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Abstract: Fire protection is required to protect metal structures of oil and gas facilities from fires. Such
fire protection should provide high fire resistance limits: 60, 90, 120 and more minutes. Specialists of
LLC “RPC PROMIZOL ” developed a multilayer, removable type of fire protection made of superfine
basalt fibre and ceramic materials for operation in Arctic conditions. Five experimental studies were
carried out in standard and hydrocarbon fire regimes. The fire protection effectiveness of the products
for I20 beams without load was obtained: a 50 mm thick coating provided 130 min of a standard
fire regime; a 15 mm thick coating provided 60 min. The 15 mm thick coating provided 30 min
of a hydrocarbon fire regime and the 50 mm thick coating provided 93 min of a hydrocarbon fire
regime. The I40 beam under a load of 19.9 tf showed an R243 for the standard fire regime. The
coefficients of effective thermal conductivity and specific heat capacity of fire-retardant compositions
were determined by solving the inverse heat conduction problem. The problem was solved by
modelling using the QuickField 7.0 software package, which implements FEM. Modelling showed
that for obtaining the fire resistance limit R120 under the standard fire regime for the sample steel
structure from an I40 beam, it is enough to apply fire protection with a thickness of 25 mm instead of
50 mm, which agrees with the experimental data. For the hydrocarbon regime, it is predicted that
R120 can be obtained at a thickness of 45 mm instead of 50 mm.

Keywords: buildings; oil and gas facility; fire resistance; fire protection; structural protection;
removable fireproofing; Arctic climate; fireproof fabric; basalt fibre

1. Introduction

Buildings and structures located at the poles are Arctic stations and plants for oil and
gas production, processing and transportation. Steel bearing and enclosing structures of
such facilities should be protected with special materials; in particular, fire protection means
increasing their fire resistance limits [1–3]. There are precedents for offshore platform fires,
such as the world’s largest offshore platform disaster, Piper Alpha, in the North Sea, which
led to a series of explosions on major oil and gas pipelines [4–6]. The Deepwater Horizon
platform fire and explosion resulted in loss of life, destruction and a negative environmental
impact and is considered the largest industrial disaster [7,8]. Fires have also occurred at
Arctic and Antarctic stations, whose supporting elements are steel structures. For example,
a fire destroyed the Commander Ferraz Antarctic research station located on King George
Island in Antarctica [9,10].

Various fire protection coating systems are used to protect the metal structures of floors
and trestles of oil and gas facilities from low (in case of cryogenic liquids spilling) and high
(in case of possible development of hydrocarbon fire regime) temperatures. Requirements
for the fire resistance limits of structures are fixed in the normative documents of oil and gas
complexes, for example, in international standards, American and Norwegian standards,
and standards of large concerns based on fire risk calculations [11].
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There are three main methods of fire protection for steel structures: intumescent
coatings [12–15], plaster compositions [16] and structural fire protection [17–19]. Figure 1
shows a scheme of the means and methods of fire protection for steel structures used at oil
and gas facilities [20].
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According to the Code of Practice [21], the Arctic climate belongs to category 3, “most
severe conditions”, with absolute minimum temperatures between −54 ◦C and −71 ◦C.
According to the Köppen international climate classification, the Arctic belongs to polar
zone E [22]. Zone E is a group of zones, namely, “Et – tundra” and “Ef – ice cap zone”,
which are characterized by permanent snow cover and average temperatures below 10 ◦C.

In polar conditions, the following requirements are imposed for the fire protection
of building structures: preservation of reliability (serviceability) in the Arctic climate for
at least 10 years, ease of installation and replacement, and resistance to extreme effects in
the form of liquid hydrocarbon spills, with the subsequent ignition and development of a
hydrocarbon fire regime [23–26]. Fire protection in the form of intumescent coatings and
plasters is of little use in such conditions since these are wet processes.

