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Abstract: Industrial dynamical systems often exhibit multi-scale responses due to material het-
erogeneity and complex operation conditions. The smallest length-scale of the systems dynamics
controls the numerical resolution required to resolve the embedded physics. In practice however,
high numerical resolution is only required in a confined region of the domain where fast dynamics or
localized material variability is exhibited, whereas a coarser discretization can be sufficient in the
rest majority of the domain. Partitioning the complex dynamical system into smaller easier-to-solve
problems based on the localized dynamics and material variability can reduce the overall computa-
tional cost. The region of interest can be specified based on the localized features of the solution, user
interest, and correlation length of the material properties. For problems where a region of interest is
not evident, Bayesian inference can provide a feasible solution. In this work, we employ a Bayesian
framework to update the prior knowledge of the localized region of interest using measurements
of the system response. Once, the region of interest is identified, the localized uncertainty is propa-
gate forward through the computational domain. We demonstrate our framework using numerical
experiments on a three-dimensional elastodynamic problem.

Keywords: Bayesian inference; uncertainty quantification; dynamical systems; inverse problem;
machine learning; system Identification; Gaussian process; polynomial chaos

1. Introduction

With the increase in demand for high-performance and highly-efficient systems,
the complexity of industrial design and manufacturing processes are increasing propor-
tionally, exposing many opportunities for novel technologies as well as many associated
technical challenges. For example, advancement in the design of composite structures
allows us to reduce weight, advancement in additive manufacturing enables us to reduce
cost. Introducing a new technology typically happens at the lowest level of the systems
hierarchy (e.g., at the parts or sub-component levels). Extending new technologies to
the system level requires rigorous testing for many years. For example, in the eighties,
composite material was only used for limited components of an aircraft (i.e., the wing and
tail [1]). Recently, however, about 50% of the material used in the Boeing 787 Dreamliner
are composite material [2]. In the industrial setting, the process of adaptation of a new
technology can be accelerated by proper assessment of uncertainty at various aspects of the
products life cycle. For example, at the design stage of an aircraft wing rib, it is crucial to
consider the effect of uncertainty in the material and operation conditions on the aeroelastic
dynamics of the wing [3]. At the manufacturing stage, it is important to consider the
impact of material uncertainty on the quality control [4,5]. The maintenance stage requires
a holistic assessment of the effect of measurement uncertainty on the static and dynamic
responses of the wing during structural health monitoring [6].

Quantifying uncertainty at the system level often requires a physics-based compu-
tational model for the entire structure. However, in structures such as an aircraft wing,
traditional computational models may become too complex and costly for simulating the
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multi-scale dynamical response due to material heterogeneity at the sub-component level.
The effect of the sub-component on the entire structure depends on the size, location and
loading conditions of the part. It is therefore, necessary to consider a different level of
fidelity for the analysis of the sub-components in order to reduce the cost and complexity
of uncertainty quantification. To this end, the concept of localized uncertainty propagation
for dynamical systems having multi spatio-temporal scales can be utilized to address such
issues [7–9].

In this work, we consider assessing the effect of localized uncertainty in a region
of interest within the entire structure. The framework is based on two uncoupled steps:
(1) identification of the region of interest, (2) quantifying the effect of localized uncertainty.
For structures composed of distinct parts, the localized region of interest for uncertainty
propagation can be easily identified. Alternatively, measurement data of the system
response can be used to identify the localized region of interest. The Bayesian paradigm
integrates computational models and observational data in one framework to update the
current state of knowledge [10,11]. Estimating the posterior probability density function
in the Bayesian method requires solving the forward model many times, which may
become challenging for limited computational budget. This issue is often addressed by
building a surrogate model such as a Gaussian Process (GP) regression model [12]. The GP
models are non-parametric and Bayesian in nature, and they provide uncertainty bounds
on their predictions. Once the region of interest is identified, a Polynomial Chaos (PC)
expansion [13,14] is used to propagate the uncertain material properties of the localized
region through the entire domain. In contrast to References [7,8] the contributions of this
work—(1) The partitioning of the domain is inferred from measurement of the system
response, (2) Gaussian process model is used as a surrogate in the Bayesian framework,
(3) non-intrusive polynomial chaos approach is used for localized uncertainty propagation.
The rest of this work is organized as follows—in Section 2, we provide the problem
statement and the associated mathematical formulations. Our numerical demonstrations
are provided in Section 3. We provide the conclusions of the current work in Section 4.

