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Abstract: The uncontrolled spread of fire can have huge effects on ecosystems. In Ecuador, in 2022,
wildfires caused a loss of 6566.66 hectares of vegetation cover. Ibarra is an Andean canton that
has also been exposed to wildfires and their effects. The aim of this study was to map wildfire
susceptibility in the Ibarra canton. Seven factors that directly affect these fires were examined:
precipitation, temperature, water deficit, potential evapotranspiration, slope, proximity to roads, and
land cover and land use. The variables were reclassified using Geographic Information Systems and
a multicriteria analysis. The results showed that Ibarra has four susceptibility categories: very low,
moderate, high, and very high. The more susceptible areas are those considered to have high and
very high exposure, occupying 82% of the surface. Consequently, the most susceptible land covers
are crops, pastures, shrub vegetation, and forests.

Keywords: multicriteria analysis; GIS; fire risk assessment; natural disasters; hazard mapping; Ibarra

1. Introduction

Different disturbances, including fires, can significantly impact the dynamics of ecosys-
tems [1]. These fires cause the loss of individuals and biomass, which can occur suddenly
or episodically, leading to alterations in the ecosystem’s interrelationships [2]. Wildfires
can spread across various ecosystems in rural areas and are not limited to a single land
cover [3]. These fires are primarily categorized into human-ignited, anthropogenic, and
naturally induced fires [4]. Human activities predominantly contribute to most wildfires
on a global scale. For instance, in Europe, humans are responsible for an astounding 95%
of all wildfires [5]. One direct consequence is the loss of natural vegetation cover. Fires
are estimated to consume between 300 and 400 Mha (million hectares) of vegetation cover
annually [6]. Wildfires pose a recurring problem in several regions worldwide, such as the
Mediterranean region [7,8], Oceania [9], and North America [10]. The Andean region also
faces this recurring issue, with wildfires becoming increasingly frequent during drought
periods, affecting forest and vulnerable ecosystems such as paramos [11–15].

Wildfires have shifted from natural to anthropogenic origins exponentially, leading to
increased fire events [16]. The anthropogenic origin can be attributed to various factors,
such as land use changes [17], the characteristics of farming systems [18–20], population
density and distribution [16,21], and accessibility [22]. Other factors that influence wildfire
occurrence are associated with climate factors such as temperature, wind, or humidity [23,24].
In recent decades, climatic variables have become one of the most critical environmental
problems, partly due to the impacts of climate variability and change [1,25]. Due to rising
temperatures, the probability of vegetation cover suffering from ignition increases [24,26,27].
Topography and wind are also significant factors that influence fires, with fires spreading
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faster on slopes [24,28,29]. However, the main cause that increases the likelihood of ignition
is biomass burning by pasture, forest, and residue fires, which are carried out to convert
new land for agricultural and livestock use [30,31].

Consequently, it is necessary to achieve efficient wildfire risk management to prevent
their occurrence and recurrence [32]. One of the methods to efficiently manage this type
of fire is the development of wildfire risk mapping [33,34]. Wildfire susceptibility maps
can evaluate the favorable or unfavorable conditions a place presents for developing and
spreading fires. For this reason, susceptibility mapping is used as a management tool in
many countries worldwide, as it provides helpful information for prevention, not only to
decision makers but also to the entire community in general [35].

Traditional in situ measurements are useful for assessing forest fire risk. However,
they are costly and often inaccurate due to the human and economic resources required for
their development [36]. The use of Geographic Information Systems (GISs) and remote sens-
ing for the development of susceptibility mapping offers a more cost-effective solution than
in situ methodologies and provides decision makers with precise information [11,28,37,38].
Consequently, this type of risk can be analyzed across large land areas using georefer-
enced information on the climatic, topographic, and biophysical variables involved in risk
construction.

Several techniques and approaches have been developed in wildfire risk mapping [28,
37,39–41]. In recent years, fire risk has been modeled using GIS-based multicriteria de-
cision analysis techniques [7,35,42]. Given the vulnerability of forest ecosystems to fire,
GIS-MCDA methods not only generate information adapted to user-specific needs but
also produce data that decision makers can easily comprehend. Various examples of
MCDA methods can be found in the literature, such as the analytic hierarchy process
(AHP) [35,40,42–44], the fuzzy AHP [45–47], the analytic network process [37,48], fuzzy
logic [38], and artificial neural networks [39,49]. This study aims to address the existing
knowledge gap concerning the threat that wildfires pose to Andean ecosystems. While
several studies have been conducted on wildfire risk mapping, few have applied the AHP
to the Andean region.

