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Abstract: This study developed an objective approach for determining fire source location based
on an artificial neural network (ANN) model. The samples for the ANN model were obtained
from computational fluid dynamics simulations. A data preprocessor was devised to transform
numerical simulation results into a format that could be used by the ANN model prior to network
training, and bootstrap aggregation was used to improve the model’s predictive performance, which
was evaluated by the leave-one-out approach. The results show that the 95% left-tailed confidence
limit was 0.7921 m for planar dimensions of 5 m × 5 m, which is sufficiently accurate for practical
application. Additionally, comprehensive experiments were conducted in the confined space of a fire
compartment that was geometrically similar to various fire source locations to explore soot patterns
and verify the ANN model. The experimental results reveal that the differences between the locations
determined in scaling experiments and the locations predicted by the ANN were invariably less
than 1 m. In particular, the difference was only 0.17 m when the fire source was located in the centre
of the fire compartment. These results demonstrate the feasibility of the devised ANN model for
reconstructing fire source location in engineering applications.

Keywords: artificial neural network; soot deposition; fire dynamics simulator; combustion experi-
ment; scale rule

1. Introduction

Although most buildings are equipped with fire protection and extinguishing systems,
fire remains a major threat to our daily lives. For example, statistics reported by the Fire
Services Department (FSD) of the Hong Kong Special Administrative Region Government
in 2011 [1] indicate that the number of fire fatalities had steadily increased since 2008.
Fire prevention, which includes conducting fire investigations to reveal the cause of a fire
accident, has thus become the top priority of the FSD. Their key tasks in such investigations
are to identify a fire source and determine its power. We interviewed fire investigators
from the FSD and the Fire Investigation and Research Unit of Fire and Rescue in New
South Wales, Australia, regarding their fire investigation practices. This revealed that
these investigators rely solely on their experience and previous fire records to identify the
source and power of a fire. This motivated our research team to develop a scientific tool
that provides additional information to assist fire investigators in their decision making.
The application of intelligent approaches in fire engineering began in 1985, when Milke
and McAvoy [2] constructed an ANN of a fire detection system with multiple sensors
for discriminating fire and non-fire sources. In the subsequent 15 years, various other
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intelligent approaches were adopted for fire detection. In 2000, Lee et al. [3] applied an
ANN to predict sprinkler actuation time, and the predictions demonstrated the feasibility
of applying intelligent approaches in fire engineering. The work was further extended
to predict the occurrence of flashover in a compartment fire [4]. The general regression
neural network fuzzy adaptive model was developed by Lee et al. [5] to predict the height
of the thermal interface inside a fire compartment, with the model trained on limited
experimental data [6], and to detect the occurrence of flashover [7] and the temperature
and velocity profiles at the door opening of a fire compartment [8]. In addition, Asgary
et al. [9] used a self-organising map to model the risk of structural fire incidents. Moreover,
Xu et al. [10] adopted an ANN to predict the temperature of a tubular truss in a fire.
Barros-Daza et al. [11] used ANN to classify mine fires and support firefighters’ decision
making. In recent years, Buffington et al. [12] and Lattimer et al. [13] have used the ANN
for fire simulation. Compared with computational fluid dynamics (CFD) results, ANNs can
provide full-field predictions 2–3 orders of magnitude faster than CFD simulations. ANNs
have powerful pattern recognition capabilities, and with the improvement of computer
arithmetic power, ANNs have been widely applied and developed in the last decade.
For example, in image recognition, they are used for face recognition and medical image
recognition [14], and in natural language processing, they can be used for translation and
language generation [15].

Recently, fire investigators adopted CFD simulations to aid their work in predicting
and analysing the spread of smoke and hot gases generated by a fire [16]. Delémont and
Martin [17] applied CFD simulations for a fire forensic investigation of a gallery after a
fire, in which they assumed there were two possible fire scenarios with different fire source
locations and powers. They conducted CFD simulations for the two fire scenarios and
compared the results with actual carbonisation and damage to the wood panels of an
edifice to identify the most probable fire source location. However, they considered only
hot-gas temperature. Hofmann and Muehlnikel [18] conducted a fire investigation with
Fire Dynamics Simulator (FDS) [19–21], a CFD model widely adopted for simulating fire
dynamics, to reconstruct the spread of a fire in a five-storey building that had resulted
in two fatalities. They assumed the fire location and power prior to the CFD simulation,
which revealed that the non-compliance of several building products was responsible
for the fatalities. Chi [22] conducted a CFD simulation to investigate a factory fire, with
this simulation also based on assumptions about the fire source location and power. The
agreement between the CFD simulation result and the actual damage caused by the fire
confirmed the assumptions. All of the aforementioned CFD simulations were conducted
with certain assumptions regarding the locations and powers of fire sources, relying on the
expertise of fire investigators. Therefore, if these assumptions are inaccurate, there may
be a large deviation between simulation results and reality. Additionally, our review of
the literature shows that fire investigators currently do not exploit the rich information
embedded in the smoke deposition patterns on walls in their forensic work.