2. Methodology

In this section, we present the mathematical framework of our approach for data-
driven partitioning scheme for localized uncertainty quantification. In particular, in
Section 2.1, we introduce the problem statement in the Bayesian setting. For problems
where the localized region of interest is not defined explicitly, we rely on measurement data
of the system response to infer the localized region of interest using Bayesian framework.
The Bayesian framework requires a computational model (the forward problem) to esti-
mate the response of the system for a given set of the input parameters. Consequently, in
Section 2.2, we discuss the stochastic elastodynamic problem and its finite element dis-
cretization. Estimating the localized region of interest in the Bayesian setting necessitates
many solutions to the stochastic elastodynamic problem which can become computation-
ally demanding. A surrogate model for the system response can be used to reduce the
computational cost of the Bayesian framework as will be presented in Section 2.3. Once the
localized region of interest is estimated, uncertainty representation of the material proper-
ties within the region of interest can be performed. The localized uncertainty is propagated
forward through the entire computational domain in order to estimate the effect on the
material variability on the response. For this task, we use the polynomial chose expansion
for efficient assessment of uncertainty with less computational cost. The polynomial chose
expansion is reviewed in Section 2.4.

2.1. Bayesian Inference

In the Bayesian inference, the prior knowledge is updated to posterior using noisy
measurements and the response of a physical model [10,11]. The update is based on the
Bayes’ rule defined as

ppθ|dq “
ppθqppd|θq

ppdq
, (1)
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where θ is the unknown parameter to be estimated, d is the measurement of an observable
quantity, ppθ|dq is the posterior probability density function, ppθq is the prior probability
density function, and ppd|θq denotes the likelihood of the observations given the parameter.
We assume that the measured data, d, is generated from a statistical model represented as

d “Mpθq ` ε, (2)

where Mpθq denotes a physical model and ε is a measurement noise represented as a
Gaussian random variable with unknown variance ε „ N p0, σ2

nq. For a Gaussian noise,
the likelihood function becomes

ppd|θq “
1

`

2πσ2
n
˘´N{2

exp

˜

´

N
ÿ

i

rdi ´Mpθiqs
2

2σ2
n

¸

. (3)

The task in hand is to utilize the measurement d and the physical model Mpθq to estimate
the system parameters θ. The process requires many executions to the physical model Mpθq,
which can be computationally expensive. The computational model is often approximated
by a simpler easy to evaluate model as:

Mpθq »Mpθq, (4)

where Mpθq denotes the surrogate model that is constructed using limited runs of the
physical model Mpθq. In our work, we represent Mpθq as the Gaussian process surrogate
model [15]. Once we construct the surrogate model, the localized features parameterized
by θ is estimated using Markov Chain Monte Carlo (MCMC) sampling technique [16,17].
Having identified the region of interest, a localized uncertainty quantification of the mate-
rial properties can be performed efficiently using polynomial chaos expansion [13].

2.2. The Forward Problem

We consider an arbitrary physical domain Ω P Rd with BΩ being its boundary as
shown in Figure 1a, and define the following problem:

Find a random function upx, t, ξq : Ω ˆ r0, Tf s ˆ Ξ Ñ R, such that the following
equations hold

ρpξq:upx, t, ξq “ ∇ ¨ σ ` b in Ω ˆ r0, Tf s ˆ Ξ,
upx, t, ξq “ ū on BΩu ˆ r0, Tf s ˆ Ξ,

σ ¨ n “ t̄ on BΩt ˆ r0, Tf s ˆ Ξ,
upx, 0, ξq “ u0 in Ω ˆ Ξ,
9upx, 0, ξq “ 9u0 in Ω ˆ Ξ,

(5)

where ρpξq is the mass density, σ is the stress tensor, u is the displacement field, b is the
body force per unit volume, ū is the prescribed displacement on BΩu, t̄ is the prescribed
traction on BΩt, n is a unit normal to the surface, and u0 and 9u0 are the initial displacement
and velocity, respectively. Here, we define the stochastic space by (Θ, Σ, Pq, where Θ
denoting the sample space, Σ being the σ-algebra of Θ, and P representing an appropriate
probability measure. The stochastic space is parameterized by a finite set of standardized
identically distributed random variables ξ “ tξipθqu

M
i“1, where θ P Θ. The support of the

random variables is defined as Ξ “ Ξ1 ˆ Ξ2 ˆ ¨ ¨ ¨ΞM P RM with a joint probability density
function given as ppξq “ p1pξ1q ¨ p2pξ2q ¨ ¨ ¨ pMpξMq.

