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Abstract

:

In this paper, the exact solution of the Timoshenko circular beam vibration frequency equation under free-free boundary conditions was determined with an accurate shear shape factor. The exact solution was compared with a 3-D finite element calculation using the ABAQUS program, and the difference between the exact solution and the 3-D finite element method (FEM) was within 0.15% for both the transverse and torsional modes. Furthermore, relationships between the resonance frequencies and Poisson’s ratio were proposed that can directly determine the elastic constants. The frequency ratio between the 1st bending mode and the 1st torsional mode, or the frequency ratio between the 1st bending mode and the 2nd bending mode for any rod with a length-to-diameter ratio, L/D ≥ 2 can be directly estimated. The proposed equations were used to verify the elastic constants of a steel rod with less than 0.36% error percentage. The transverse and torsional frequencies of concrete, aluminum, and steel rods were tested. Results show that using the equations proposed in this study, the Young’s modulus and Poisson’s ratio of a rod can be determined from the measured frequency ratio quickly and efficiently.
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1. Introduction


Non-destructive testing (NDT) methods are often used to estimate the elastic properties of a material such as the dynamic elastic modulus and Poisson’s ratio. There are several types of non-destructive testing (NDT) methods available. These include ultrasonic pulse velocity methods, resonance frequency methods, and other wave propagation techniques. Material properties measured with these methods are called dynamic elastic constants. Researchers have used forced vibration and impulse vibration to measure the dynamic elastic constants of steel plates [1] as well as impact-echo resonance and Rayleigh wave velocity [2]. Kolluru et al. proposed a technique to determine the elastic material constants of a standard test cylinder using the longitudinal resonance frequencies of concrete, steel, and aluminum [3]. The ratio between the 2nd and 1st longitudinal resonance frequencies was used to determine the Poisson’s ratio for a variety of length-to-diameter ratios (L/D) and afterward the elastic modulus was estimated. Similarly, Chen and Leon proposed a method to find the two elastic constants using the 1st bending mode and the 1st torsional for rectangular prisms [4]. Nieves et al. also estimated the shear modulus and Poisson’s ratio for short cylinders using the two lowest axisymmetric natural frequencies [5]. Verification of their methods was made using various cylindrical specimens with an L/D less than 3. Wang et al. proposed a method to evaluate Poisson’s ratio of a rod with only two experimental impact-echo values (fundamental longitudinal and cross-sectional resonant frequencies). However, their methods require an L/D≥25υ for the dynamic Poisson’s ratio to be valid [6].



ASTM C215 (2014) and ASTM E1876 (2015) standards are widely used to determine the dynamic elastic modulus using the fundamental resonance frequency. The equations provided in these standards were formulated by simplifying the free-free vibration solution of a Timoshenko beam with the effects of shear and rotational inertia reduced to a simple correction constant. However, the value of the elastic modulus cannot be directly calculated without knowing the material’s Poisson’s ratio. Therefore, in order to calculate the dynamic modulus and Poisson’s ratio, a lengthy iteration process is needed.



In this paper, the exact solution of the Timoshenko beam vibration frequency equation under free-free boundary conditions was determined. The fundamental transverse and torsional frequencies were used to determine the dynamic elastic modulus and Poisson’s ratio of rods with an L/D ≥ 2. Then, relationships between the resonance frequencies and Poisson’s ratio were proposed that can directly determine the elastic modulus and the Poisson’s ratio, simultaneously without the need for iteration, using the frequency ratio between the 1st bending mode and the 1st torsional mode, or the frequency ratio between the 2nd bending mode and the 1st bending mode.




2. Analysis


For a homogenous and isotropic material, the Timoshenko beam vibration equation can be expressed as follows:


EI∂4y∂x4+m∂2y∂t2−ρI(1+Ek′G)∂4y∂x2∂t2+ρ2Ik′G∂4y∂t4=0.



(1)







In the equation, y is the transverse displacement; t is time; k′ is a shape factor that depends only on Poisson’s ratio; G is the shear modulus; E is the Young’s modulus; I is the moment of inertia of the cross-section; ρ is the mass density; and m is the mass per unit length. In Timoshenko’s publication [7], a shape factor of 34 was assumed for a circular cross-section. However, Hutchinson derived more accurate shape factors for a variety of geometries which match more closely with experimental results [8]. In this paper, Hutchinson’s shape factor, Equation (2), was used to calculate the shape factor for a circular cross-section:


k′=6(1+v)27+12v+4v2.



(2)







For a rod with free-free boundary conditions, the following can be applied:


y″(x)|x=0=0; y″(x)|x=L=0; y‴(x)|x=0=0; y‴(x)|x=L=0.











Using these boundary conditions for a nontrivial solution, the frequency equation can be written as follows [9,10]:


2−2cosh(α)cos(β)+γ2(γ4r2(r2−s2)2+(3r2−s2))1−γ4r2s2sinh(α)sin(β)=0,



(3)




where r2=IAL2 , s2=EIk′GAL2 , γ4=ρAL4EIω2, and A is the cross-sectional area; α and β represent the eigenvalues of the frequency equation. The eigenvalues α and β can be expressed as follows:


αi=γ22−(r2+s2)+(r2−s2)2+4γ4 and βi=γ22(r2+s2)+(r2−s2)2+4γ4 .