Such requirements are best satisfied by structural fire protection, which is often used
in harsh climatic conditions. Thus, in [27], experiments on an example of steel structures
with structural fire protection based on basalt superfine fibres in the Arctic region were
conducted to evaluate various means of fire protection, the results of which showed that
the most effective coatings for harsh Arctic conditions are materials containing basalt su-
perfine fibres. Structural protection based on boards with various binders has a number
of significant advantages over other types: it provides high fire resistance limits from
120 min and higher for structures, even with a small cross-section; relative ease of installa-
tion; and resistance to climatic conditions. The disadvantages of board materials include
the possibility of cracking when the structure is loaded. For example, [28] shows that using
gypsum slabs up to 20 mm thick to protect reinforced concrete columns exposed directly to
fire flames reduces by one-third the amount of heat penetration during the period of higher
exposure compared to unprotected ones. However, the slabs show significant displacement.

The most common thermal insulation materials in applied means of fire protection for
structures are thermal insulation wools of various types, and about 60% of all used thermal
insulation uses fibre materials: glass, mineral and basalt wool based on fine and ultrafine
fibres [29]. In [30], a roll crosslinking material made of ultrafine basalt fibre with a thickness
from 5.0 to 16.0 mm, laminated on one side with aluminium foil, was considered. The fire
resistance limit of the fireproofing material was EI90.

The results of [31] confirm that basalt fibre has the greatest advantages for the produc-
tion of flame-retardant fabric. Thus, basalt fibre is widely used in fire retardant materials,
shrouds, curtains and covers both on structures and on products to ensure high fire resis-
tance limits [32–34].

To predict the fire resistance limits of structures, including those with fire protection,
calculations in modern software packages using the finite element method are used. In [35],
a FEM model (ANSYS 15 software) was used for double-slope brick cladding depending on
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the position of a steel-framed column with different types of fire protection. The modelling
showed that fire protection in the form of a 30 mm thick layer of rock wool allowed a
temperature of 500 ◦C to be reached in 7.5 min on an unheated surface; a 40 mm thick layer
reached this temperature in 8.5 min and a 50 mm thick layer reached it after more than
60 min.

In [36,37], the authors conducted experimental and numerical studies (Abacus 2023
software was used) to study the characteristics of loaded glass fibre-reinforced polymer
beams under standard fire conditions.

For the oil and gas industry, fire protection for metal structures requires non-combustible
thermal insulation materials that do not contain flammable polymers and that do not
crack under load. Such combined materials, stitched with non-combustible threads and
fasteners, can be used to protect shut-off equipment and various valves and critical sections
of pipelines, as well as for the manufacture of covers for valves [38–40]. However, such
solutions are not used practically for the protection of building structures.

Specialists of LLC “RPC PROMIZOL” (Moscow, Russia) [41] developed a multi-layer,
removable type of fire protection made of superfine basalt fibre and ceramic materials for
Arctic LNG 2. [42], a project of NOVATEK Gas Concern (Moscow, Russia) on the Yamal
Peninsula in the Arctic climate of Russia related to the production of liquefied natural gas.
A programme of experimental research was developed, including a study of the effect of
a fire regime on steel according to ASTM-119 [43] and its analogue for the temperature
curve of the standard [44] and hydrocarbon fire regimes, according to UL 1709 [45] and its
European analogue EN 1363-2 [46] in terms of the hydrocarbon fire regime.

This paper presents data on the study of combined coating for steel structures based
on BSTFs and ceramic fibres during fire tests with standard and hydrocarbon temperature
regimes with different layer thicknesses. By solving the inverse problem of heat conduction
using a numerical model, the thermophysical characteristics of the flame retardant compo-
sition were obtained. The optimization problem of the reduction of material consumption
at the achievement of necessary fire protection efficiency was solved.