Some studies in Ecuador have mapped wildfire risk [50–54]. Ref. [53] used GIS data to
identify the factors influencing the probability of forest fires in the country. The authors
of [50], focusing on the Metropolitan District of Quito, not only determined the susceptible
areas in the DMQ but also identified optimal management measures to reduce the danger,
such as the location of the optimal routes for reaching the most dangerous areas. On the
other hand, in the context of the Loja canton, located south of Ecuador, the authors of [54]
determined that three machine learning techniques—logistic regression, logistic decision
tree, and multivariate adaptive regression spline—could suitably identify areas susceptible
to forest fires. These two studies are among the few developed in Ecuador to assess wildfire
risk in Andean localities.

Considering that wildfires led to the loss of 6566.66 hectares of vegetation cover in
Ecuador due to 1249 recorded incidents in 2022, the current investigations are indeed
insufficient [55]. The Ibarra canton, the capital of the Imbabura Province, has experienced
significant exposure to wildfires. Imbabura ranks among the top five provinces in Ecuador
with the highest number of fires in 2022 [55]. Consequently, several hectares of natural
vegetation in this territory have been lost. However, there are no studies on the area’s
susceptibility to this type of fire. Therefore, the main objective of this study was to develop
a statistical model to map susceptibility to wildfires by using GIS data and conducting a
multicriteria analysis in Ibarra, Ecuador. The model used in this study assigns weights to
climatic and physical variables chosen for their practicality of application and their direct
relationship with the occurrence of wildfires. Our central hypothesis is that this study’s
statistical susceptibility model behaves similarly to a map of the recorded hot spots and
historic wildfires in the study area.
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2. Materials and Methods
2.1. Study Area

Ibarra is an Andean canton located 115 km north of Quito with an area of 1105.56 km2

(Figure 1). The canton is the capital of the Imbabura province, and it has five urban parishes
(San Francisco, El Sagrario, Caranqui, Alpachaca, and Priorato) and seven rural parishes
(San Antonio, La Esperanza, Angochagua, Ambuquí, Salinas, La Carolina, and Lita). San
Antonio, La Esperanza, and Angochagua are rural parishes in the Andean zone. In contrast,
the rural parishes of Lita and La Carolina are located in tropical areas.

Figure 1. Location of the study area.

According to the authors of [56], this canton houses 217,469 inhabitants. The main pro-
ductive activities are agricultural, industrial, and services, of which the most representative
is the service sector, comprising 58% of the area’s wholesale and retail trade activities. The
industrial sector, centered around the manufacturing industry, represents 19.38%. Finally,
the agricultural sector, with 11.61%, mainly involves the rural parishes Lita, La Carolina,
and Salinas, with the main activities being associated with livestock, agriculture, forestry,
and fishing [57].

Ibarra has an altitudinal range of 480 to 4500 m.a.s.l. and has average temperatures
ranging from 4◦ to 23 ◦C. The climate in the canton is divided into three periods: one
dry and two rainy seasons. The dry season is distributed between July and August,
with precipitation of no more than 34.69 mm and temperatures of no less than 15.90 ◦C.
The two rainy seasons take place between January–June and September–December, with
precipitation values of 123.2 to 143.3 mm and temperatures between 16 and 16.29 ◦C [58].

2.2. Methods

The design of this study was non-experimental and cross-sectional, and it involved
using spatially explicit models. The methodological process was divided into two sections:
(a) the generation of the wildfire susceptibility model and (b) the validation of the model.

2.2.1. The Generation of the Wildfire Susceptibility Model

Conducting a literature review on global [59], regional [28], and local [24,50] aspects
allowed us to identify some factors that condition wildfires. The Andean region is charac-
terized by a mountainous topography in which an environmental mosaic usually develops
(conditioned by micro-interactions between temperature, precipitation, slope, and/or
terrain orientation) [60,61]. These factors influence forest structure, humidity, and fuel accu-
mulation [61]. Therefore, factors grouped into physical and climatic factors were selected.
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The climatic factors considered were water deficit, temperature, potential evapotran-
spiration (PET), and wind speed (Figure 2). Water deficit may serve as a more accurate
variable to reflect the impact of accumulated precipitation on vegetation’s water content,
which can turn into fuel in a wildfire scenario [28,61]. Therefore, precipitation was not
included. An increase in temperature leads to higher evapotranspiration, resulting in lower
soil moisture and the land cover having an increased vulnerability to ignition [41]. This
condition increases fire susceptibility due to the propensity of dry vegetation to ignite [28].
Wind speed influences a wildfire’s intensity by reducing the vegetation’s moisture content
and supplying oxygen for combustion [62]. Additionally, wind plays a crucial role in
controlling the spread of fires, which is influenced by an area’s aspect and slope [24].
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temperature; (C) Potential evapotranspiration; (D) Water deficit.