CFD simulations adopt a deterministic model that has been developed from theories in
physics and chemistry. Inverse modelling is another technique used for modelling system
behaviour that is based on the history of a system’s performance. These techniques are also
adopted in fire investigation. Such work was first reported in 1998, when Barshick [23]
applied an ANN model to detect the residue of ignitable liquid accelerants in fire debris
from cases of suspected arson. In addition, Bayesian networks were applied to evaluate
evidence in fire incident investigations [24], while a fuzzy system was applied to establish
an expert system for identifying ignitable liquid [25] via gas chromatography–mass spec-
trometry. However, the abovementioned studies focused only on decision making (e.g., fire
detection and whether a fire is arson). Zhang et al. [26] used the fire scene reconstruction
technique to reconstruct fire development through computer simulations. Overholt and
Ezekoye [27] recently adopted a Bayesian inference approach to reconstruct fire source loca-
tion based on the collected radiant heat flux projected onto the walls of a fire compartment.
This approach exploits the fact that heat radiation invariably travels in a straight line and
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decays according to an inverse-square law, which means that fire source location can be
estimated from the collected radiant heat fluxes on walls. However, as fire investigators
cannot determine the radiant heat fluxes on walls during a fire, this approach may not
be practical for reconstructing the location of the fire source. All of the aforementioned
studies indicated that their actual fire-investigation practice was an inverse process; that is,
they reconstructed the cause of a fire using clues gathered at the fire scene. Therefore, we
developed an inverse modelling technique for the accurate reconstruction of the location
of a fire source, unlike previous fire investigators that estimated fire source location by
following simple guidelines based on experience or their own judgement. In this study,
we adopted ANN techniques to reconstruct the location of a fire source from soot patterns
deposited on walls. The samples for the ANN model were obtained from CFD simulations.
A data preprocessor was devised to transform numerical simulation results into a format,
and bootstrap aggregation was used to improve the model’s predictive performance, which
was evaluated by the leave-one-out approach. Finally, comprehensive experiments were
conducted in the confined space of a fire compartment to verify the proposed ANN model.
The overarching aim of this study is to optimize the accuracy and efficiency of fire source
location surveys through the implementation of a data-driven approach reliant on ANN.
This strategy is intended to avoid producing a biased investigation [28], thereby bolstering
the validity of the study’s outcomes.

The structure of the remainder of this paper is as follows. Section 2 presents the method
to reconstruct the location of a fire source and the model architecture of the proposed ANN
model. Model performance and the experimental results in a scaled space are presented in
Section 3. Section 4 summarizes the conclusions and future works.

2. Reconstruction of the Location of a Fire Source Using an ANN
2.1. Soot Patterns Deposited on Walls

Incomplete combustion creates soot particles and is typical in a compartment fire,
which lacks oxygen due to poor air entrainment into the reaction zone of the fire’s flame.
The mechanisms of smoke deposition include diffusion, sedimentation, inertial impaction,
turbulent diffusion, and thermophoresis, with the latter being dominant [29]. Ciro et al. [30]
investigated soot deposition due to thermophoretic action by immersing cooled and un-
cooled cylinders into a fire and measuring the soot deposition rates. Their measurements
agreed with the results of numerical simulations that solved boundary layer equations
along a cylinder surface with consideration for the thermophoretic transport of soot parti-
cles. Cohan embedded a primary soot deposition model in FDS version 5.5.1 and verified
the model using experimental results [31]. Soot deposition on a vertical wall is dominated
by thermophoretic deposition and turbulent deposition. The velocity of thermophoretic
soot-particle deposition on a wall depends on the temperature gradient at the wall surface.
Fire experiments carried out by Riahi et al. [32] confirmed that the thermophoretic deposi-
tion model proposed by Talbot et al. [33] is suitable for predicting the smoke deposition
on the wall surfaces facing a fire. This model calculates thermophoretic velocity, which is
the velocity of soot particles originating from a hot sooty gas and approaching a wall. The
mass of soot deposition per unit area of a wall is obtained by integrating the product of the
deposition velocity and the soot concentration near the wall over time. Papavergos and
Hedley [34] developed a model for turbulent deposition in vertical duct flow to determine
the deposition velocity of particles of different sizes. FDS version 6 [35] was released in
2014 and simulates soot deposition on walls by implementing a thermophoretic deposition
model similar to that of Talbot et al. [33] but using a velocity coefficient modified with
reference to Brock [36]. Additionally, FDS adopts the turbulent deposition model developed
by Papavergos and Hedley [34], with minor adjustments of the coefficients and constants.
As the performance of FDS in soot deposition simulation was verified by experiment [37],
we used FDS in the present study to simulate soot deposition. Figure 1 presents a typical
pattern of soot deposition on a wall after a fire, illustrating that the actual profile of the
smoke layer on a wall can be unclear. This is typically the case, so data preprocessing is
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required to determine the profile of a smoke layer, i.e., to determine the location of the
white broken line in Figure 1, which demarcates an upper smoke zone and lower cold-air
zone.
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Figure 1. Example showing that the pattern of soot deposition on a wall does not clearly demarcate
an upper smoke zone and lower cold-air zone. The white broken line demarcates the upper smoke
layer and lower clear layer.