(4)







In this paper, a MATLAB program was used to solve for the eigenvalues of the frequency equation. The natural frequencies (Hz) can be expressed using the eigenvalues [11]:


ni=γi22πEIρAL4.



(5)







Let i = 1 to obtain the 1st bending mode and i = 2 for the 2nd bending mode.



2.1. Finite Element Analysis


Dynamic analysis using the 3-D finite element method (FEM) was carried out and compared to the exact solution for the transverse and torsional modes of a rod. The density was assumed to be 2400 kg m−3. Six different sets of elastic modulus and Poisson’s ratio were used in the FEM simulations as shown in Table 1.



A total of 199,950 elements of 2.0 mm (0.08 in) cubes, 8-node linear brick with reduced integration and hourglass control elements (C3D8R) from the ABAQUS program were utilized. A 75 mm (diameter) × 300 mm (length) rod was modeled as a free-free beam. The 1st and 2nd bending modes as well as the 1st torsional mode are shown in Figure 1.



A comparison between the FEM and the analytical solutions is shown in Table 2. Results show that the percent error for all the cases is less than 0.13%. This indicates that the elastic modulus and Poisson’s ratio obtained from the roots of the Timoshenko beam frequency equation in the analysis section above is accurate and the 1st free-free torsional mode from the Euler–Bernoulli beam solution, n″=12LGρR, is also close to exact, where R is the ratio between the polar moment of inertia and the equivalent moment of inertia, for a rod R = 1.0. Since the FEM usually requires large amounts of computations using commercial software, it would be more efficient to use the analytical solutions to determine the transverse and torsional vibration frequencies.




2.2. Frequency Ratio Analysis


The ratio between the fundamental torsional frequency and the fundamental transverse frequency, χt, can be expressed as follows [11]:


χt=2(n″n1)2(v+1),



(6)




where n″ is the fundamental torsional frequency (Hz) and n1 is the 1st fundamental transverse frequency (Hz). Using the roots of the Timoshenko frequency equation, Equation (3), and the solution for the torsional mode, the frequency ratio, χt, is expressed as Equation (7):


χt=π2AL2/RIγ14=16π2(LD)2/γ14.



(7)







Equation (7) was evaluated for a variety of Poisson’s ratios and rod dimensions as shown in Figure 2. From Figure 2, a linear relationship between the Poisson’s ratio, v, and the ratio χt can be observed. A clear linear trend can be seen after normalizing the frequency ratio, χt , with χt at v = 0 as shown in Figure 2c. It was found that the slope of the line and the y-intercept are independent of the elastic modulus and the mass density. The frequency ratio, χt, only depends on the diameter and the length of the rod as shown in Equation (7). Hence, the ratio χt can be expressed as Equation (8):


χt=2(n″n1)2(v+1)=A1·v+B1.



(8)







The Poisson’s ratio can then be calculated using the equation below:


v=2(n″n1)2−B1A1−2(n″n1)2.



(9)







Furthermore, after knowing Poisson’s ratio, the elastic modulus can be determined using the experimental torsional frequency with Equation (10):


E=8ρL2n″2(1+v).



(10)







The values of A1 and B1 for different specimen dimensions were found by calculating χt for different length/diameter ratios as well as varying Poisson’s ratio (shown in Appendix A). The constant B1 was found by calculating χt when Poisson’s ratio was equal to zero. The calculated values for B1 are shown in Table 3. A similar procedure was carried out to determine A1. After plotting χt, the slope of the best-fit line was used to find A1. Table 3 shows the calculated value of A1 for different length/diameter (L/D) ratios.



As shown in Figure 3 and Figure 4, polynomials can be used to express the values of B1 and A1. Although only nine L/D points are shown in Table 3, a total of 97 L/D data points were used to find the best-fit polynomials. Due to the wide range of B1, shown in Figure 3, a single polynomial will have a 3% difference between the estimated values and the theoretical values found using Equation (8) when LD<10. Therefore, to reduce the difference to less than 0.06%, two polynomials (sixth-order) are needed to express B1 for two separate intervals, Equations (11) and (12).



For LD ≤10,


B1=−2.20790×10−6(LD)6+9.69895×10−5(LD)5−1.78941×10−3(LD)4 +0.0179955(LD)3+0.208881(LD)2+0.368369(LD)+0.908491.



(11)







For LD>10,


B1=−2.39473×10−13(LD)6+1.38944×10−10(LD)5−3.08859×10−8(LD)4+3.34001×10−6(LD)3+0.315287(LD)2+4.89786×10−3(LD)+1.49164.



(12)







Unlike B1, only a single polynomial expression is needed for A1. Equation (13) was found from the best-fit curve shown in Figure 4. Equation (13) can be used to obtain A1 for any diameter/length (D/L) ratio:


A1=9.44922(DL)6−13.8392(DL)5+5.60087(DL)4+1.08665(DL)3−1.27914(DL)2+5.47273×10−3(DL)+0.381757.