2. Materials and Methods
2.1. Materials

Basalt superfine fibres (BSTFs) have an elementary fibre thickness of 1–3 µm and a
length of more than 50 mm, while basalt fine fibres (BFTs) have an elementary fibre thickness
of 5–15 µm and a length of up to 50 mm (Figure 2). Glass fibre, slag fibre and mineral
fibre are also called fine fibre because the average diameter of these fibres is 4–12 µm. This
structure of fine fibres deprives the product of strength. Therefore, phenol formaldehyde
or other organic resins are used to bind thin fibres at an amount of 2–10% [29]. Reducing
the fibre diameter leads to an increase in the thermal resistance of the material due to a
decrease in the contact area between the fibres [29,47].
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Figure 2. Basalt fibres: (a) basalt superfine fibres with fibre diameter 1–3 µm; (b) basalt ultrafine fibres
with fibre diameter 0.6–1 µm; (c) basalt microfine fibres with fibre diameter less than 0.6 µm [48].

When changing the diameter from 0.6 to 20 µm, the thermal conductivity increases
from 0.0237 to 0.375 at t = 25 ◦C. Thus, the optimal density of laying in the thermal insulation
structure should be 80–110 kg/m3 for BSTF wool, 140 kg/m3 for BSTF, 150–160 kg/m3

for glass wool and about 200 kg/m3 for slag wool. Thus, achieving the same thermal
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conductivity characteristics of basalt superfine fibre products requires several times less
density than that for basalt fine fibre, glass wool and slag wool products [29].

The multifunctional thermal insulation system PROIMZOL-MIX PROPLATE (manu-
facturer LLC “RPC PROMIZOL”, Moscow, Russia) is a fireproof composite coating consist-
ing of a combination of non-combustible materials, glass fibre and silica, and is a flexible
roll web that is fixed with special tapes and fasteners [49].

A multilayer product for the fire protection of building structures is an insulating
cover made of non-combustible, flexible, multilayer materials. The layers of the cover are
sewn together with non-combustible and heat-resistant ceramic, glass fibre or silica threads.
The cover is stitched with clamp fire-resistant tapes, which are made of twisted basalt and
silica yarns and have a self-tightening fastening knot for fixing the cover that is stretched
on building structures. A scheme of the composite layers of this product is presented in
Figure 3.
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Figure 3. Composite layers of the product: (a) under conditions of standard (cellulose)-type combus-
tion and (b) under conditions of hydrocarbon-type combustion, where 1—heat-strengthened basalt
fabric, 2—ceramic fibre fabric, 3—mineral wool, 4—metal alloy sheets, 5—glass cloth [49].

A multifunctional thermal insulation system contains BSTFs and mineral wool with
a density of at least 100 kg/m3. BSTF is a layer of staple fibres with a diameter of 1 to
3 microns, intertwined and bound with ether in the form of high-quality basalt fibre canvas.
The content of solid non-fibre inclusions larger than 0.25 mm does not exceed 10% of the
total filler fraction. The cover is wrapped with silica cloth with a vermiculite filler. The
tapes are made of twisted basalt and silica threads in the ratio of 70–90% basalt thread to
30–10% silica thread. Technical characteristics of the tape: width 10–50 mm; linear density
not less than 002 kg/min; working temperature range from −200 ◦C to +1200 ◦C.

The tapes are sewn to the cover and are one piece with it (which is especially important
for cases of complex shape, for example, fastening nodes or joints, where the tightening line
must be precisely defined). The fastener design is robust and designed for repeated use.

The total density of the cover is 125–130 kg/m3 and depends on the product configu-
ration. Temperature shrinkage is up to 3%.

2.2. Methods
2.2.1. Experimental Studies

The experiments were carried out for sample nos. 1–4 in accordance with [50]. For an I-
beam with height (1700 ± 10) mm profile 20B1 [51] and a volume coefficient of 294 m−1 [52],
the covers were wrapped and strapped (Figure 4). The temperature at which the metal of
the samples on the unheated surface reached the critical temperature of 500 ◦C was taken
as the limit state.
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Figure 4. The furnace according to GOST 53295-2009 [50] for nos. 1–4: (a) main view and (b) top
view, where (1) is a fire chamber, (2) is a furnace masonry, (3) is a nozzle heating channel, (4) is a
nozzle, (5) is a smoke duct, (6) is an exhaust umbrella, (7) is a furnace vault, (8) is a test sample, (9) is
an air duct, (10) is a thermocouple, (11) is an inspection hatch.