On the other hand, the physical factors considered were slope, terrain orientation or
aspect, land cover, road proximity, and the effect of burning efficiency (BE) (Figure 3). The
last variable was expressed through the relative greenness index (RGI). BE is the percentage
of total carbon released from the carbon pool contained in the aboveground biomass before
combustion [63]. Some authors have shown that low air humidity and high temperatures
can increase the burning efficiency because BE relates to land cover properties such as
flammability, phenology and composition, vegetation structure, fine fuel moisture, or water
content [64–66]. Topography influences the generation and dispersion of wildfires, so there
is usually a link between fire, slope, and aspect [67]. The fire spread rate rises when the
slope increases [68,69]. Aspect contributes to the susceptibility of a terrain to wildfire and
its spread. For example, in contrast to west-facing slopes, east-facing slopes may receive
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less rain during the rainy season in some equatorial areas due to wind and precipitation
patterns. The result is that vegetation is more prone to wildfires than on eastern slopes
with denser and wetter vegetation. In addition, in several regions of the world, it has
been shown that there is a relationship between human activities and the occurrence of
forest fires [67,70]. The shorter the distance to roads, the greater the probability of fire
occurrence [61].
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Finally, each factor was reclassified according to the particular characteristics that
contribute to the occurrence of fires. Therefore, five levels of susceptibility were established
for each of them—very low, low, moderate, high, and very high—except for land cover,
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for which a null category was also established. The susceptibility assignment process
was carried out using the practical interval rule, where the mean would be plus one
standard deviation or two standard deviations to determine the different susceptibility
categories [71]. The values assigned to susceptibility were one for very low susceptibility,
two for low susceptibility, three for moderate susceptibility, four for high susceptibility, and
five for extreme susceptibility.

• Physical factors

Slope: The slope rating was obtained using the STRM-DEM in a Geographic Infor-
mation System (GIS) with 30 m spatial resolution. The raster geodata were calculated in
percentage units, and the reclassification of these data was performed by assigning ranges
between 5% and 45% in five susceptibility levels [28] (Table 1).

Table 1. Slope classification for the city of Ibarra.

Value Slope Ranges (%) Susceptibility

1 <5 Very low
2 5–12 Low
3 12–25 Moderate
4 25–45 High
5 >45 Very high

Terrain orientation (Aspect): The terrain orientation was calculated using the DEM
using a GIS. Aspect can influence wind behavior, water availability, and humidity. The
susceptibility conditions based on the slope aspect for this equatorial zone were divided
into the five classes presented in Table 2.

Table 2. Aspect classification.

Value Aspect (◦) Susceptibility

1 Flat Very low
2 West Low
3 South, Southwest Moderate

4 North, Northeast, Southeast,
Northeast High

5 East Very high

Land cover: Sentinel 2B satellite images from 5 and 24 August 2018 were downloaded.
These images were selected because they were the most recent images depicting the study
area with no cloud cover. The imagery was calibrated and atmospherically corrected using
QGIS software version 3.28.11. Then, relative topographic and geometric corrections were
made to the images using the digital elevation model of the Radar Shuttle Topographic
Mission (DEM-SRTM) with a final resolution of 30 m. These data were georeferenced to the
study area using the WGS84 reference system, UTM projection, zone 17 South. Additionally,
because Sentinel satellite images present a different spatial resolution to Landsat images,
resampling was performed with the help of the neighbor-joining method, increasing the
pixel size to 30 m [72].

To make the supervised classification, 160 real coordinates collected from Google Earth
and validated in the field were used as reference data. Thus, 112 coordinates were used to
generate the supervised LULC classification and 48 control points for validation (i.e., 70%
of the reference data were used to create the cartographic model, and 30% of the reference
data were used for validation). Thus, eight land covers were obtained: forest, paramos,
scrubland, crops, pasture, urban areas, water bodies, and bare soil.