He et al. [38] developed a least-squares approach to determine the smoke profile, as
follows:

φ(y, H) =

{
pl f or y < H
pu f or y > H

where pl =
1
H
∫ H

0 p(y)dy and pu = 1
Hr−H

∫ Hr
H p(y)dy,

(1)

and H is the height of the smoke layer above the floor of a room with headroom Hr. Thus,
φ(y, H) demarcates the upper smoke layer and lower clear layer, where p is the mass of soot
deposited on the wall. The least-squares approach also involves determining the height of
the smoke layer, h, such that the squared error in Equation (2) is minimised:

H = min
h

{
1
H

∫ h

0
[p(y)− pl ]

2dy +
1

Hr − H

∫ Hr

h
[p(y)− pu]

2dy
}

(2)

This approach was adopted in the present study to determine the soot patterns on walls.

2.2. Data Collection
2.2.1. CFD Simulation

The input and output of an ANN model that reconstructs a fire location according
to the soot patterns deposited on walls are taken as the soot patterns and the coordinates
of the fire source, respectively. The soot interface obtained from Equation (2) contains
many discrete data, which would constitute a high number of inputs; this is the curse of
dimensionality [39] of the ANN. Thus, the required number of training samples must be
drastically increased. Obtaining samples from experiments is expensive because many
experimental results are required to describe the correlation between soot patterns and a
fire source. Therefore, we used CFD simulations to obtain the samples for this study; FDS
was used to simulate fire development and soot deposition patterns on walls. Figure 2a
shows the floor plan of a fire compartment with dimensions of 5 m × 5 m × 4 m (H) and
a door opening with dimensions of 1 m × 2 m (H) providing ventilation. The boundary
surfaces of the extended region (except the wall of the fire compartment and the floor) were
patched as having atmospheric pressure. A fire bed with dimensions of 1 m × 1 m × 0.1 m
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(H) was located inside the fire compartment. With reference to Chartered Institution of
Building Services Engineers (CIBSE) Guide-E [40], the maximum heat release rate of the
fire was taken to be 290 kW/m2. The fire was assumed to first develop according to a
fast-growth t-squared fire model; then, at time 1400 s after fire ignition, it was assumed to
start decaying to zero. As shown in Figure 2b, 41 cases with various fire bed locations were
simulated by CFD to obtain the patterns of soot deposited on the left wall, central wall
and right wall. The locations marked with circles are boundary locations, whereas those
marked with crosses are randomly placed inside of the boundary locations.

Fire 2023, 6, x FOR PEER REVIEW 5 of 18 
 

 

opening with dimensions of 1 m × 2 m (H) providing ventilation. The boundary surfaces 
of the extended region (except the wall of the fire compartment and the floor) were 
patched as having atmospheric pressure. A fire bed with dimensions of 1 m × 1 m × 0.1 m 
(H) was located inside the fire compartment. With reference to Chartered Institution of 
Building Services Engineers (CIBSE) Guide-E [40], the maximum heat release rate of the 
fire was taken to be 290 kW/m2. The fire was assumed to first develop according to a fast-
growth t-squared fire model; then, at time 1400 s after fire ignition, it was assumed to start 
decaying to zero. As shown in Figure 2b, 41 cases with various fire bed locations were 
simulated by CFD to obtain the pa erns of soot deposited on the left wall, central wall 
and right wall. The locations marked with circles are boundary locations, whereas those 
marked with crosses are randomly placed inside of the boundary locations. 

 

 
(a) (b) 

Figure 2. Geometry of the fire compartment and floor plan of fire source: (a) Geometry configura-
tions and (b) floor plan of fire source locations in 41 cases. The locations marked with circles are 
boundary locations, whereas those marked with crosses are randomly placed inside of the boundary 
locations. 

A structured mesh was used in simulations. The resolution of the mesh was calcu-
lated using an equation provided in FDS [41] and presented here as Equation (3), 

𝐷∗ =
�̇�

𝜌 𝑐 𝑇 𝑔
 (3)

where 𝐷∗ is a characteristic length such that 4 < 𝐷∗/𝛿𝑥 < 16, as suggested by [35], �̇� is 
the heat release rate of the fire in units of kilowa s, 𝜌  and 𝑇  are the density and tem-
perature of the ambient, 𝐷∗ = 0.586 m. By se ing the mesh size (i.e., 𝛿𝑥) to 0.1 m, 𝐷∗/𝛿𝑥 
was obtained as 5.863, which lies between 4 and 16. The total number of mesh volumes in 
the computational domain was 300,000. Upon the completion of the CFD simulation, the 
mass of soot deposited per unit wall area was captured and used to determine the soot 
interface via Equation (2). 

  

−2 −1 0 1 2
0

1

2

3

4

5

X
-D

ir
ec

ti
on

 (
m

)

Y-Direction (m)

Door

L
ef

t W
al

l

R
ig

ht
 W

al
l

Central Wall

Figure 2. Geometry of the fire compartment and floor plan of fire source: (a) Geometry configurations
and (b) floor plan of fire source locations in 41 cases. The locations marked with circles are boundary
locations, whereas those marked with crosses are randomly placed inside of the boundary locations.