Specimen no. 5 was a column of I-beam profile no. 40IK with a height of (2700 ± 10) mm
and was tested under a static load of 195.22 kN (19.9 tf). The tests were carried out in
accordance with [51,52] (Figure 5). The type of sample was selected by the customer. The
specimen was equipped with 40 mm thick support plates under the condition of vertical
compression, with articulated resting on one side and rigid pinching on the other side of
the column. The vertical strain after loading was 0.7 mm.
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Figure 5. Test sample no. 5 in the furnace (a) before the test and (b) the schematic diagram of the
installation for firing tests of a steel column under load [53], where (1) is the firing chamber of the
furnace, (2) is a prototype of a steel column, (3) is a hinged support, (4) is a loading device, (5) is
upper and lower support elements that ensure the operation of the loading system of the prototype,
(6) is a device for hard clamping of the prototype, (7) is thermal insulation.

In Figure 6, the cross-sections of the I-beams for specimen nos. 1–4 and specimen no.
5 and the locations of thermocouple installation are shown (Figure 6a).
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Figure 6. I-beam: (a) general view, (b) I-beam profile IB20, (c) I-beam profile IK40.

Table 1 shows the characteristics of the cross-sections of the I-beams.

Table 1. Cross-section characteristics of the IB20 and I40K beams.

Type h, mm b, mm S, mm t, mm R, mm F, cm2 Ix, cm4 Iy, cm4

20B1, sample nos. 1–4 200 100 5.6 8.5 12 28.49 1943 142.3
IK40-beam, sample no. 5 383 299 9.5 12.5 22 112.91 30,556 5575.4

Tests of sample nos. 2 and 4 were carried out until a temperature of 500 ◦C was reached
during the firing process under the condition of creating a hydrocarbon temperature regime
in the firing chamber of the furnace according to [46], characterized by dependency (1):

T − T0 = 1080·
(

1 − 0.325·e−0.167·t − 0.675·e−2.5·t
)

, (1)

where T is the temperature inside the furnace in ◦C, corresponding to the relevant time t;
T0 is the temperature in ◦C inside the furnace prior to the start of heat impact; and t is the
time in minutes from the start of the test.

Sample nos. 1, 3 and 5 were tested according to the standard temperature regime
according to [52], characterized by relationship (2):

T − T0 = 345·lg(8·t + 1), (2)

The specimen types, coating thicknesses and resulting flame retardant effectiveness of
the structural covers (PE) obtained from the experiments are summarized in Table 2.

Table 2. Types of samples and thickness of the covers for different types of experiments.

Sample Cross-Section H, mm Aρ/V, m−1 Thickness,
mm Fire Regime PE, min

Sample No. 1 I20B1 1700 294 15 S* 60
Sample No. 2 I20B1 1700 294 15 H 30
Sample No. 3 I20 B1 1700 294 50 S 130
Sample No. 4 I20B1 1700 294 50 H 93
Sample No. 5 I40-beam/19.9 tf 2700 134 50 S 243/180 **

Note. S*—standard temperature regime, H—hydrocarbon regime. ** Sample no. 5 had a fire resistance limit
of 243 min at the deflection critical value [53] and a fire protection efficiency (PE) of 180 min when the critical
temperature of 500 ◦C was reached by the specimen [50].
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2.2.2. Simulation in SP QuickField 7.0

All structural calculations were performed in SP QuickField 7.0 using the finite element
method based on a two-dimensional finite element model [54]. SP QuickField 7.0 (in another
version, SP ELCUT) was repeatedly used by the authors to solve thermophysical problems
with the purpose of verifying the experimental data [20,55,56].

QuickField packages can be applied to various aspects of thermal model design: heat
transfer, temperature distribution, evaluation of local overheating, transient heating processes.