Validation was performed by applying the following statistical analyses: global clas-
sification precision (PG), user precision (PU), and producer precision (PP). The PG is the



Fire 2024, 7, 81 7 of 20

percentage of correctly classified samples within a confusion matrix. It is calculated by
dividing the total number of correctly classified pixels by the total number of reference
pixels [73]. PU expresses the commission accuracy of the classification; in other words,
it delivers information on how often the classified observations belong to that class or
category. The PP or omission accuracy determines the percentage of actual observations
of a particular category correctly classified on the map [74]. For each land cover and land
use, classification accuracy was determined using the producer accuracy and user accuracy
methods [73,75] (Table 3). Finally, fire susceptibility categories were assigned based on the
information compiled after consultation with the eleven experts mentioned above (Table 4).

Table 3. Land cover validation.

Year 2018

Cover PP (%) PU (%)

1 85.71 100
2 100 100
3 100 100
4 45.45 100
5 100 100
6 100 33.33
7 100 62.50
8 100 100

Abbreviations: 1 represents bare soil; 2 represents forest; 3 represents water bodies; 4 represents crops; 5 represents
paramos; 6 represents pastures; 7 represents scrubs; 8 represents urban zones.

Table 4. Land cover classification.

Value Land Cover Susceptibility

0 Waterbodies and Urban zones Null
3 Forest Moderate
4 Pastures and Scrubs High
4 Crops and Paramos Very high

Relative greenness index (RGI): RGI was calculated as a function of the Normalized
Difference Vegetation Index (NDVI) and expressed the burning efficiency (BE) [66]. NDVI
measures the indirect effect of water loss, mainly changes in leaf area and plant chlorophyll
content, so it is also considered sensitive to variations in plant water content [76]. NDVI is
commonly employed as a proxy of fuel for analyses of fire occurrence [41]. This premise
is the basis for considering that relative variations in NDVI can estimate BE, as presented
in Equation (1). BE is presented as an inverse function of the relative variation in NDVI,
which finally derives the relative greenness index (RGI) [77,78]. NDVI was calculated with
Equation (2). Finally, susceptibility was assigned through the practical rule of the interval
in the five susceptibility levels because zones with higher RGI are more likely to have
wildfires (Table 5).

RGIi =
NDVIi − NDVImin

NDVImax − NDVImin
(1)

NDVI =
NIR − Red
NIR + Red

(2)

where NDVIi corresponds to the NDVI value of a single period i. NDVImin and NDVImax
are the minimum and maximum values NDVI, respectively. RGI is the relative greenness
index (shown in percentage). NIR (or near-infrared) is the reflectance value in the near-
infrared channel of the image, and Red is the reflectance value in the red channel of
the image.
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Table 5. Relative greenness index classification.

Value RGI Ranges Susceptibility

1 <0.55 Very low
2 0.55–0.67 Low
3 0.67–0.79 Moderate
4 0.79–0.91 High
5 0.91–1.08 Very high

Proximity to roads: Data from the road network were obtained from Open Street Map.
The proximity to roads was calculated using the Euclidean distance tool in the ArcGIS
software version 10.8.2. The distance from each pixel of the road network to the nearest
source of a recorded fire outbreak was determined. Finally, five levels of susceptibility were
determined through the practical rule of the interval, where the shortest distances have
extreme susceptibility and the farthest distances have very low susceptibility (Table 6).

Table 6. Classification of proximity to roads.

Value Ranges of Proximity to the Tracks (Meters) Susceptibility

1 >200 Very low
2 150–200 Low
3 100–150 Moderate
4 50–100 High
5 <50 Very high

• Climatic factors

Mean temperature: A raster geodata of monthly mean data from 1970 to 2000 was
also obtained from the WorldClim database [79] to keep the same period as precipitation.
The data were projected to zone 17 South and delimited to the study area. We generated
a temperature raster geodatabase with 30 m of spatial resolution, which performed a
statistical downscaling process using SAGA GIS software, using altitude as a predictor
variable. Finally, susceptibility was assigned through the practical rule of the interval in
the five susceptibility levels because places with higher temperatures are more likely to
have fires [24,51,80] (Table 7).

Table 7. Temperature classification.

Value Temperature Ranges Susceptibility

1 <8.5 Very low
2 8.5–12.5 Low
3 12.5–16 Moderate
4 16–20 High
5 >20 Very high

Wind speed: Strong winds can spread fire rapidly through dry vegetation, even chang-
ing the direction that a fire spreads in, according to aspect [41]. Wind speed information
was downloaded from the World Wind Atlas at a height of 50 m and a spatial resolution of
282 m [81]. The wind speed was selected at a height of 50 m because the vegetation in this
Andean zone typically fluctuates between 0.2 m and 30 m. There are carex sp species (0.2 m)
in the paramos and cedrela sp species (30 m) in the humid tropical forests in the lower part
of the north of the canton.