For linear isotropic elastic martial, the constitutive relation between the stress and
strain tensors is given by:

σ “ λpξqtrpεqI` 2µpξqε, (6)

where λpξq and µpξq are the Lamé’s parameters, I is an identity tensor and ε is the symmetric
strain tensor defined as

ε “
1
2

´

∇u`∇uT
¯

. (7)
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For a random Young’s modulus Epx, ξq and deterministic Poisson’s ratio ν , the Lamé’s
parameters can be expressed as

λpξq “
Epx, ξqν

p1` νqp1´ 2νq
, µpξq “

Epx, ξq

2p1` νq
. (8)

We consider the case that uncertainty stems from a localized variability in a confined
region within the physical domain. For example as shown in Figure 1b, the variability
in the quantity of interest can be attributed to random material properties within the
subdomain Ω2. The artificial martial boundaries shown in Figure 1b for subdomain Ω2 is
estimated using Bayesian inference. Localizing random variability in the neighborhood
of the quantity of interest reduces the computational cost of uncertainty propagation in
problems where a region of interest can be specified. Depending on the interest in the region,
each subdomain can have its local uncertainty representation and the corresponding mesh
and time resolution. As a result, the Asynchronous Space-Time Domain Decomposition
Method with Localized Uncertainty Quantification (PASTA-DDM-UQ) [7–9] can be utilized.
In PASTA-DDM-UQ, spatial, temporal and material decomposition are considered. In this
work however, we only consider material decomposition and apply non-intrusive approach
for uncertainty propagation.

Consequently, let the physical domain Ω be partitioned based on the martial variability
into ns non-overlapping subdomains Ωs, 1 ď s ď ns as shown in Figure 1b and such that:

Ω “

ns
ď

s“1

Ωs, Ωs
č

Ωr “ H for s ‰ r, Γ “
ns
ď

s“1

Γs, Γs “ BΩszBΩ. (9)

b

∂Ωu

∂Ωt

Ω

E(x, ξ)

(a) Spatial domain

@⌦u

@⌦t
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(b) Domain decomposition.

Figure 1. An arbitrary computational domain Ω with a random material property (i.e., Epx, ξq) and its partitioning into
non-overlapping subdomains. The partitioning is based on material variability.

Note that the partitioning boundaries are not set a priori as it will be estimated using
noisy measurement of the system response. According to the decomposition in Equation (9),
the stochastic dynamical problem in Equation (5) can be transformed into the following
minimization problem:

Find a random function upx, t, ξq : Ωˆ r0, Tf s ˆ Ξ Ñ R, such that

Lpu, 9uq “
ns
ÿ

s“1

pTsp 9uq ´ Vspuqq Ñ min, s “ 1, ¨ ¨ ¨ , ns, (10)
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where Lpu, 9uq is the Lagrangian of the system, Tsp 9uq denotes the subdomain kinetic energy
and Vspuq is the subdomain potential energy defined as:

Tsp 9uq “
ż

Ξ

ż

Ωs

1
2

ρspξq 9u ¨ 9u dΩdΞ, (11)

Vspuq “
ż

Ξ

ˆ
ż

Ωs

1
2

ε : σs dΩ`

ż

Ωs

u ¨ bs dΩ`

ż

BΩt

u ¨ t̄s dΓ
˙

dΞ, (12)

where bs and t̄s are the subdomain body force and the prescribed traction, respectively.
The Hamilton’s principle with a dissipation term reads