(13)







Although the method presented above can be used to determine the dynamic elastic constants easily and quickly, it has two disadvantages. First, it requires a precise measurement of the torsional mode which is difficult to excite in a cylindrical specimen [6,12]. Additionally, it requires two separate experimental tests. Therefore, it would be beneficial to develop a method based on only the transverse bending modes which can be measured simultaneously and accurately. Similar to χt, the ratio between the 2nd bending mode and the 1st bending mode was used to directly calculate Poisson’s ratio and the dynamic elastic modulus.



The ratio between the 2nd and 1st fundamental transverse frequencies, χb, can be expressed with the following relationship:


χb=(n2n1)2=γ24γ14,



(14)




where n2 is the 2nd fundamental transverse frequency (Hz). γ1 and γ2 are the roots from the frequency equation, shown in Equation (3), for the 1st and the 2nd bending modes. For a very slender rod, the relationship shown in Equation (15) can be derived to express χb for a Euler–Bernoulli rod with free-free boundary conditions:


χb=(7.853)4(4.73)4=7.598.



(15)







However, for the vibration of a non-slender rod, χb can only be expressed with the roots of the Timoshenko frequency equation using Equation (3). Hence, Equation (14) was evaluated for a variety of Poisson’s ratios and rod dimensions as shown in Figure 5. From Figure 5, a slightly parabolic relationship between the Poisson’s ratio, v, and the ratio χb can be observed. A clear trend can be seen after normalizing the frequency ratio, χb, with χb at v = 0 as shown in Figure 5c. The y-intercept, E1, corresponds to the value of χb when v = 0. It was found that the frequency ratio, χb, is independent of the elastic modulus and the mass density, and χb only depends on the roots of Equation (3). Hence, the ratio χb can be expressed as Equation (16):


χb= (n2n1)2=C1 v2+D1ν+E1.



(16)







C1,D1, and E1 are the coefficients of the second-order polynomial describing the relationship between χb and Poisson’s ratio. Table 4 shows the calculated values of γ1, γ2, and χb due to different Poisson’s ratio and length/diameter (L/D). As expected, as the L/D ratio becomes very large, the values of γ1 and γ2 approach 4.73 and 7.853. They are the same values shown in Equation (15) and correspond to a Euler–Bernoulli beam. For a very slender rod (L/D = 200), χb is no longer dependent on Poisson’s ratio and approaches a constant value.



The Poisson’s ratio can then be calculated using the equation below:


v=−D1−D12−4C1(E1−(n2n1)2)2C1.



(17)







Therefore, Poisson’s ratio can be readily calculated using the experimentally measured transverse vibration frequencies, n2 and n1. Furthermore, after knowing Poisson’s ratio, the elastic modulus can be determined using the first bending mode as shown in Equation (18). To find γ1, one can use Equations (7) and (8) and the calculated Poisson’s ratio from Equation (17). Hence, the elastic modulus can be calculated directly as follows:


E=64π2ρL4n12γ14D2=4ρL2n12(A1v+B1).



(18)







The equation can also be used to determine the first bending mode solely from the dimensions of the rod and assumed elastic constants without solving the Timoshenko frequency equation. The values of C1, D1, and E1 for different specimen dimensions were found by calculating χb for different length/diameter ratios as well as varying Poisson’s ratio (shown in Appendix A). It is noted from Equation (14) that the frequency ratio χb is only dependent on the roots of the Timoshenko frequency equation and is independent of the elastic modulus and mass density. Therefore, any set of material properties would produce the same values of C1, D1, and E1. The values of χb and its derived C1, D1, and E1 shown in this paper are only applicable to the 1st and 2nd bending modes of a Timoshenko rod with free-free boundary conditions. The constant E1 was found by calculating χb when Poisson’s ratio was equal to zero. The calculated values for E1 are shown in Table 5.



A similar procedure was carried out to determine the coefficients C1 and D1. The transverse modes were determined using Poisson’s ratio ranging from 0.0 to 0.5 in increments of 0.05. After plotting χb, the best-fit second-order polynomial was used to find C1 and D1. The coefficient of determination, R2, was above 0.999 for all the cases. Table 5 shows the calculated values for different specimen dimensions. Unlike E1, the coefficients decrease when the length/diameter ratio is enlarged. As the rod gets longer, the values of C1 and D1 approach zero, indicating that the rod behaves more like a Euler–Bernoulli slender rod. For larger length/diameter ratios (L/D > 20), χb approaches a constant value equal to only E1.



As shown in Figure 6, Figure 7 and Figure 8, the three coefficients can be estimated using polynomial equations, and to increase the accuracy of the proposed method, two intervals are specified for C1 and D1. A total of 97 L/D data points were used to determine the polynomials. The proposed equations can be used to find the coefficients for any L/D≥2 and allows for the calculation of the elastic constants after knowing the 1st and 2nd bending modes as well as the rod’s dimensions. The sixth-order polynomials were found to have a maximum percent difference of 0.12% with the theoretical values. On average, the percent difference was 0.01% indicating that the sixth-order polynomials can be used adequately to estimate the coefficients.