The Heat Transfer module is used to analyse the temperature distribution in static
and transient heat transfer processes. The heat sources in the Heat Transfer module can be
specified directly and/or imported from other QuickField problems (coupled problems) as
Joule Losses. The Heat Transfer module can be used to design and analyse many different
electrical and mechanical systems. Steady-state heat transfer analysis is possible not only
in 2D Plane-Parallel and 2D axisymmetrical formulations but also as a 3D Extrusion and
3D Import.

Mathematical models of the heat conduction process were applied and the method
of solving inverse problems by heat conduction was used according to the system of
Equations (3)–(6) [57,58]:

- Equation of heat conduction:

Cρρρ
∂θρ

∂t = ∂
∂x (λρ

∂θρ

∂x )

0 < x < dρ; θρ = θρ(x, t); 0 < t < tmax
(3)

- Initial condition:
θρ(x, 0) = θρ (4)

- Boundary condition on the surface of the inverse heat conduction task at x = dp:

λρ
∂θρ(dρ, t)

∂x
= α ∗ [θt − θρ(dρ, t)], Γдeα∗ = αc +

c0ε

θt − θρ(dρ, t)

{[
θt + 273.15

100

]4
−
[

θρ(dρ, t) + 273.15
100

]4
}

(5)

- Boundary condition on the inner surface of the fireproof coating at x = 0:

λρ
∂θρ(0, t)

∂x
= cαρα ×

V
Aρ

×
∂θρ(0, t)

∂t
(6)

where

x—coordinate in the fire protection coating (x = 0 corresponds to the point of contact
between the coating and the metal where the sample is measured, temperature θa = θρ

(0, t));
cρρρ—specific heat capacity, J/(kg·K);
Aρ/V—section ratio, mm−1;
λρ—heat conductivity coefficient, W/(m·K);
t—time, s;
C0 = 0.57;
dρ—thickness of fireproof coating, mm;
tmax—the maximum heating time of the sample, s;
αc—heat transfer coefficient on the outer surface of the fireproof coating, W/(m2·K);
ε = 0.7—the degree of blackness of the surface of the mineral coating [59];
θ0—initial temperature of the sample, ◦C;
θt—temperature in the firing furnace, ◦C.
Initial characteristics of steel: grade C245 [60] density 7800 kg/m3; thermal conductiv-

ity and heat capacity variable depending on temperature (values taken from the programme
reference book). The boundary conditions are presented in Table 3.
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Table 3. Boundary conditions defined in SP QuickField 7.0.

Name of the Value Value Information Source

Convection heat transfer coefficient with
hydrocarbon temperature regime, W/(m2K) 50 [61]

Convection heat transfer coefficient with
standard temperature regime, W/(m2K) 25 [61]

Surface absorption coefficient 0.5 [62]
Initial ambient temperature, ◦C 20 -

Density of the thermal insulation cover, kg/m3 125 -

For the boundary solutions of the third kind, material density was assumed to be inde-
pendent of temperature. To solve the problem with boundary conditions of the first kind,
then the temperature should be set according to Equations (1) and (2) for the corresponding
mode. To determine the characteristics of the fire resistance of structures, mathematical
models of the heat conduction process were applied and the method of solving inverse
problems of heat conduction was used, defined by the system of Equations (3)–(6).

Based on the obtained experimental temperature–time dependences of the samples,
the thermophysical properties of the flexible covers were determined. The finite element
diagrams of the modelling samples are shown in Figure 7. The finite element mesh spacing
on the faces was set to 20 mm. It was not reasonable to set the grid spacing to less than
20 mm in this task because the calculation time would increase significantly. Further, the
grid size was divided automatically under the size of the faces, but there was the possibility
to manually adjust the sizes. In each block, the grid was generated automatically.
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(c) 5.

3. Results

According to the results of the tests, it was established that sample no. 4 with a
thickness of 50 mm provided fire protection efficiency under the conditions of exposure to
a hydrocarbon combustion regime for 90 min of the steel column of the I-beam section of
profile no. 20B1 [51], height 1700 mm, section ratio Ap/V = 294 m−1 [52]. The experiment
was terminated in 93 min after the sample reached the critical temperature of 500 ◦C in
accordance with [50].