ż Tf

0

ˆ

δL´ BQ
B 9ε

: δε

˙

dt “ 0, (13)

where δL is the first variation of the augmented Lagrangian defined as

δL “
ns
ÿ

s“1

ż

Ξ

ˆ
ż

Ωs

ρspξqδ 9u ¨ 9u dΩ´

ż

Ωs

δε : Dspξq : ε dΩ`

ş

Ωs
δu ¨ bs dΩ`

ş

BΩt
δu ¨ t̄s dΓ

¯

dΞ,
(14)

here we define Dspξq as the uncertain linear elasticity tensor. The dissipation function Qp 9uq
in the Hamilton is defined as

Qp 9uq “
ns
ÿ

s“1

1
2

ż

Ξ

ż

Ωs

9ε : pDs : 9ε dΩdΞ, s “ 1, ¨ ¨ ¨ , ns, (15)

where pDs is the damping tensor assumed to be deterministic. Substituting
Equations p15q and p14q into the Hamilton’s principle Equation (13) gives the follow-
ing stochastic equation of motion for a typical subdomain Ωs

ş

Ξ
ş

Ωs
ρspξq:u ¨ δu dΩ dΞ`

ş

Ξ
ş

Ωs
9ε : pDs : δε dΩ dΞ`

ş

Ξ
ş

Ωs
ε : Dspξq : δε dΩ dΞ

“
ş

Ξ
ş

Ωs
δu ¨ bs dΩ dΞ`

ş

Ξ
ş

BΩt
δu ¨ t̄s dΓ dΞ.

(16)

In the next section, we describe the finite element discretization of the weak form
defined in Equation (16).

Spatial and Temporal Discretizations

Let the spatial domain Ω be triangulated with finite elements of size h and let the
associated finite element subspace be defined as Xh Ă H1

0pΩq, the spatial component of
the solution to the stochastic problem is then sought in the tensor product function space
W “ H1

0pΩq b L2pΘq defined as [14,18]

W “ twpx, θq : ΩˆΘ Ñ R | }w}2W ă 8u, Ă H1
0pΩq b L2pΘq, (17)

where the energy norm } ¨ }2W is defined as

}wpx, θq}2W “

ż

Θ

ˆ
ż

Ω
κpx, θq|∇wpx, θq|2dx

˙

dPpθq. (18)

The tensor product space W can be viewed as a stochastic space consists of random
functions satisfying the Dirichlet boundary condition and having a finite second order
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moment. For a given realization of the underlying random variables of the stochastic space,
an approximate finite element solution to the deterministic part can be expressed as

uh “

ni
ÿ

i

Nipxqũiptq, (19)

where Nipxq are traditional spatial finite element basis functions and ũiptq are the nodal
values of the solution as a function of time [19]. Substituting the discrete field, Equation (19)
in the weak form Equation (16) gives the following semi-discretized stochastic equation
of motion :

ż

Ξ
pM:uptq `C 9uptq `KuptqqdΞ “

ż

Ξ
FptqdΞ. (20)

We drop the nodal finite element marks (tilde) for brevity of the representation and define
the following matrices:

M “

ns
ÿ

s“1

ż

Ωs

ρsNTNdΩ, C “
ns
ÿ

s“1

ż

Ωs

BT
pDsBdΩ,

K “

ns
ÿ

s“1

ż

Ωs

BTDi
sBdΩ, Fptq “

ns
ÿ

s“1

ˆ
ż

Ωs

bT
s NdΩ`

ż

BΩs

t̄T
s NdΓ

˙

.

Here, B is the displacement-strain matrix. For time discretization, we use the Newmark
time integration scheme to advance the stochastic system one time step as

9uk`1 “ 9uk ` p1´ γq∆t:uk ` γ∆t:uk`1, (21)

uk`1 “ uk ` ∆t 9uk `

ˆ

1
2
´ β

˙

∆t2 :uk ` β∆t2 :uk`1, (22)

where γ and β are the integration parameters, and ∆t “
Tf´T0

nt
. Substituting he Newmark

scheme into the semi-discretized stochastic equation of motion Equation (20), gives the
following fully discretized linear system for a give realization of the random vector ξ:

ApξqUk`1pξq “ Fk`1 ´GUkpξq, (23)

where for compact representation, we define

Apξq “

»

–

Mpξq C Kpξq
´γ∆TI I 0
´β∆T2I 0 I

fi

fl, G “

»

–

0 0 0
´p1´ γq∆TI ´I 0
´p 1

2 ´ βq∆T2I ´∆TI ´I

fi

fl,

Upξq “

$

&

%

:upξq
9upξq
upξq

,

.