The downloaded data were projected to WGS84 17S and resampled to a 30 m resolu-
tion, corresponding to the SRTM resolution. This conversion involved using the nearest
neighbor resampling algorithm with a resample tool in ArcGis software version 10.8.2.
Finally, the susceptibility was assigned using the practical rule of the interval in the five



Fire 2024, 7, 81 9 of 20

levels of susceptibility based on the fact that there is a greater probability of fire occurrence
where there is higher wind speed (Table 8).

Table 8. Wind speed.

Value Wind Speed Ranges Susceptibility

1 0.18–2 Very low
2 2–4 Low
3 4–6.5 Moderate
4 6.5–9 High
5 >9 Very high

Potential evapotranspiration (PET): The method outlined in [82] was used to calcu-
late PET by applying Equations (3)–(7), and Table 9. The susceptibility categories were
established using the practical interval rule (Table 10).

ETPTho = e ∗ L (3)

where:
e = unadjusted monthly evapotranspiration (mm/month).
L = correction factor, established for latitude 0◦, according Table 7.

Table 9. Correction factor.

Month 1 2 3 4 5 6 7 8 9 10 11 12

Latitude 1.04 0.94 1.04 1.01 1.04 1.01 1.04 1.04 1.01 1.04 1.01 1.04

Table 10. Classification of PET.

Value Ranges PET Susceptibility

1 <639 Very low
2 639–759 Low
3 760–881 Moderate
4 882–1003 High
5 >1003 Very high

e = 16 ∗
(

10 ∗ tm
I

)a
(4)

where:
e = unadjusted monthly evapotranspiration (mm/month).
tm = monthly average temperature (◦C).
I = annual heat index.
a = variable set.

ij =
(

tm
5

)1.514
(5)

where:
ij = Monthly heat index.
tm = Monthly temperature in ◦C.

I = ∑n
i=0 ij (6)

a = 0.000000675 ∗ I3 − 0.0000771 ∗ I2 + 0.01792 ∗ I + 0.49239 (7)

Water deficit: This factor was determined based on the water balance calculation using
the method outlined in [83]. Negative values are considered deficits, and positive values
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are considered surpluses (Equation (8)). Therefore, where there is a water deficit, there is a
greater probability of fire occurrence [61].

DH = P − PET (8)

where:
DH = water deficit.
P = average precipitation.
PET = potential evapotranspiration.
Susceptibility was established through the use of the interval rule of thumb, and five

categories were determined (Table 11).

Table 11. Classification of water deficit.

Value Ranges PET Susceptibility

1 >969 Very low
2 643–969 Low
3 317–643 Moderate
4 317–0 High
5 <0 Very high

• Wildfire susceptibility equation

To generate the susceptibility equation, we used the hierarchical multicriteria analysis
(AHP), a technique developed by the authors of [84] based on the multicriteria technique
to classify the different categories. The importance levels of the criteria were estimated
using paired comparisons and a scale outlined by the authors of [84], which is shown in
Table 12. The AHP was applied for the comparison of the eight selected variables. The
relative importance of the susceptibility variables was analyzed by comparing two factors
simultaneously. Those representing susceptibility situations were considered more relevant
to measure the hierarchy among the factors/indicators. For this purpose, a double-entry
matrix was constructed, with the factors in rows and columns, a main diagonal with a
value equal to 1, and the relative weight of the comparison in each cell (Table 13). For
example, temperature is considered to be a more critical factor than slope in defining
susceptibility; therefore, the factor “temperature” was assigned the value “7”, and slope
the inverse value was assigned a value of “1/7”. The vertical and horizontal averages of
the paired comparison were calculated, and finally, the multicriteria weighting by factor
was obtained.

Equations (9) and (10) were used to determine Vp and Ci [85]:

Vp =
k√W1 ∗ W2 ∗ W3 ∗ Wk (9)

Ci =
Vpi

Vpi + . . . + Vpk
(10)

where k = number of variables, and W = ratings.
The coherence coefficient (CR) was calculated according to Equations (11)–(13) in

order to validate the calculated weighted weights. Thus, for the equation to be considered
validated, the value of CR must be less than 0.10.

CR =
CI
Rci

(11)

CI =
λmax − n
(n − 1)

(12)

Rci =
1.98 × (n − 2)

n
(13)
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where λmax is the maximum Eigenvalue of the matrix, n is the number of variables used,
and Rci is the so-called random consistency index. This value depends on the number of
elements being compared.