During the testing of sample nos. 1–4, no visible changes in the appearance of the
samples were recorded (Figure 8).
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According to the results of the tests for specimen no. 5, it was found that a cover
thickness of 50 mm provided fire protection efficiency under the conditions of exposure to a
hydrocarbon mode of combustion of the steel column of the I-beam section of a wide-shelf
I-beam with a height of 2700 mm and section ratio Ap/V = 134 m−1 [52]. During the
test, the outer layer of the shroud was covered with molten basalt, which appeared after
prolonged exposure to the standard fire regime (Figure 9).
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Figure 10 shows the graphical dependences of the averaged thermocouple readings
under the fire protection cover for the thicknesses of the steel structure. It can be seen that a
thickness of 50 mm was optimal for achieving fire protection efficiency of more than 180 min
and 243 min in terms of fire resistance loss (critical deflection), in accordance with [53].
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Also, the dotted line in the graph shows the time to reach 140 ◦C for the steel I-beam
specimen, and it was also possible to estimate the time to reach 140 ◦C for 15 mm and
50 mm thick composites under different fire regimes.

As can be seen from Figure 10, sample no. 1 with a thickness of 15 mm and density
of 130 kg/m3 reached a temperature of 500 ◦C in 60 min; sample no. 3 with a thickness
of 50 mm reached a temperature of 500 ◦C in 130 min in standard mode. Sample no. 2
with a thickness of 15 mm and density of 150 kg/m3 reached 500 ◦C in 30 min. Sample
no. 2 with a thickness of 50 mm reached 500 ◦C in 93 min in hydrocarbon mode. Heating
went uniformly, without kinks, and up to 140 ◦C was reached on the unheated surface,
depending on the thickness of the coating and the fire regime (the greater the thickness, the
longer the time to reach the critical temperature). The average temperature according to
the readings of the thermometers installed on the metal of sample no. 5 at critical deflection
was 749.5 ◦C, and a temperature of 500 ◦C was reached after 180 min. After 48 h of testing,
the specimen structures were disassembled and the insulating material was removed from
the structure. When exposed to temperatures above 500–600 ◦C, embrittlement and surface
failure of the inner layer containing glass fibre occurred.

Figure 11 shows specimen no. 1 after testing and removal of the flame retardant from
the I-beam. As can be seen from Figure 11, there was no visible change in the main filler,
and the colour, thickness and elasticity of the materials remained unchanged.

Figure 12 shows specimen no. 5 after testing and removal of the flame retardant from
the I-beam. As can be seen from Figure 12, there was no visible change in the main filler,
and the colour, thickness and elasticity of the materials remained unchanged. The clamping
straps were also not damaged.

The inner layer of the glass fabric was completely embrittled and was mostly destroyed
when attempting to remove the cover. At the joint of the cover, in places of loose fit, signs
of embrittlement and melting were visible. Therefore, the issue of quality joints is one of
the most difficult for such fireproof covers.
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In addition, it was of interest to obtain data on the optimum coating thickness under
different fire regimes to ensure the same flame retardant performance using simulations.

Figure 13 shows a visualisation of the heating of the specimens in the simulation for
25 min of fire exposure under different fire regimes.
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Figure 13. Visualisation of heating of sample nos. 3 and 4 during simulation in S (a) and H (b) modes
at 25th min and visualisation of column heating of sample no. 5 during simulation in S (c) and H (d)
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The temperature variation curves at controlled points on the surface of fire-resistant
specimens nos. 3, 4 and 5 during the experiment and simulation are shown in Figure 14.
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Figure 14. Test and modelling results for (a) no. 3 under S- and (b) nos. 4 and 5 under H- fire regimes
(modelling).

The analysis of the modelling results showed that the average difference in the heating
temperature of the I-beam structure between the experimental and calculated data under
the standard fire regime was not more than 5%. The results of the structural modelling
correlated with the results of the fire tests obtained during the experiment.