For LD≤10,


C1=112.284(DL)6−223.341(DL)5+185.884(DL)4−77.1737(DL)3+15.7309(DL)2−0.952765(DL)+2.73114×10−2,



(19)






D1=−340.388(DL)6+717.045(DL)5−588.110(DL)4+224.277(DL)3−35.7879(DL)2−0.603707(DL)+0.0468.



(20)







For LD>10,


C1=2541.87(DL)6−920.988(DL)5+72.8415(DL)4−2.22046(DL)3+3.02631(DL)2−3.61314×10−4(DL)+1.08041×10−6,



(21)






D1=2744.60(DL)6−4196.55(DL)5+1132.34(DL)4−11.5492(DL)3−26.1754(DL)2−1.98589×10−3(DL)+6.00293×10−6.



(22)







A single sixth-order polynomial can be used to estimate E1. The equation is shown below:


E1=39.7722(DL)6+269.519(DL)5−530.656(DL)4+350.357(DL)3−96.4206(DL)2+1.08854(DL)+7.58933.



(23)







As an example, the FEM was performed for a steel rod with an assumed elastic modulus, Poisson’s ratio, and density of 200 GPa, 0.3, and 7750 kg m−3, respectively. The values of A1 and B1 were obtained from Equations (11)–(13), whereas C1, D1, and E1 were obtained using Equations (19)–(23). Table 6 shows that the 1st and 2nd bending modes as well as the 1st torsional mode frequency calculated using Equations (9), (10), and (16) compare closely with the FEM results with a maximum difference of 0.36%.





3. Experiments


Aluminum, steel, and concrete rods with different length/diameter ratios were experimentally tested to validate the proposed methods. The density and specimen dimensions can be found in Table 7. It should be noted that the dimensions of the rods must be measured accurately for a correct estimation of the elastic modulus and Poisson’s ratio.



The impact resonance frequency method was used to measure the fundamental transverse and torsional modes. Figure 9 shows the instruments and specimens used in the experiment. The rods were suspended with soft flexible rubber tubing placed at approximately 0.15L to allow free vibration in the fundamental transverse and torsional modes as shown in Figure 9. The accelerometer was attached to the specimen centered at 0.55L from the edge of the specimen using a hot glue adhesive. The torsional frequency was also tested for each rod. The supports were kept at the same location as the transverse mode experiment. The accelerometer was placed with hot glue adhesive on a rigid metal tab which was located 0.223L from the edge of the specimen. A tangential impact was made using another metal tab located 0.13L from the other edge. A schematic of the torsional mode testing can be found in ASTM C215. For each test, the acceleration time history was plotted on a LabView waveform analyzer. Using fast Fourier transform (FFT), the time domain was converted to the frequency domain.



Experimental Data


Typical acceleration time histories for the impact and response before and after performing the FFT are shown in Figure 10 and Figure 11. The excitation frequency range for the transverse and torsional impact is approximately 5000 Hz. To find the peak frequency, the frequency response function, which is the ratio between the output response and the input excitation force in the frequency domain, was calculated [13]. Four peaks can be seen in the output response; these peaks correspond to the first four fundamental bending modes. In this study, only the 1st and 2nd bending modes were analyzed; however, the 3rd and 4th bending modes could be used as verification of the measured elastic constants.



Similarly, Figure 12 and Figure 13 present the typical acceleration time histories and the frequency response function for the torsional mode. A clear peak can be seen in all the specimens.



Table 8 presents the average measured frequencies for the fundamental transverse and torsional frequencies of the three rods. The average value was determined from at least four tests. The sampling frequency for both impact force and acceleration response was 25.6 kHz, and the resolution of the measured frequencies was increased to 0.25 Hz using a signal processing technique.





4. Data Analysis


The values for A1, B1, C1, D1, and E1 can be obtained for each rod specimen using their respective L/D ratio. Using Equations (9) and (17), the Poisson’s ratio for the three rods was calculated and is shown in Table 8. The calculated values for the dynamic elastic modulus using Equations (10) and (18) are also shown in Table 8. Table 8 shows a comparison between Method 1 and Method 2. Method 1 uses χt to calculate Poisson’s ratio and elastic modulus. As expected, Method 2, which uses the 1st and 2nd bending modes, produces more reasonable elastic constants. This is mainly due to the inaccuracy of the experimental torsional mode frequency. Note, the largest difference occurs in the Poisson’s ratio while the elastic modulus for both methods are almost identical.