Table 12. Scale used for pairwise comparisons.

Score Definition

1 Equal importance of one over the other
3 Moderate importance
5 Essential or strong importance
7 Very strong importance
9 Extreme importance

2, 4, 6, 8 Intermediate values among two judgements

Table 13. Pairwise comparison matrix.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Vp Ci λi

C1 1 1/7 5 3 3 1/4 5 1/5 1/4 0.90 0.08 1.69
C2 7 1 7 5 3 1/2 5 2 1/2 2.31 0.20 0.79
C3 1/5 1/7 1 2 1/5 1/3 2 1/7 1/5 0.39 0.03 0.97
C4 1/3 1/5 1/2 1 3 1/2 4 1/5 1/2 0.65 0.05 1.13
C5 1/3 1/3 5 1/3 1 1/2 5 1/3 1/2 0.75 0.06 0.98
C6 4 2 3 2 2 1 5 3 2 2.42 0.21 0.68
C7 1/5 1/5 1/2 ¼ 1/5 1/5 1 1/7 1/7 0.25 0.02 0.73
C8 5 1/2 7 5 3 1/3 7 1 3 2.31 0.20 1.18
C9 4 2 5 2 2 1/2 7 1/3 1 1.79 0.15 0.62

∑ 22.06 4.02 29.00 20.58 15.40 3.28 34.00 6.02 4.09 11.77 1.00 8.77

Abbreviations: C1 represents slope, C2 represents temperature, C3 represents potential evapotranspiration, C4
represents the relative greenness index, C5 represents the wind speed, C6 represents land cover, C7 represents
proximity to roads, C8 represents orientation terrain, C9 represents water deficit, Vp is the Eigenvector, Ci is the
weighting coefficient for each variable, and λi is the Eigenvalue.

The wildfire susceptibility equation (Equation (14)) was the product of the weighted
sum of the nine predictors.

WF = (0.08 × Slope) + (0.18 × Temp) + (0.06 × PET) + (0.07 × RGI)
+(0.06 × Wspeed) + (0.20 × Cov) + (0.03 × Roads)
+(0.17 × Aspect) + (0.14 × Def)

(14)

where WF = Wildfire Model Susceptibility; Slope = reclassified slope; Temp = reclassified
temperature; PET = reclassified potential evapotranspiration; RGI = the relative greenness
index; Wspeed = wind speed; Cov = reclassified land cover; Roads = the reclassified
Euclidean distance of the roads; Aspect = reclassified aspect; Def = reclassified water deficit.

The calculated CI was 0.13, which was then divided by the Rci (1.54) to obtain a value
of CR = 0.088. Thus, the consistency ratio is lower than 0.10. Thus, the model is suitable.
Based on Equation (14), the map algebra technique was applied based on the developed
matrix process, and the preliminary wildfire model was generated in a GIS environment.
The geospatial information was used with a uniform spatial resolution of 30 m because this
is a suitable pixel size for geospatial analysis [86]. Therefore, the selected variables had
spatial information available at 30 m resolution, and their resampling could be carried out
without causing territorial distortion. Once the preliminary wildfire susceptibility mapping
was completed, the map was filtered by eliminating isolated pixels that did not represent
anything relevant to our study. The wildfire susceptibility map was generated, validated
with heat spots, and divided into susceptibility categories. The maximum and minimum
values obtained after applying Equation (13) for wildfire susceptibility were considered
to define the susceptibility categories. These values are 5 and 0, respectively, considering
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that water bodies and urban areas have a null susceptibility to this type of fire. Finally,
the susceptibility was presented in five classes divided into equal intervals: very low, low,
moderate, high, and very high [28,37].

2.2.2. Susceptibility Model Validation

The model was validated using heat spots from the Brazilian National Institute for
Space Research (INPE) portal. The INPE has a database of heat spots for South America
from 1998, and for Ecuador, data dating back to 2000 can be obtained. For the study area,
information dating back to 1 January 2023 until 22 October 2023 was used, corresponding
to the AQUA, GOES, NOAA, TERRA, ATSR, and TRMM satellites. The information on
the heat spots was spatially crossed with the categories of high and extreme susceptibility,
and the following hypothesis was tested: a) there are similarities or associations between
the model obtained and the hot spots (they are associated). Verification was carried out
by applying the ROC curve’s low area. The latter analysis achieves the highest accuracy
when the values are closer to one (1) [87]. A Receiver Operating Characteristic (ROC)
curve was used to determine the accuracy of the wildfire susceptibility map [35,37,43,48,49].
This method allows one to analyze the true-positive and false-positive values at each
curve point. The Area Under the Curve (AUC) can be classified into five categories:
1 to 0.9 = excellent, 0.9 to 0.8 = very good, 0.8 to 0.7 = good, 0.7 to 0.6 = medium, and
>0.6 = poor [37,88]. A flowchart based on this methodological background was prepared to
simplify the understanding of our methodological process (Figure 4).
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3. Results