A structured mesh was used in simulations. The resolution of the mesh was calculated
using an equation provided in FDS [41] and presented here as Equation (3),

D∗ =

( .
Q

ρ∞cpT∞
√

g

) 2
5

(3)

where D∗ is a characteristic length such that 4 < D∗/δx < 16, as suggested by [35],
.

Q
is the heat release rate of the fire in units of kilowatts, ρ∞ and T∞ are the density and
temperature of the ambient, D∗ = 0.586 m. By setting the mesh size (i.e., δx) to 0.1 m, D∗/δx
was obtained as 5.863, which lies between 4 and 16. The total number of mesh volumes
in the computational domain was 300,000. Upon the completion of the CFD simulation,
the mass of soot deposited per unit wall area was captured and used to determine the soot
interface via Equation (2).

2.2.2. Data Preprocessing

Owing to the curse of dimensionality [39] of the ANN, the CFD simulations would
have needed to produce a sufficient number of samples for model training, which would
have required a long computational time. Thus, we reduced the dimensionality of the
input vector via the following approach. In the CFD simulation, the length of each wall
was divided into N divisions. After the CFD simulation, the height of the soot interface of
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each division Hx (where x = 1, 2, . . . , N) was obtained by using the soot concentrations
simulated with CFD along the height of that division in Equation (2). We thus obtained
N data that described the soot interface of that wall. To reduce the dimensionality of the
input vector, three input parameters were obtained for each wall, as follows.

1. The average height of the smoke interface (h), which is the average value of N heights

of the soot interface (i.e., h =
N
∑

x=1
Hi/N);

2. The average gradient of the smoke interface (m), which is the slope of the straight
line (i.e., H = mx + c) that best fits N heights of the soot interface;

3. The average curvature of the smoke interface (κ), which is the coefficient of the
squared term (i.e., a) of the quadratic equation (i.e., H = ax2 + bx + c) that best fits N
heights of the soot interface.

2.3. ANN Modelling
2.3.1. Model Architecture

An ANN is a powerful non-parametric model used to simulate the behaviour of
nonlinear systems. Accordingly, we used an ANN to simulate the correlation between a
fire location and soot patterns left by a fire on walls, as this correlation is complex and can
only be estimated by taking a numerical approach. The input and output parameters of the
ANN model used in this study are summarised in Table 1.

Table 1. Summary of the input and output parameters of the ANN model.

Type No. Description

Inputs

1 Average height of the smoke interface on the left wall (hl)
2 Average slope of the smoke interface on the left wall (ml)
3 Average curvature of the smoke interface on the left wall (κl)
4 Average height of the smoke interface on the central wall (hb)
5 Average slope of the smoke interface on the central wall (mb)
6 Average curvature of the smoke interface on the central wall (κb)
7 Average height of smoke interface on the right wall (hr)
8 Average slope of the smoke interface on the right wall (mr)
9 Average curvature of the smoke interface on the right wall (κr)

Outputs 1 X-coordinate of the fire bed centre (X)
2 Y-coordinate of the fire bed centre (Y)

The multi-layered perceptron (MLP) [42] model is a traditional ANN model that was
developed decades ago and has been widely adopted in different engineering disciplines
due to its simple architecture and easy implementation. The architecture of the MLP used
in this study is shown in Figure 3. The basic unit of an MLP model is an artificial neuron,
which is a mathematical unit with multiple inputs and a single output. The first part of the
neuron sums the input values, and the resulting sum passes to an activation function that
produces the output. The neurons of the MLP model are arranged into three layers. The
first layer is an input layer that receives input values from the user. Therefore, the number
of neurons in this layer equals the number of input values plus one dummy input (not
shown in Figure 3), where the input value equals one.

The second layer is called the hidden layer. The most common activation function
of the neurons of this layer is the sigmoid function (i.e., y = 1/(1 + e−x)), which endows
the model with nonlinearity. The number of hidden neurons in this layer determines the
degree of nonlinearity. It was mathematically proven that an MLP with a single hidden
layer and sufficient number of hidden neurons is a universal function approximator [43].
The number of hidden neurons can be estimated by different rules of thumb; the rule we
adopted is given by the following equation, in which nh is the number of hidden neurons,
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Ntr is the number of training samples, and Nin and Nout are the numbers of inputs and
outputs of the MLP model, respectively:

nh =
√

Ntr +
Nin + Nout

2
(4)
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The neurons of the input layer and hidden layer are fully interlinked. A weighting
factor is assigned to each of the links to scale the data fed from the input layer to the hidden
layer. The last layer is the output layer, and its number of neurons equals the number of
output values. The neurons of the hidden layers and output layers are also fully interlinked.
Normally, the activation function of the neurons is linear; i.e., each output is a weighted
sum of the outputs from neurons of the hidden layer.
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2.3.2. Model Training

An MLP model can simulate the behaviours of nonlinear systems if the weights of the
links between the layers are suitably selected. To this end, historical data are needed for
training an MLP model; this training is typically performed via backpropagation, which
is an error gradient-driven approach in which a weight is reduced if its increase causes
an increase in the overall error. As backpropagation is an iterative process of adjusting
the model parameters according to the output error of the last adjusted model, if all of the
available samples are used to train a model, any error embedded in the samples will be
fitted. This is denoted as overfitting and was prevented from occurring in this study by
using the early-stop cross-validation training approach.