Sensitivity Analysis


In this study, the diameter and length of the specimens were measured with a resolution of 0.01 mm, while the mass had a resolution of 0.01 kg. A sensitivity analysis of the proposed methods was conducted using the experimental resolution. The experimental frequencies were measured with a resolution of 0.25 Hz, which was achieved using a signal processing technique. It was found that Poisson’s ratio and the elastic modulus had a maximum deviation of 0.3 ± 0.001 and 218.91 ± 0.2 GPa, respectively, when changing the diameter or length by 0.01 mm. Therefore, it is recommended to at least have a resolution of 0.1 mm in order to achieve an accuracy of Poisson’s ratio with ±0.01 deviation. It was also found that a mass change of 0.01 kg can influence the elastic modulus by ±0.5 GPa. Furthermore, if only a 0.25 Hz frequency resolution is obtainable, the estimated Poisson’s ratio can have a large deviation of ±0.05 when a specimen has a large L/D like the aluminum specimen (L/D = 11.6). This is because, as shown in Figure 5 and Table 4, Poisson’s ratio is not sensitive to the change of the bending frequency ratio χb when L/D becomes large. During the experiment, the concrete and steel rods both showed high accuracy in the measurement of Poisson’s ratio using the bending modes as displayed in Table 9. However, since the aluminum rod has an L/D = 11.6, a frequency resolution of ±0.05 Hz was used to reduce the Poisson’s ratio deviation to ±0.009. For an accurate measurement of the Poisson’s ratio, it is recommended that an L/D ≅ 6 be used when using χb.





5. Discussion


The frequency ratio between the first torsional mode and the first bending mode, χt, was found to be linearly proportional to the Poisson’s ratio with a slope, A1, and a y-intercept, B1, whereas the frequency ratio between the first two bending modes, χb, was slightly parabolic with coefficients C1,D1, and E1. It was found that the constants A1, B1, C1, D1, and E1 depend only on the dimensions of the specimen and can be tabulated for different specimen sizes. Values for A1, B1, C1, D1, and E1 at different length/diameter ratios were found, allowing the use for any rod dimensions. As the length/diameter ratio increased, the value of A1 could be ignored and χt approached to a constant. In other words, χt is independent of Poisson’s ratio at very large length/diameter ratios. Likewise, as the length/diameter increases, the values of C1 and D1 approach to zero, and χb approaches a constant value of 7.598. Equations for the elastic modulus, E, and Poisson’s ratio, v, were proposed in this paper using the tabulated values of A1, B1, C1, D1, and E1, allowing for a quick calculation of both E and v. The proposed methods do not require any iterations to solve for the material constants. Results show that, using the equations proposed in this study, the Young’s modulus and Poisson’s ratio of a rod can be determined from the measured frequency ratio quickly and efficiently.




6. Conclusions


This paper presents a method to calculate Poisson’s ratio and dynamic elastic modulus using experimentally measured transverse and torsional modes. The method is based on the exact solution to the frequency equation for a Timoshenko rod under free-free boundary conditions. The finite element method using the ABAQUS program was shown to match the exact solution with less than 0.15% error for both the transverse and torsional modes. Equations for the elastic modulus, E, and Poisson’s ratio, v, were proposed in this paper using the frequency ratio values, allowing for a quick calculation of both E and v. The frequency ratio between the first bending mode and the first torsional mode or the frequency ratio between the first bending mode and the second bending mode for any rod with a length-to-diameter ratio of L/D≥2 can be directly estimated using the proposed equations. The proposed method does not require any iterations to solve for the material constants and can be used to calculate the elastic constants of rods with different dimension sizes. The proposed equations were used to verify the elastic constants of a steel rod with less than 0.36% error percentage, and the equations were also used to measure elastic constants of three rods with different material properties (aluminum, steel, and concrete) using simple impact vibration. It was found that the torsional mode is more difficult to excite and not as reliable as the bending modes, whereas a more accurate measurement can always be obtained from using the 1st and 2nd bending modes which were measured simultaneously.
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Appendix A


Values of frequency ratios χt and χb and values of the first two roots (γ1 and γ2) of the Timoshenko frequency equation for different length/diameter ratios (L/D) at various Poisson’s ratios.
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Table A1. Values of χt and χb for different length/diameter ratios at various Poisson’s ratios






Table A1. Values of χt and χb for different length/diameter ratios at various Poisson’s ratios