-

, F “

$

&

%

f
0
0

,

.

-

.

For the data-driven decomposition approach, many solutions to the forward problem
Equation (23) are required to estimate the appropriate decomposition for localized un-
certainty propagation. To mitigate the computational cost involved with identifying the
underlying localized region of interest, a Gaussian Process (GP) surrogate model is utilized
as explained in the next section.

2.3. Surrogate Modeling

The Gaussian Process (GP) surrogate model is widely used for engineering problems
as a cost-effective alternative to costly computer simulator [20,21]. In GP for dynamical
systems, we consider D “ tpxi, yiq | i “ 1, 2, ¨ ¨ ¨ , Nu to be a set of training data consists
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of N samples, where xi P Rd represents the input sample i, and yi is the corresponding
output vector of size nT . For time-series data, the output is observed at a sequence of time
steps tj P rt1, t2, ¨ ¨ ¨ , tnT s. We concatenate all the input and output into the design matrix
X and the corresponding observation matrix Y , respectively as:

X “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

t1 x1
...

...
tnT x1

...
...

t1 xN
...

...
tnT xN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Y “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

y1
1
...

y1
nT
...

yN
1
...

yN
nT

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (24)

where yi
j is the response at time tj for the input parameters xi. The sizes of the design

matrix X and the observation matrix Y are pNˆnTqˆ pd`1q and pNˆnTqˆ1, respectively.
In compact form, the training data set (X , Y) can be rewritten as:

X “
“

1N b T Xb 1nT

‰

, Y “ vecpYq, (25)

where 1N is an identity vector of size N, X “ rx1, ¨ ¨ ¨ , xNs
T , T “ rt1, ¨ ¨ ¨ tnT s

T , 1nT is an
identity vector of size nT , Y “

“

y1 ¨ ¨ ¨ yN‰ and yi “ ryi
1, ¨ ¨ ¨ yi

nT
sT . Here the symbols b

and vecp‚q represent Kronecker product and vectorization operators, respectively. Conse-
quently, a general regression model for time-dependent data can be expressed as a function
f pX q that maps the input X to time-series observation Y . In GP regression, the goal is to
infer the function f pX q from noisy observation of the output Y . To this end, the function
f pX q is viewed as a random realization of a GP as f pX q „ GPpµpX q, KpX ,X 1qq, where
µpX q and KpX ,X 1q are the mean vector and covariance matrix of the process, respectively.
Training the GP model can be performed by finding the optimal values to the covariance
parameters. Systematically, this is done by maximizing the evidence or the marginal likeli-
hood with respect to the hyperparameter parameters of the kernel. For a zero mean and
KpX ,X 1q covariance matrix, the prediction of the GP based on noisy observation for a new
input x˚ is a Gaussian process with the following posterior mean and covariance [12]

µpx˚q “ kpx˚,X qrKpX ,X 1q ` σ2
nIs´1Y , (26)

σ2px˚q “ kpx˚, x˚q ´ kpx˚,X qrKpX ,X 1q ` σ2
nIs´1kpX , x˚q. (27)

The covariance function in the GP framework encodes the smoothness and it measures
the similarity of the process between two points. The covariance function also encodes the
prior belief over the regression function to model the measurements. The prior belief can be
on the level of the function smoothness, or behavior and trend such as periodicity. Selecting
the right covariance kernel can be challenging for time-dependent data and may require a
composition of several covariance functions together to model the right behavior of the
data. On the other hand, for problems where the training data is given in the form as in
Equation (24), the size of the data may grow exponentially demanding large computational
budged. In such a scenario, a scaleable framework for the GP regression of large data set
can be exploited to efficiently address the computational cost [22].