Three types of available samples are used for model training: training samples, val-
idation samples and testing samples. Initially, the weights of all links of an MLP model
(i.e., model parameters) are randomly assigned. Then, in each iteration of the backprop-
agation process (i.e., epoch), the intermediately trained model is applied to the training
samples to evaluate the training error for adjusting the model parameters. Additionally, the
intermediately trained model is applied to the validation samples to evaluate the validation
error. If this error does not improve after a certain number of epochs (e.g., 200 epochs), the
iteration of the backpropagation process is stopped, and the intermediate model with the
minimum validation error is taken as the trained model. The performance of the model can
be evaluated using the testing samples, which are unseen in the model-training phase.

If the number of available samples is limited, it is unreasonable to reserve a group of
samples for evaluating system performance. Instead, we used leave-one-out validation,
which is performed as follows. Initially, the first sample is selected as a testing sample,
while the other samples are used to train the model. Upon the completion of model training,
the trained model is applied to the first sample to evaluate the first prediction error. In the
next step, the second sample is selected as the testing sample, while the other samples are
used to train the model. Upon the completion of the model training, the trained model
is applied to the second sample to evaluate the second prediction error. The procedure
is repeated until the last prediction error is evaluated. If there are N samples, then N
prediction errors are obtained via this leave-one-out approach.

However, we note that there is randomisation in the above model training: i.e., the
random sampling of the training and validation samples. Thus, it is possible that one may
select “good” samples for model training, resulting in a good prediction. We prevented
this from occurring by using a bagging approach [44], which increased the robustness of
the model. Bagging was implemented in the leave-one-out validation process as follows.
When one of the 41 samples was selected as the testing sample, the other samples were
bootstrap-sampled (with replacement) to training samples (20 samples) and validation
samples (20 samples) to train the MLP model. The same set of samples was bootstrap-
sampled again to train another MLP model. This process was conducted 1000 times to
create 1000 MLP models, which were fed with the input of the testing sample to produce
1000 prediction outputs. The final predicted output was the average of the 1000 prediction
outputs. The overall model training is summarised in the flowchart in Figure 4.



Fire 2023, 6, 303 9 of 18Fire 2023, 6, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 4. Flowchart showing the training algorithm incorporating leave-one-out validation and bag-
ging, where i represents the ith sample of the 25 random source locations shown in Figure 2b and j 
is the index of the model trained by the samples obtained through bootstrap resampling. 

3. Results and Discussion 
3.1. Results of the MLP Prediction 

Figure 5 shows the changes in mean square error (MSE) versus the number of repe-
titions of the training loop. At the beginning of the training, since the network weights are 
randomly selected, the MSE is very high and then drops sharply by repeating the training 
loops. The network training stops at the green circle in Figure 5 since there is no further 
improvement in the validation error (after 200 epochs), and the network with the least 
error (i.e., epochs = 120) is chosen to approximate the output functions. The number of 
hidden neurons is another factor to influence the performance of an MLP model. The 
number of hidden neurons determines the performance of an MLP model. By use of Equa-
tion (4), the number of hidden neurons was estimated to be 11. The rule-of-thumb choice 

Figure 4. Flowchart showing the training algorithm incorporating leave-one-out validation and
bagging, where i represents the ith sample of the 25 random source locations shown in Figure 2b and
j is the index of the model trained by the samples obtained through bootstrap resampling.



Fire 2023, 6, 303 10 of 18

3. Results and Discussion
3.1. Results of the MLP Prediction

Figure 5 shows the changes in mean square error (MSE) versus the number of repeti-
tions of the training loop. At the beginning of the training, since the network weights are
randomly selected, the MSE is very high and then drops sharply by repeating the training
loops. The network training stops at the green circle in Figure 5 since there is no further
improvement in the validation error (after 200 epochs), and the network with the least error
(i.e., epochs = 120) is chosen to approximate the output functions. The number of hidden
neurons is another factor to influence the performance of an MLP model. The number of
hidden neurons determines the performance of an MLP model. By use of Equation (4),
the number of hidden neurons was estimated to be 11. The rule-of-thumb choice of the
number of hidden neurons was justified in a sensitivity study, in which we carried out
11 trials to observe the performance of the MLP model with a fixed number of hidden
neurons, ranging from 6 to 16 (i.e., 11 ± 5). In each trial, 25 prediction errors were obtained
when adopting the leave-one-out approach. A log-normal distribution was assumed to
fit these 25 prediction errors because each error (i.e., the distance between the predicted
location and the actual location of the fire bed) was invariably positive and unbounded.
The upper and lower limits of the 95% confidence interval of the distribution of each trial
were obtained and are plotted in Figure 6. The fact that the confidence intervals overlapped
each other demonstrates that no trial was superior; that is, the performance of the MLP
model was not sensitive to the number of hidden neurons. Therefore, 11 hidden neurons
were adopted in the MLP model.
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The model training approach shown in Figure 2b was adopted for the 41 samples
extracted from the CFD simulations. The predictions are the locations of the fire beds
reconstructed by the ANN model, and the actual and predicted locations of the fire beds
are summarised in Figure 7a.
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Figure 7. Results of the MLP prediction. (a) The difference between actual locations and predicted
locations: The open and solid circles are the actual locations and predicted locations of the fire beds,
respectively. (b) Statistical analysis of the MLP prediction error showing that the prediction error was
no more than 0.7921 m at a 95% confidence level.