The calculated fire resistance limit of the structure was 130 min under the standard fire
regime for sample no. 3 and 93 min under the hydrocarbon fire regime for sample no. 4.
The modelling results correlated with the fire test results obtained from the experiment.

To optimize the consumption of fire protection coatings, calculation models of a
column specimen with two types of cross-sections were developed: Aρ/V = 294 m−1 and
Aρ/V = 134 m−1 with different coating thicknesses. The graphs in Figure 15 show the
dependence of the time to reach the critical temperature on the coating thickness under the
standard and hydrocarbon fire regimes. To obtain a fire protection efficiency of 120 min for
a steel column of I-beam cross-section 294 m−1 in the standard fire regime, it was sufficient
to apply a fire protection thickness of 45 mm (Figure 15a); in the hydrocarbon regime at a
thickness of 45 mm, the fire protection reached the fire resistance limit R90 (Figure 15b).
To obtain the fire resistance limit R120 in the standard fire regime for the sample of steel
structure made of the I40 beam (134 m−1), it was enough to apply fire protection with
a thickness of 25 mm instead of 50 mm according to experimental data (Figure 15c); in
the hydrocarbon regime, a thickness of 45 mm was required, according to modelling data
(Figure 15d).
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Figure 15. Graph of dependence of the time to reach the critical temperature of the specimens with
Aρ/V 293 m−1 and Aρ/V 134 m−1 on the thickness of the protective coating under S- (a,c) and H-
(b,d) fire regimes.

When modelling a structure with a fire-protected beam (no. 5), the dependences of the
thermophysical characteristics on the temperature were obtained (Table 4).

Table 4. Calculated coefficients of thermal conductivity and heat capacity of structural coating for
specimen no. 5 obtained from modelling as a function of temperature.

T, ◦C 20 100 200 300 400 500 600 700 800 900 1000 1200

λ, W/K·m 0.17 0.07 0.04 0.04 0.06 0.10 0.15 0.21 0.29 0.36 0.44 0.60
C, J/kg·m 219 276 348 420 492 564 636 708 780 852 924 1069

The coefficients in Table 4 were obtained by fitting the corresponding temperature
curves (insulation cover heating) so that the heating matched the experimental data of the
average thermocouple readings according to the test reports. These coefficients could then
be set again in the heating calculation in SP QuickField 7.0 and checked to see if the model
and experimental temperatures matched.

4. Conclusions

The most effective means of fire protection for structures and products are composite
materials made of various combinations of non-combustible thermal insulation materials,
providing a “dry” method of installation, long service life in harsh conditions, and resistance
to hydrocarbon fire regimes. PROMIZOL-MIX PROPLATE coating consists of ultra-thin
basalt and ceramic fibres, as well as additional spacers made of various fire-resistant fabrics
and aluminium foil.

In this paper, a combined type of coating was presented that, depending on the
task, shows good fire protection results due to the combination of the selected layers. It
is expedient to use new effective flame retardant materials with the possibility of dry
installation in Arctic and Antarctic conditions.

The practical application of this research is that a removable, non-combustible type of
fire protection for steel structures providing high fire resistance limits has been obtained.
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Such products can be used for steel structures of trestles and decks, structures of offshore
platforms, and tunnel structures located in the epicentre of a fire under scenarios calculated
in accordance with the concept of fire risk.

In the future, wide application of combined fire protection means is predicted for
the development of fire-resistant fabrics for caps, covers and fire curtains using basalt,
perlite, aerogel, vermiculite, graphite and other materials. For application in the oil and gas
industry, in the construction of tunnels, and at hazardous chemical production facilities,
such materials should have resistance to hydrocarbon fire regimes and the spillage of
cryogenic liquids, maintainability, and high durability under various climatic conditions.

5. Patents

Prusakov, V.A.; Gravit, M.V.; Antonov, S.P. RU2725720C1—Fire-resistant multilayer
article for fire protection of building structures. 2020.
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