In this work, the ultimate goal of the GP model is to serve as a surrogate for the costly
simulation code. Thus, we follow a simplified approach to reduce the computational cost
of building the surrogate [23]. For the case when the time index of measurement is set
a priori and prediction at intermediate time instant is not required, the inter correlation
between the time steps can be relaxed. Specifically, the prediction of the model in this
case is always set at the location of the measured data, and the model only considers the
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correlation between the input variables xi. Thus the GP can be constructed on the subset of
the data (X, Y) instead of (X , Y) as GPpµpXq, KpX, X1qq, where

X “

»

—

–

x1
...

xN

fi

ffi

fl

, Y “

»

—

–

y1
1, . . . , y1

nT
...

y1
N , . . . , yN

nT
.

fi

ffi

fl

(28)

2.4. Polynomial Chaos

The Polynomial Chaos (PC) expansion is based on the decomposition of a stochastic
process into deterministic coefficients scaling random functions. In particular, the PC
approximates a stochastic process as a linear combination of stochastic orthogonal basis
functions as

upt, ξq “
N
ÿ

j“0

Ψjpξqujptq, (29)

where Ψjpξq are a set of multivariate orthogonal random polynomials and ujptq are the
deterministic projection coefficients. The PC coefficients can be estimated non-intrusively as

ujptq “

ş

Ξ upt, ξqΨjpξqdΞ
ş

Ξ Ψ2
j pξqdΞ

, (30)

where
ş

Ξp‚q dΞ denotes the expectation operator with respect to the probability density
function of the underlying random variables. The expectation integral can be estimated
using random sampling or deterministic quadrature rule [24].

3. Numerical Example

For the numerical demonstration, we consider the problem of detecting the desired
geometry (e.g., localized features) for a given specimen from noisy measurements of its
dynamical response. We parameterize the geometry by the dimensions of the inner section
(the inner length li and radius ri) as shown in Figure 2. The inner dimensions are inferred
from noisy measurement of the beam deflection at the mid-span. Once the dimensions are
estimated, we perform localized uncertainty propagation of the material parameters of the
inner core. For the verification of the framework, a modular approach is considered, where
each sub-component of the framework is verified as a standalone unit. This approach is
justified by the sequential nature of the coupling mechanism between the building blocks
of the framework (i.e., features identification and then uncertainty propagation). This
approach quantifies the error in each step and prevents the error measures from being
overly influenced by one component compared to another.

3.1. The Forward Problem

We consider a 3-D Aluminum beam with mean elastic properties of E “ 70 GPa,
ν “ 0.3 and ρ “ 26.25 kN/m3. For the damping representation, we consider Rayleigh
damping as C “ ηmM ` ηkK with the constants ηm “ 0 and ηk “ 0.001. The stiffness
K in the Rayleigh damping is based on the mean properties. We utilize FEniCS [25]
for the forward finite element simulations. Figure 2 shows a 2D projection of the beam
geometry, where we parameterize the inner cylinder by length li and radius ri, and the
outer cylinder by length lo and radius ro. For the reference case, the inner and outer
dimensions are li “ 0.45 m, ri “ 0.025 m and ro “ 0.05 m and, lo “ 1.0 m, respectively.
The beam is subjected to an impact force defined as: Fpt, xq “ r0, 0, F0t{tcδpt´ tcqsT , where
F0 “ ´5.0 GN and the ramp time is tc “ 0.5 ms. The beam is fixed at both ends and
subjected to zero initial displacement and velocity.
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Figure 2. Schematic showing a 2D projection of a typical beam. For the reference case the inner and
outer dimensions are (li “ 0.45 m, ri “ 0.025 m) and (ro “ 0.05 m and, lo “ 1.0 m), respectively.

We consider the vertical deflection at the mid-span to be the quantity of interest (QoI)
in identifying the underlying beam geometry. Figure 3 shows the mid-span displacement
and velocity for a the reference case.
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Figure 3. The displacement and velocity at the mid-span of the reference case for the mean material properties E “ 70 GPa,
ν “ 0.3 and ρ “ 26.25 kN/m3.

3.2. The Surrogate Model

In order to infer the beam geometry from measurement of the QoI, many runs of the
forward model, the 3D finite element dynamical code, are required. A surrogate model
can overcome this issue by utilizing a limited number of a prespecified runs. The design of
computer experiments concept can be used to optimally select the required runs [26–28].
For multi-fidelity simulations, where a high-cost high-accuracy and a low-cost low-accuracy
simulators are available, a balance between the computational cost and accuracy can be
achieved in designing the numerical simulations experiments [29].