The histogram shown in Figure 7b summarises the 25 prediction errors and shows that
all were less than 0.7 m. A log-normal distribution was applied to fit the error distribution,
and the 95% left-tailed confidence limit was found to be 0.7921 m. Therefore, it was
statistically justified that the prediction error of the bagging approach-supported MLP
model was no more than 0.7921 m. In addition, the prediction by ANN could reduce the
fire point to 1.97 m2 (area with 0.7921 m radius), which was only 7.8% of the room area
(25 m2). A comparison of the error with the room size (i.e., 5 m × 5 m) with a single fire
source, a fixed heat release rate (290 kW/m2) and a single opening indicated that the error
is acceptable for engineering applications.
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3.2. Effect of the Heat Release Rate on the Prediction Results

We also investigated the effect of the heat release rate of a fire on the soot patterns
on the walls. Thus, we carried out CFD simulations using heat release rates of 100, 200,
400 and 800 kW/m2, in addition to a heat release rate of 290 kW/m2, with the same room
geometry and same fire location (X = 3.5 m; Y = 1.0 m). The results are presented in Figure 8,
which shows the height of the smoke interface on the four compartment walls. The fire was
located closer to the left wall, and we thus observed that the smoke interface on the left wall
was lower than that on the right wall. An increase in the heat release rate magnified the
deviation in the smoke interface profile between walls, but the overall profiles were similar
for the different heat release rates. We thus believe that the ANN model trained using the
data for the 290 kW/m2 fire is also applicable to reconstructing fire source locations in fire
scenarios having the same room geometry but different heat release rates.

We used the 41 samples shown in Figure 2b with a heat release rate of 290 kW/m2 to
train 1000 MLP models through the random extraction of training and validation samples.
The 1000 MLP models were combined by adopting the bagging ensemble approach. The
trained ensemble MLP model was then applied to predict the fire source locations from
the patterns of soot deposited on the walls for different heat release rates (i.e., 100, 200,
400 and 800 kW) in the fast-growth t-squared fire model and different fire source locations.
The prediction errors are summarised in Figure 8, which shows that the prediction error
was the lowest (less than 0.5 m) for a heat release rate of 290 kW/m2. This result was
expected because the same set of data was used to train the ensemble MLP model. The
model performances were similar for heat release rates of 100, 200 and 400 kW/m2, with
all prediction errors being less than 2 m. From an engineering point of view, this prediction
error is acceptable for practical application. In contrast, the prediction error was large
for a heat release rate of 800 kW, reaching a maximum value of 3.7 m; this might have
been due to the large difference between the heat release rates of the training samples
(i.e., 290 kW/m2) and testing samples (i.e., 800 kW/m2).

3.3. Experiments in a Scaled Space

We performed comprehensive combustion experiments to verify the performance of
our ANN model. As a 1:1 experiment would incur a high cost and require much time
and space, we scaled down the fire compartment presented in FDS by a ratio of 1:50.
Thus, in contrast to the simulations, which we conducted in a fire room with dimensions
of 5 m × 5 m × 4 m, we conducted these experiments in a scaled fire compartment with
dimensions of 0.1 m × 0.1 m × 0.08 m. The structure and a photograph of the scaled fire
compartment are shown in Figure 9a,b, respectively. The compartment was made from
tempered glass with high-temperature assistance. Thermal paper that changed colour once
heated was attached to the inner wall of the fire compartment, as shown in Figure 9c, and
insulation material was wrapped around the exterior of the fire compartment to reduce
heat loss, as shown in Figure 9d. Ethylene glycol was used as fuel because it has high
calorific value (i.e., 1180.26 kJ/mol), is inexpensive and is easy to obtain. Photographs of
the combustion experiment taken from different views are shown in Figure 9e–g. The fuel
was placed on an optical plate that had a hole with a diameter of 2.5 cm, a scale (Figure 9g)
was drawn for precise positioning, and the flame height was controlled by a lifting platform
(Figure 9e,f). An experiment was stopped when the pattern of soot deposited on the thermal
paper no longer changed.
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Figure 8. Prediction results under different heat release rates. (a) Profiles of the smoke interface of
the pattern of soot deposition on the compartment walls at different heat release rates with the fire
source located at (X = 3.5 m, Y = 1.0 m) and summary of prediction errors at different heat release
rates: (b) 100 kw, (c) 200 kw, (d) 290 kw, (e) 400 kw and (f) 800 kw.