The study area includes varying degrees of risk: approximately 104.54 km2 (10%) is at
very low risk, 83.13 km2 (8%) at moderate risk, 886.90 km2 (81%) at high risk, and 16.32
km2 (1%) at very high risk, as shown in Figure 5. No low susceptibility areas were found
in Ibarra. When the areas of high and very high risk are combined, 82% of Ibarra canton
is considered susceptible to wildfires. This susceptibility can be attributed to the fact that
around 96% of Ibarra is covered by vegetation including forests, shrubs, pastures, and
crops, as depicted in Figure 3c.
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Model Validation

In this study, a ROC curve was used to estimate the accuracy of the fire susceptibility
map generated using the AHP (Figure 6). Our statistical validation (AUC = 0.96) shows
that the model is acceptable and excellent, since there is an association between the location
of hot spots and the areas with high and very high susceptibility to fires (as predicted by
the model). Other wildfire susceptibility models show ROC curves with accuracy values
of 77.5% [35], 82% [37], and 92.4% [48]. We recommend that this model be adapted to
subtropical, tropical, and equatorial regions, considering that variables must be adapted to
the local climate.
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4. Discussion

Areas of high and very high susceptibility are widespread across the territory, except
for urban areas, water bodies, eastern zones dominated by bare soils, and southeastern
zones where paramos constitute the primary cover. The pattern of high and very high
susceptibility aligns with regions characterized by high temperatures, natural cover, and
steep slopes, all of which contribute to the propagation of fires. The average temperature
in the Ibarra canton is 15◦ approximately; however, areas with high susceptibility exceed
16.30◦. Consequently, areas susceptible to fire are those where the average temperature
exceeds the canton’s average temperature. There is a strong correlation between the rise
in temperature and the incidence of forest fires, similar to the correlation with potential
evapotranspiration [28,35,46].

At the same time, as the area’s water deficit rises, so does its susceptibility to fires.
When water availability drops below 394 mm within the vegetation cover, the fire risk
escalates. This is due to the inverse correlation between the amount of precipitation and
the risk of wildfires [51]. In Ibarra, susceptibility values decrease as precipitation increases.
When precipitation is less than 810 mm, there is high fire susceptibility, while when it is
higher than 891 mm, there is low fire vulnerability.

Regarding slope, it was concluded that the frequency of forest fires was higher on
slopes greater than 35% [28]. Fire risk increases as the degree of the slope increases,
because the inclination favors the ascent of hot air and fire propagation is affected by the
accumulation of heat [46,68,69]. In addition, it was determined that the distance to roads
is indeed a predictive factor that influences the occurrence of forest fires. This suggests
that proximity to population centers or anthropic activities impacts fire susceptibility [35].
The presence of communication routes tends to encourage human activity, which is often
considered a trigger for such fires [89–91].

In the study area, the climatic variables not only directly influence the origin of
these events but also impact the development of human activities, particularly agriculture.
Notably, during the dry season months of July and August, when land is prepared for
agricultural planting, there is a surge in the frequency of forest fires. This is corroborated
by data from the National Risk Secretariat, which indicates that 26% of the fires recorded in
the city of Ibarra in 2020 occurred during these months.

On the other hand, there are few areas in the canton with very low susceptibility which
are concentrated in urban areas. The absence of vegetation cover, except in parks or avenues,
means susceptibility is almost null. There are also a few areas with moderate susceptibility
which are concentrated in the southeast and southwest, where paramos are abundant. A
paramo is defined as an ecosystem with a typical tropical high mountain climate and low
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temperatures since their average temperature is around 7◦, with moderate precipitation
characterized by low rainfall intensities, which vary between 700 and 3000 mm [92–94].
However, the moderate fire susceptibility of the paramo in the canton under study can
be attributed to the presence of wind. The wind, which can be quite strong and highly
variable in direction, is influenced by the area’s steep slopes and rugged topography [93].