The surrogate model is constructed based on samples that can represent the variability
in the beam geometry due to different values of the inner dimensions. We define the vari-
ability of the inner dimensions by assigning a uniform random distribution with a specified
bounds as li „ Up0.25, 0.75qm and ri „ Up0.01, 0.05qm. Using Latin hypercube sampling
technique, we generate 50 independent samples for the inner dimensions. Using these
samples, we generate the geometry of the beam followed by constructing the corresponding
finite element mesh, and executing the forward model to calculate the mid-span deflection
(QoI). Samples of the training geometries are shown in Figure 4. Clearly, the samples span
a wide range of the probable geometries of the beam. The corresponding scatter of the
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mid-span vertical displacement of the 50 samples is shown in Figure 5. The variability of
the inner dimensions not only affect the geometry, but also the location and magnitude of
the bouncing deflection at around time t “ 0.002 s and t “ 0.005 s.

(a) sample 1 (b) sample 2

(c) sample 3 (d) sample 4

Figure 4. Four samples showing the variability in the beam geometry due to different values of the inner dimensions (li, ri).
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Figure 5. The mid-span vertical displacement of the 50 samples.

We randomly split the 50 samples into two groups as follows—40 samples for training
and 10 for testing. For numerical implementation and to mimic the real world, we add a
Gaussian random noise of strength (e.g., 10´3 ˆmaxpuq) to the deflection measurements.
Figure 6 shows samples of observed and predicted responses with confidence bounds for
different values of the inner dimensions. The errorbars (based on two standard deviation)
are indistinguishable within the scale of the graph. The maximum and minimum values of
the mean squared error between the prediction and the observed response are 2.10ˆ 10´7

and 5.35ˆ 10´9, respectively. Given the fact that the testing samples are not seen by the
model during the training phase, the GP model can predict the unseen data within the
given accuracy.

To summarize the quality of the prediction, in Figure 7, we show the L2-norm of the
observed and predicted QoI. The observed/predicted validation plot indicates that the
coefficient of determination between the prediction and observation is r2 “ 0.98, and the
corresponding mean squared error is 2.53ˆ 10´6. These statistical metrics indicate that the
GP model can estimate the unseen geometry from a noisy measurement of the QoI within
a given accuracy.

Once the GP model is validated, it can be deployed as a low-cost surrogate for the 3D
finite element analysis code. The prediction of GP model takes only a fraction of the time
that is needed by the finite element code to estimate the QoI with a fair accuracy.
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Figure 6. Observed and predicted quantity of interest (QoI) for different testing samples. The test samples are not part of
the training set. The errorbars are indistinguishable within the scale of the graph.

0.13 0.14 0.15 0.16 0.17 0.18
observed

0.13

0.14

0.15

0.16

0.17

0.18

ob
se

rv
ed

/p
re

d
ic

te
d

observed

predicted

Figure 7. The observed/predicted validation plot showing the norm of the observed (test data) and
the corresponding model predictions.

3.3. The Backward Problem

In the backward problem, we try to estimate the inner dimensions (li, ri) of the beam
from noisy measurements of the QoI. We assume that a noisy measurement for the QoI
is available as shown in Figure 8. The synthetic data is generated using inner dimension
li “ 0.313 m and ri “ 0.055 m plus (σn “ 0.1ˆmaxpuq) Gaussian noise to mimic a real
experiment setting.
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Figure 8. Noisy measurement of the QoI.

For the Bayesian calculation, we use non-informative prior for both the parameters
θ “ rli, ris to assess the robustness of the inversion process. An adaptive MCMC method
(DRAM) [16,17] is utilized to estimate the posterior density. In Figure 9, we show the
estimated posterior density of the parameters θ “ rli, ris . We also show the prior density
and the true value of the parameters. Note that the true parameters are not part of either
the training nor the testing data sets. This highlights the robustness of the framework.
The mean of the estimated values are li “ 0.310˘ 0.048 m and ri “ 0.054˘ 0.004 m (the
confidence bounds are based on two standard deviation).
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Figure 9. The estimated posterior density function of the inner dimensions θ “ rli, ris. The sold line is the posterior PDF,
the dotted line is the prior PDF and the bullet dot represents the true value li “ 0.313 m and ri “ 0.055 m.