Fire 2023, 6, 303 14 of 18

Fire 2023, 6, x FOR PEER REVIEW 13 of 18 
 

 

performances were similar for heat release rates of 100, 200 and 400 kW/m2, with all pre-
diction errors being less than 2 m. From an engineering point of view, this prediction error 
is acceptable for practical application. In contrast, the prediction error was large for a heat 
release rate of 800 kW, reaching a maximum value of 3.7 m; this might have been due to 
the large difference between the heat release rates of the training samples (i.e., 290 kW/m2) 
and testing samples (i.e., 800 kW/m2). 

3.3. Experiments in a Scaled Space 
We performed comprehensive combustion experiments to verify the performance of 

our ANN model. As a 1:1 experiment would incur a high cost and require much time and 
space, we scaled down the fire compartment presented in FDS by a ratio of 1:50. Thus, in 
contrast to the simulations, which we conducted in a fire room with dimensions of 5 m × 
5 m × 4 m, we conducted these experiments in a scaled fire compartment with dimensions 
of 0.1 m × 0.1 m × 0.08 m. The structure and a photograph of the scaled fire compartment 
are shown in Figure 9a,b, respectively. The compartment was made from tempered glass 
with high-temperature assistance. Thermal paper that changed colour once heated was 
a ached to the inner wall of the fire compartment, as shown in Figure 9c, and insulation 
material was wrapped around the exterior of the fire compartment to reduce heat loss, as 
shown in Figure 9d. Ethylene glycol was used as fuel because it has high calorific value 
(i.e., 1180.26 kJ/mol), is inexpensive and is easy to obtain. Photographs of the combustion 
experiment taken from different views are shown in Figure 9e–g. The fuel was placed on 
an optical plate that had a hole with a diameter of 2.5 cm, a scale (Figure 9g) was drawn 
for precise positioning, and the flame height was controlled by a lifting platform (Figure 
9e,f). An experiment was stopped when the pa ern of soot deposited on the thermal paper 
no longer changed. 

 
Figure 9. Geometry and photographs taken during the combustion experiment. Scaled fire compart-
ment: (a) geometry, (b) photograph of the fire compartment, (c) photograph showing thermal paper 
a ached to the inner wall, (d) photograph showing insulation wrapped around the exterior wall 
and photographs taken from different views: (e) front view, (f) left view and (g) top view. 

(a) 

10 cm
10 cm

8 cm

4 cm 4 cm

4 cm

2 cm

(b) (c) (d) 

(e) (f) (g) 

Figure 9. Geometry and photographs taken during the combustion experiment. Scaled fire compart-
ment: (a) geometry, (b) photograph of the fire compartment, (c) photograph showing thermal paper
attached to the inner wall, (d) photograph showing insulation wrapped around the exterior wall and
photographs taken from different views: (e) front view, (f) left view and (g) top view.

A new software program, FSRSP (refer to Fire source reconstructed by soot pattern),
was developed to accurately recognise the smoke interface of the soot pattern on thermal
paper and then predict the fire location by using the proposed ANN model. As shown in
Figure 10, once the thermal papers on the left, central and right walls were uploaded into
the software FSRSP, the embedded OpenCV module was used to extract the smoke interface
of the soot pattern (blue lines), and the experimental data were scaled (i.e., enlarged) by
a factor of 50:1 to observe the scale rule and to maintain consistency with FDS. Then
the quadratic fitting results (red lines) were calculated and used to predict and draw the
fire location by using the aforementioned ANN model shown on the lower right corner
of Figure 10. More details on the usage of the new software FSRSP are presented in
Supplementary Materials.

We conducted an experiment five times for each fire location. Figure 11 compares the
profiles of the smoke interface of the experimental and FDS soot patterns. The five results
of the experiment conducted with the fire source at the centre of the fire compartment
showed stability, i.e., there was a similar trend in the variation of the soot pattern on the
left, central and right walls, and this was the same trend obtained by FDS.

We next took the average of the five results of the smoke interface of the soot pattern
for the different six-source locations (presented in Table 2). The average height of the smoke
interface, average gradient of the smoke interface and average curvature of the smoke
interface were then calculated as the input of the ANN model introduced in Section 3.3.
The predictions obtained were the locations of the fire source reconstructed by the ANN
model, and the differences between the scaled actual source locations and the predicted
source locations are presented in Table 2. The results show that the differences between
the scaled actual values and predicted values were less than 1 m for all of the source
positions. In particular, when the fire was located at the centre of the fire compartment, the
difference between the actual and predicted locations was only 0.17 m. This demonstrates
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the feasibility of using the ANN model to reconstruct the location of a fire source in
engineering applications.
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4. Conclusions 
A fire source location is usually estimated by fire investigators at a fire scene accord-

