to predict, and will be included
in the next stage of work.

The National Lightning Detection Network used in this work detects ground strikes
but cannot capture continuing currents. The GOES 16 Lightning Mapper (GLM) has com-
plementary capabilities, so a merge of the two instruments would be a large step forward in
lightning ignition studies. A continuation of this work comparing long continuing current
ground strikes to shorter current strikes will be pursued.

5. Conclusions

On a fine scale, lightning flash density drops quickly with distance from an ignition, by
a factor of between 2 and 3 within the first km distance before flattening out. Current and
positive flash fractions drop more gently with distance, exhibiting a much greater variation
with the region that does the total flash count. We saw that roughly 70% of reported fires
could not be associated with lightning on the same day, an effect Schultz et al. [1] attributed
to smoldering with a similar miss rate of 50–60%.

Moving to the coarser scale 0.1-degree grids, we see that in the presence of fire ignitions,
total lightning is more sharply peaked than either positive flash count or current, while
the average rainfall is offset to the NE. The ratio of ignitions per flash for total lightning
is actually lower at the fire ignition location due to strongly peaked lightning density.
For positive flashes, the ignitions per flash ratio are higher at ignition points. However,
individual cases show a different pattern from the average patterns. It is unlikely for fire
ignitions, lightning peaks, and precipitation peaks in all cases to coincide, being just one of
several possible configurations. This agrees with recent results by other researchers [18].

Multivariable linear regression suggests that positive flashes are roughly 60 times
more efficient at igniting fires than negative flashes. The positive flash density tends to peak
more strongly during ignition events. Though this result is consistent with the assumption
that positive flashes are more efficient at fire ignition, we can not claim the case to be
statistically definitive, and it is contradicted by the positive flash fractions seen in this work
and other recent studies [1,18] that remain unchanged in the vicinity of fire ignitions.
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