	
Length/Diameter

	
Poisson’s Ratio

	
γ1

	
γ2

	
χt

	
χb






	
2

	
0

	
3.948

	
5.476

	
2.599

	
3.699




	
0.1

	
3.938

	
5.431

	
2.626

	
3.617




	
0.2

	
3.928

	
5.389

	
2.653

	
3.541




	
0.3

	
3.919

	
5.348

	
2.679

	
3.469




	
0.4

	
3.909

	
5.309

	
2.705

	
3.402




	
0.5

	
3.900

	
5.271

	
2.731

	
3.338




	
3

	
0

	
4.275

	
6.336

	
4.256

	
4.827




	
0.1

	
4.267

	
6.305

	
4.288

	
4.768




	
0.2

	
4.259

	
6.275

	
4.319

	
4.712




	
0.3

	
4.252

	
6.246

	
4.349

	
4.658




	
0.4

	
4.244

	
6.218

	
4.379

	
4.607




	
0.5

	
4.237

	
6.191

	
4.408

	
4.558




	
4

	
0

	
4.439

	
6.801

	
6.508

	
5.511




	
0.1

	
4.433

	
6.776

	
6.542

	
5.460




	
0.2

	
4.427

	
6.753

	
6.576

	
5.412




	
0.3

	
4.422

	
6.730

	
6.608

	
5.365




	
0.4

	
4.417

	
6.708

	
6.640

	
5.321




	
0.5

	
4.411

	
6.686

	
6.672

	
5.278




	
5

	
0

	
4.530

	
7.088

	
9.372

	
5.992




	
0.1

	
4.526

	
7.068

	
9.408

	
5.948




	
0.2

	
4.522

	
7.049

	
9.443

	
5.906




	
0.3

	
4.518

	
7.031

	
9.477

	
5.866




	
0.4

	
4.514

	
7.013

	
9.510

	
5.827




	
0.5

	
4.510

	
6.996

	
9.543

	
5.790




	
8

	
0

	
4.645

	
7.496

	
21.707

	
6.782




	
0.1

	
4.643

	
7.485

	
21.745

	
6.755




	
0.2

	
4.641

	
7.475

	
21.782

	
6.729




	
0.3

	
4.639

	
7.465

	
21.818

	
6.704




	
0.4

	
4.637

	
7.455

	
21.853

	
6.680




	
0.5

	
4.636

	
7.446

	
21.888

	
6.656




	
10

	
0

	
4.675

	
7.613

	
33.073

	
7.035




	
0.1

	
4.673

	
7.606

	
33.111

	
7.016




	
0.2

	
4.672

	
7.598

	
33.149

	
6.997




	
0.3

	
4.671

	
7.591

	
33.185

	
6.978




	
0.4

	
4.669

	
7.584

	
33.221

	
6.960




	
0.5

	
4.668

	
7.577

	
33.256

	
6.943




	
20

	
0

	
4.716

	
7.789

	
127.726

	
7.441




	
0.1

	
4.715

	
7.786

	
127.766

	
7.435




	
0.2

	
4.715

	
7.784

	
127.804

	
7.429




	
0.3

	
4.715

	
7.782

	
127.841

	
7.423




	
0.4

	
4.714

	
7.780

	
127.877

	
7.418




	
0.5

	
4.714

	
7.778

	
127.913

	
7.412




	
50

	
0

	
4.728

	
7.843

	
790.220

	
7.572




	
0.1

	
4.728

	
7.842

	
790.259

	
7.571




	
0.2

	
4.728

	
7.842

	
790.298

	
7.570




	
0.3

	
4.728

	
7.842

	
790.335

	
7.569




	
0.4

	
4.728

	
7.841

	
790.372

	
7.568




	
0.5

	
4.727

	
7.841

	
790.408

	
7.568




	
100

	
0

	
4.729

	
7.851

	
3156.257

	
7.592




	
0.1

	
4.729

	
7.850

	
3156.297

	
7.592




	
0.2

	
4.729

	
7.850

	
3156.335

	
7.591




	
0.3

	
4.729

	
7.850

	
3156.373

	
7.591




	
0.4

	
4.729

	
7.850

	
3156.409

	
7.591




	
0.5

	
4.729

	
7.850

	
3156.446

	
7.591
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Figure 1. Mesh of 75 mm (D) × 300 mm (L) rod: (a) 1st bending mode: 2101.5 Hz, (b) 2nd bending mode: 4910.6 Hz, (c) 1st torsional mode: 3622.1 Hz. 






Figure 1. Mesh of 75 mm (D) × 300 mm (L) rod: (a) 1st bending mode: 2101.5 Hz, (b) 2nd bending mode: 4910.6 Hz, (c) 1st torsional mode: 3622.1 Hz.
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Figure 2. Relationship between χt and Poisson’s ratio with different rod dimensions (diameter × length): (a) 100 mm × 400 mm, (b) 20 mm × 160 mm, and (c) normalized χt for different L/D ratios (L/D = 2, 4, 8, and 10). 
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Figure 3. Plot of B1 versus the length/diameter ratio: (a) LD≤10 and (b) LD>10. 
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Figure 4. Plot of A1 versus diameter/length (D/L) ratio. 
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Figure 5. Relationship between χb and Poisson’s ratio with different rod dimensions (diameter × length): (a) 100 mm × 400 mm, (b) 20 mm × 160 mm, and (c) normalized χb for different L/D ratios (L/D = 2, 4, 8, and 10). 
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Figure 6. Plot of C1 versus the diameter/length (D/L) ratio. 
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Figure 7. Plot of D1 versus the diameter/length (D/L) ratio. 
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Figure 8. Plot of E1 versus the diameter/length (D/L) ratio. 
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Figure 9. Picture of experiment: (a) Impact hammer, accelerometer, and specimens; (b) Experimental setup. 
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Figure 10. (a) Typical acceleration time history and (b) Typical response power spectrum (transverse mode). 
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Figure 11. (a) Typical impact loading time history and (b) Typical impact power spectrum (transverse mode). 
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Figure 12. (a) Typical acceleration time history and (b) Typical response power spectrum density (torsional mode). 
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Figure 13. (a) Typical impact loading time history and (b) Typical impact power spectrum (torsional mode). 
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Table 1. Elastic modulus and Poisson’s ratio assumed in the finite element method (FEM).