ing to their experience. In this study, we developed an objective approach for fire source 
location by developing an ANN model for reconstructing the location of a fire source from 
the patterns of soot deposited on walls. Samples for the ANN model were collected using 
FDS, which is a useful tool with which to simulate fire development and patterns of soot 
deposition on walls. A data preprocessor was used to transform the numerical simulation 
results to a usable format, and bootstrap aggregation was adopted to improve the model 
prediction performance, which was evaluated by the leave-one-out approach. The 95% 
left-tailed confidence limit was 0.7921 m; i.e., the prediction error of the ANN model was 
no more than 0.7921 m. Additionally, an increase in the heat release rate magnified the 
difference between the smoke interface profiles of walls, but the profiles for different heat 
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To verify the ANN model, we conducted a series of combustion experiments in a fire 
compartment that was geometrically similar for a range of fire source locations. A new 
software program, FSRSP, was developed to accurately recognise the smoke interface of 
the soot pattern on thermal paper and then predict the fire location. The results showed 
that the difference between the scaled actual location and the predicted location was less 
than 1 m at all positions and was a minimum (i.e., 0.17 m) when the fire source was at the 
centre of the fire compartment. Thus, the ANN model is acceptable for reconstructing the 
location of a fire source in engineering applications. The newly developed software, 
FSRSP, can assist fire investigators in performing forensic work in an objective way. 

In conclusion, the utilization of an ANN in fire investigation efforts revolutionizes 
the traditional approach to fire investigation. With its data-driven insights and objective 
analyses, the ANN serves as a valuable asset in modern firefighting. By quickly and 
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Figure 11. The profiles of the smoke interface of the experimental and FDS soot patterns: (a) left wall,
(b) central wall and (c) right wall.



Fire 2023, 6, 303 16 of 18

Table 2. Scaled real location, scaled predicted location and the difference between them for different
fire source locations.

Experiment
No.

Fire Source Location
in Experiment

(cm, cm)

Scaling of Fire Source
Location
(m, m)

Predictions Generated
by the ANN Model

(m, m)

Difference between the Actual and
Average Predicted Locations

(m)

1 (5.00, 0.00) (2.50, 0.00) (2.36, −0.09) 0.17
2 (7.00, 2.00) (3.50, 1.00) (3.22, 0.37) 0.68
3 (7.00, 0.00) (3.50, 0.00) (2.87, −0.18) 0.66
4 (3.00, 0.00) (1.50, 0.00) (1.73, 0.12) 0.26
5 (5.00, 2.00) (2.50, 1.00) (2.40, −0.01) 0.99
6 (3.00, 2.00) (1.50, 1.00) (1.74, 0.18) 0.85

4. Conclusions

A fire source location is usually estimated by fire investigators at a fire scene according
to their experience. In this study, we developed an objective approach for fire source
location by developing an ANN model for reconstructing the location of a fire source from
the patterns of soot deposited on walls. Samples for the ANN model were collected using
FDS, which is a useful tool with which to simulate fire development and patterns of soot
deposition on walls. A data preprocessor was used to transform the numerical simulation
results to a usable format, and bootstrap aggregation was adopted to improve the model
prediction performance, which was evaluated by the leave-one-out approach. The 95%
left-tailed confidence limit was 0.7921 m; i.e., the prediction error of the ANN model was
no more than 0.7921 m. Additionally, an increase in the heat release rate magnified the
difference between the smoke interface profiles of walls, but the profiles for different heat
release rates were similar to each other.

To verify the ANN model, we conducted a series of combustion experiments in a fire
compartment that was geometrically similar for a range of fire source locations. A new
software program, FSRSP, was developed to accurately recognise the smoke interface of
the soot pattern on thermal paper and then predict the fire location. The results showed
that the difference between the scaled actual location and the predicted location was less
than 1 m at all positions and was a minimum (i.e., 0.17 m) when the fire source was at the
centre of the fire compartment. Thus, the ANN model is acceptable for reconstructing the
location of a fire source in engineering applications. The newly developed software, FSRSP,
can assist fire investigators in performing forensic work in an objective way.

In conclusion, the utilization of an ANN in fire investigation efforts revolutionizes
the traditional approach to fire investigation. With its data-driven insights and objective
analyses, the ANN serves as a valuable asset in modern firefighting. By quickly and accu-
rately narrowing down potential fire locations, the ANN approach empowers firefighters to
respond swiftly and decisively, thereby enhancing the overall efficiency and effectiveness
of fire investigations.

Our study still has some limitations. First, the training samples were relatively ho-
mogeneous: we only set up samples with different fire locations in a single room, which
limited the generalisation ability of the ANN model. Therefore, further design in terms
of fire power, fuel type and room type can be performed to increase the diversity of the
samples and yield better generalisation ability of the ANN model. Room types can be
designed in terms of room aspect ratio, exit locations, and ventilation. Second, the proposed
ANN model and developed software, FSRSP, need to be examined in a real building fire.
Finally, except for the ANN model, deep learning methods such as convolution neural
network (CNN) and long short-term memory network (LSTM) models can also be used to
predict fire location or fire power.

Supplementary Materials: Code and documentation related to the FSRSP software (version 1.0) can
be found at: https://github.com/HTBCF/FSRSP (accessed on 2 August 2023).

https://github.com/HTBCF/FSRSP
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