Overall, natural land covers are susceptible to fire due to their lack of adaptive strate-
gies to this phenomenon. However, certain land covers, such as the rainforest, are excep-
tions due to their unique climatic conditions [12]. Temperature, on the other hand, regulates
the moisture content of the fuel in such a way that it decreases the humidity and increases
the probability of ignition and propagation [95]. Another variable that directly influences
the high susceptibility of the canton is the water deficit because, according to [61], when it
rises, the fuel moisture reduces and ignition probability increases.

In sectors with high or very high susceptibility, numerous studies have indicated the
possibility of implementing a series of actions and strategies to help reduce or mitigate
fires [16,96–98]. According to the particular geographical and socioeconomic conditions
of the human settlements and ecosystems of the Andean region, it is considered that
the implementation of some strategies would be complex or unfeasible, especially in the
Ibarra canton, where land use, temperature, and slope orientation are key factors in the
spread of fires; the most viable strategies would be firebreaks, observation towers, and the
implementation of measures based on technical scientific data [16]. In the fight against forest
fires, firebreaks are essential to contain the spread of fires and protect communities and
ecosystems [98]. However, in the Andean region, the feasibility of this strategy presents
unique challenges due to the region’s geographical and socioeconomic contexts. The
mountainous topography of the Andean region can make it challenging to create effective
firebreaks, as the construction of defense lines in steep terrain can be costly and logistically
complicated [96]. In addition, climate variability in the region (enhanced by climate
change), including heavy rainfall and prolonged droughts, complicates firebreak planning
and maintenance. From a socioeconomic point of view, a lack of resources and pressure on
land use can also limit the successful implementation of firebreaks. Local communities often
rely on agriculture and livestock, making land allocation for firebreak creation a sensitive
issue [16]. Overcoming these challenges may require a comprehensive strategy involving
local communities, government agencies, and environmental organizations. Specifically,
environmental (interdisciplinary and multicultural) education on fire management, the
careful planning of firebreak locations, and adaptability to changing climatic conditions are
essential to maximize the effectiveness of this strategy in the Andean region.

Installing observation towers for the early detection of forest fires in the Andean
region is a viable and valuable proposal. The high altitudes of the Andean mountains can
offer strategic locations for these towers, improving visibility. However, topographical
challenges such as the difficulties regarding access to some remote areas and extreme
weather conditions could affect their effectiveness. In addition, the need for investment
in infrastructure, technology, and the training of local personnel and their salaries could
condition their implementation and viability [99]. Despite these challenges, observation
towers represent a crucial tool for ensuring rapid and efficient responses to forest fires and
could be one of the first measures to be implemented [6]. Finally, implementing technical
and scientifical strategies to mitigate fires in the Andean region is essential and feasible [100].
They would allow decision makers to be continuously fed with accurate information
on weather patterns, vegetation, and fire risks, helping them in implementing effective
policies and preventive measures [97]. However, some geographical challenges, such as
topographic diversity, require an adaptive approach to collect accurate data. Furthermore,
in a socioeconomic context where resources may be limited, investment in monitoring
technologies and scientific capacities could be a constraint [101]. Collaboration between
governments, scientific institutions, and local communities could be key to overcoming
these challenges and effectively implementing evidence-based measures that reduce fire
risk and protect valuable Andean ecosystems [96].
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5. Conclusions

Overall, 82% of the Ibarra canton is highly and very highly susceptible to fires. The
behavior of these types of susceptibility mainly coincides with high temperatures, natural
cover, and steep slopes that favor the spreading of fires. The most susceptible land covers
are crops, pastures, scrubs, vegetation, and forestry. Although the paramo within the
canton is considered a very susceptible cover, the presence of low temperatures, high
rainfall, and surplus water, as well as its accessibility difficulties, make the susceptibility
in this ecosystem moderate. However, this does not mean that fires will not occur here,
but rather that they are areas with a low probability of ignition that can maintain their
combustion capacity in case of spread. This study confirms that fire susceptibility and
spreading depends on different types of cover and that the appropriate term for these types
of fire events is “wildfires”, not the commonly used term “forest fires”.

In sectors with high and very high susceptibility, we recommend the implementation
of firebreaks and the installation of watch towers at an altitude of 15 to 20 m to cover as
much of the visual field as possible. The use of our data could be helpful for decision
makers, and the application of these recommendations could prevent the annual recurrence
of wildfires in the Ibarra canton. Finally, the wildfire susceptibility model used in this
study, obtained through the GIS-assisted application of the aforementioned multicriteria
methodology, is reliable because the susceptibility information provided coincides with the
hot spots presented in this paper.
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