Table 1. Elastic modulus and Poisson’s ratio assumed in the finite element method (FEM).





	Test
	Elastic Modulus (GPa)
	Poisson’s Ratio





	1
	25.0
	0.1



	2
	25.0
	0.15



	3
	25.0
	0.2



	4
	10.0
	0.2



	5
	20.0
	0.2



	6
	30.0
	0.2
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Table 2. Comparison of the FEM and the analytical solutions.
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Test

	
Transverse Mode (Hz)

	
Torsional Mode (Hz)




	
1st

	
2nd




	
Exact

	
FEM

	
Error (%)

	
Exact

	
FEM

	
Error (%)

	
Exact

	
FEM

	
Error (%)






	
1

	
2103.083

	
2101.5

	
0.08%

	
4914.196

	
4910.6

	
0.07%

	
3626.66

	
3622.1

	
0.13%




	
2

	
2100.394

	
2098.9

	
0.07%

	
4896.9

	
4894.0

	
0.06%

	
3546.943

	
3542.4

	
0.13%




	
3

	
2097.75

	
2096.3

	
0.07%

	
4879.969

	
4877.4

	
0.05%

	
3472.262

	
3467.8

	
0.13%




	
4

	
1326.551

	
1325.6

	
0.07%

	
3085.938

	
3084.3

	
0.05%

	
2195.749

	
2193.0

	
0.13%




	
5

	
1876.349

	
1875.0

	
0.07%

	
4364.927

	
4362.6

	
0.05%

	
3105.793

	
3101.8

	
0.13%




	
6

	
2297.917

	
2296.3

	
0.07%

	
5345.615

	
5342.8

	
0.05%

	
3803.585

	
3798.8

	
0.13%
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Table 3. Values of B1 and A1 for different length/diameter ratios.
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Length/Diameter (L/D)




	
Coefficient

	
2

	
3

	
4

	
5

	
8

	
10

	
20

	
50

	
100






	
B1

	
2.59893

	
4.25642

	
6.50793

	
9.37206

	
21.7075

	
33.0728

	
127.7261

	
790.2198

	
3156.257




	
A1

	
0.26573

	
0.30686

	
0.33084

	
0.34551

	
0.36556

	
0.37104

	
0.37898

	
0.38135

	
0.38617
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Table 4. Calculation of γ1, γ2, and χb for different length/diameter ratios.
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Poisson’s Ratio, v

	
L/D = 4

	
L/D = 20

	
L/D = 50

	
L/D = 100

	
L/D = 200




	
γ1

	
γ2

	
χb

	
γ1

	
γ2

	
χb

	
γ1

	
γ2

	
χb

	
γ1

	
γ2

	
χb

	
γ1

	
γ2

	
χb






	
0

	
4.3609

	
6.801

	
5.511

	
4.7108

	
7.789

	
7.441

	
4.7269

	
7.843

	
7.572

	
4.7293

	
7.851

	
7.592

	
4.7298

	
7.853

	
7.597




	
0.1

	
4.3526

	
6.776

	
5.460

	
4.7103

	
7.786

	
7.435

	
4.7268

	
7.842

	
7.571

	
4.7292

	
7.850

	
7.592

	
4.7298

	
7.853

	
7.597




	
0.2

	
4.3443

	
6.753

	
5.412

	
4.7097

	
7.784

	
7.429

	
4.7267

	
7.842

	
7.570

	
4.7292

	
7.850

	
7.591

	
4.7298

	
7.852

	
7.597




	
0.3

	
4.3362

	
6.730

	
5.365

	
4.7091

	
7.782

	
7.423

	
4.7266

	
7.842

	
7.569

	
4.7292

	
7.850

	
7.591

	
4.7298

	
7.852

	
7.597




	
0.4

	
4.3281

	
6.708

	
5.321

	
4.7085

	
7.780

	
7.418

	
4.7266

	
7.841

	
7.568

	
4.7292

	
7.850

	
7.591

	
4.7298

	
7.852

	
7.597




	
0.5

	
4.3202

	
6.686

	
5.278

	
4.708

	
7.778

	
7.412

	
4.7265

	
7.841

	
7.568

	
4.7291

	
7.850

	
7.591

	
4.7298

	
7.852

	
7.597
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Table 5. The values of C1, D1, and E1 for different length/diameter ratios.
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Length/Diameter (L/D)




	
Coefficient

	
2

	
3

	
4

	
5

	
8

	
10

	
20

	
50

	
100






	
E1

	
3.69886

	
4.282677

	
5.51093

	
5.99205

	
6.78228

	
7.03545

	
7.44104

	
7.57243

	
7.59195




	
D1

	
−0.83478

	
−0.60134

	
−0.51647

	
−0.44455

	
−0.27264

	
−0.19948

	
−0.06117

	
−0.01043

	
−0.00263




	
C1

	
0.22969

	
0.12914

	
0.10186

	
0.08175

	
0.04227

	
0.02862

	
0.00748

	
0.00120

	
0.0002986
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Table 6. Steel rod with different length/diameter ratios.