Next, the uncertainty in the parameter estimation represented by the posterior density
in Figure 9 is propagated forward through the surrogate model to estimate a confidence
bounds on the prediction of the QoI. In Figure 10, we show the model prediction and
the 95% confidence interval as well as the true measured response. The L2-norm of the
discrepancy between the mean model prediction and the measured data is 0.005 m. This
conforms that the response due to the estimated parameters uncertainty agrees reasonably
well with the true response. Note that, in the estimation of the localized region of interest,
the material properties are assumed deterministic. For uncertainty propagation, the Max-
imum A Posteriori (MAP) estimation is used for the inner dimensions, while assuming
random material properties in the region of interest. The relativity small errorbars (within
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the scale of the graph) indicates that the single point estimation MAP can be used to set the
inner dimension sufficiently.
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Figure 10. The prediction of the surrogate model and its confidence interval due to uncertainty
propagation of the variability in the estimated inner dimensions.

3.4. Localized Uncertainty Propagation

The QoI is confined within the core cylinder defined by inner dimensions θ “ rli, ris.
Once these dimensions are available, the effect of the random variability in the material
properties of the inner subdomain can be estimated using PC expansion. Without loss of
generality, here we assume that for the inner cylinder, the Young’s modulus and material
density are random quantities, while Poisson’s ratio is deterministic as

Epx, ξ1q “

#

E0p1` σEξ1q, for x P Ω2

E0, otherwise
(31)

and

ρpx, ξ2q “

#

ρ0p1` σρ ξ2q, for x P Ω2

ρ0, otherwise
(32)

where the artificial boundary for Ω2 are defined by MAP estimation of the inner dimensions
θ “ rli, ris, E0 “ 70 GPa, ρ0 “ 26.25 kN/m3, σE “ 0.25 and σρ “ 0.15 and ξ1, ξ2 are standard
normal random variables. Note that, not only the solution over Ω2 is stochastic, but also
over all the whole domain since the spatial finite element and stochastic basis functions are
continuous across the domains interfaces. We use second order PC expansion to propagate
the localized uncertainty due to the random Young’s modulus and material density as
shown in Figure 11.

To verify the PCE order, Figure 12 shows the error between the predictions of both the
displacement and velocity using second and third order expansion. The error measure is
defined as errorp‚q “ p‚q3rd ´ p‚q2nd. The relatively small values of the error confirm that
the second order expansion is sufficient for uncertainty propagation for this problem.

The uncertainty bounds follow the trend of the response, with a higher value near the
shock location. Although not explored here, high spatio-temporal resolution solver can be
directed toward the region of interest, while a less resolution alternative can be assigned to
the regions away from the QoI. As demonstrated in References [7–9], PASTA-DDM-UQ
approach leads to a customized solver for localized uncertainty propagation with less
computational cost.
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Figure 11. The Polynomial Chaos (PC) prediction of the displacement and velocity at the mid-span. The uncertainty bounds
represent two standard deviation.
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Figure 12. The error between prediction of the 2nd and 3rd PC order for the displacement and velocity at the mid-span.
The error measure is defined as errorp‚q “ p‚q3rd ´ p‚q2nd.

4. Conclusions

We present a data-based partitioning scheme for localized uncertainty quantification
in elastodynamic system. The localized region of interest is identified using Bayesian
inference framework. Measurement of the system response at one location in conjunction
with a physics-based computational model is used to infer the localized features of the
region of interested. A data-based surrogate model for the physics-based simulator is
constructed using Gaussian process regression in order to reduce the computational cost of
the Bayesian inversion. Material uncertainty in the region of interest is propagated through
the system using polynomial chaos. We exercise our framework on a three-dimensional
beam with localized feature and subjected to an impact load. The presented framework can
facilitate quantifying the effect of the confined uncertainty in a localized region of interest
within the global computational domain. Proper assessment of uncertainty at various level
can accelerate the adaptation process of a new component introduced to an existing system.
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