Table 6. Steel rod with different length/diameter ratios.





	
Size (mm × mm)

	
FEM

	
Theoretical




	
Bending (Hz)

	
Torsional (Hz)

	
A1

	
B1

	
C1

	
D1

	
E1

	
Bending (Hz)

	
Torsional (Hz)




	
1st

	
2nd

	
1st

	
2nd






	
100 × 2000

	
112.09

	
305.44

	
784.8

	
0.381786

	
127.7267

	
0.00748

	
−0.06116

	
7.4433

	
112.32

	
306.079

	
787.62




	
100 × 400

	
2468.2

	
5718.0

	
3932.7

	
0.330818

	
6.50796

	
0.10188

	
−0.51670

	
5.5142

	
2470.39

	
5723.82

	
3938.11
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Table 7. Material properties of the rods.
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Material

	
Properties




	
Diameter (mm)

	
Length (mm)

	
Density (kg m−3)






	
Aluminum

	
63.50

	
736.60

	
2780.56




	
Steel

	
46.83

	
279.4

	
8143.13




	
Concrete

	
99.63

	
622.30

	
2288.75
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Table 8. Calculated properties of the aluminum, steel, and concrete rods.
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Rod

	
Transverse Frequency (Hz)

	
Torsional Frequency (Hz)

	
v

	
E (GPa)




	
1st

	
2nd

	
Method 1

	
Method 2

	
Method 1

	
Method 2






	
Aluminum

	
531.05 ± 0.03

	
1415.85 ± 0.07

	
2,083.02 ± 0.45

	
0.434

	
0.364

	
75.12

	
75.08




	
Steel

	
2589.83 ± 0.33

	
6460.95 ± 0.43

	
5686.97 ± 0.87

	
0.332

	
0.300

	
219.10

	
218.91




	
Concrete

	
847.02 ± 0.20

	
2130.61 ± 0.43

	
1972.06 ± 0.77

	
0.283

	
0.241

	
35.38

	
35.35
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Table 9. Sensitivity analysis of the aluminum, steel, and concrete specimens.






Table 9. Sensitivity analysis of the aluminum, steel, and concrete specimens.





	
Measured Properties

	
Method

	
Aluminum

	
Steel

	
Concrete




	
E (GPa)

	
v

	
E (GPa)

	
v

	
E (GPa)

	
v






	
Mass (±0.01 kg)

	
1

	
75.12 ± 0.1

	
-

	
219.10 ± 0.5

	
-

	
35.38 ± 0.03

	
-




	
2

	
75.08 ± 0.1

	
-

	
218.91 ± 0.5

	
-

	
35.35 ± 0.03

	
-




	
L (±0.01 mm)

	
1

	
75.12 ± 0.003

	
0.434 ± 0.00004

	
219.10 ± 0.02

	
0.332 ± 0.00009

	
35.38 ± 0.002

	
0.283 ± 0.00004




	
2

	
75.08 ± 0.003

	
0.364 ± 0.00008

	
218.91 ± 0.02

	
0.300 ± 0.0002

	
35.35 ± 0.002

	
0.241 ± 0.00009




	
D (±0.01 mm)

	
1

	
75.12 ± 0.05

	
0.434 ± 0.0004

	
219.10 ± 0.2

	
0.332 ± 0.0005

	
35.38 ± 0.001

	
0.283 ± 0.0002




	
2

	
75.08 ± 0.05

	
0.364 ± 0.0009

	
218.91 ± 0.2

	
0.300 ± 0.001

	
35.35 ± 0.001

	
0.241 ± 0.0005




	
n1 (±0.25 Hz)

	
1

	
75.12 ± 0.07

	
0.434 ± 0.001

	
219.10 ± 0.04

	
0.332 ± 0.0003

	
35.38 ± 0.02

	
0.283 ± 0.0008




	
2

	
75.08 ± 0.1 *

	
0.364 ± 0.05 *

	
218.91 ± 0.06

	
0.300 ± 0.004

	
35.35 ± 0.03

	
0.241 ± 0.01




	
n2 (±0.25 Hz)

	
1

	
-

	
-

	
-

	
-

	
-

	
-




	
2

	
75.08 ± 0.01 **

	
0.364 ± 0.02 **

	
218.91 ± 0.008

	
0.300 ± 0.001

	
35.35 ± 0.004

	
0.241 ± 0.004




	
n” (±0.25 Hz)

	
1

	
75.12 ± 0.07

	
0.434 ± 0.001

	
219.10 ± 0.001

	
0.332 ± 0.0001

	
35.38 ± 0.0003

	
0.283 ± 0.0003




	
2

	
-

	
-

	
-

	
-

	
-

	
-








* For a frequency resolution of ±0.05 Hz for n1, E = 75.08 ± 0.02 GPa and v = 0.364 ± 0.009. ** For a frequency resolution of ±0.05 Hz for n2, E = 75.08 ± 0.002 GPa and v = 0.364 ± 0.004.
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