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Abstract: The vibration on the stator core of hydrogenerators caused by electromagnetic forces is
an important factor affecting the reliability and long-lasting operation of a machine. For a suitable
addressment of the problem, it is necessary to accurately predict the eigenmodes and eigenfrequen-
cies of the mechanical system. However, different results for the eigenfrequencies can be achieved
depending on the applied model and material parameters. This work contributes to solving this
issue by investigating the impact of different input parameters on the eigenmodes and eigenfre-
quencies calculated by analytical and numerical models. The results are discussed and compared to
measurements performed on a prototyped 732 kVA hydrogenerator.
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1. Introduction

Hydropower generation represents an important source of renewable energy. In order
to keep high indexes of availability to the grid, maximize the energy production, and
achieve low costs for power generation, it is crucial to maintain power plants’ maintenance
expenses to a minimum. This can be done by avoiding common problems on the equipment
already in the early design phase, such as excessive vibrations in the generator. This paper
contributes to advancing this field by performing investigations on a stator mechanical
model, which is used for predicting stator cores’ radial vibrations in hydrogenerators due
to alternating magnetic forces. Such forces are commonly interpreted as the superposition
of rotating magnetic pressure waves originated from the airgap magnetic field, which acts
predominantly on the core laminations in the radial direction [1]. In combination with the
dynamic response of the mechanical system, they may cause excessive vibration of the
stator core and other structures, which is generally undesirable due to possible damage,
life span reduction, and consequent audible noise.

In the particular case of hydrogenerators, which are commonly low-speed salient-pole
synchronous machines, the mechanical structure has some peculiarities. One of them is that
the stator frame has a significant influence on the excited eigenmodes [2]. As illustrated
in Figure 1, low-speed hydrogenerators are normally vertical machines, and their stator
frames consist of shelves and structural columns that transmit the stator, rotor, and turbine
weight to the housing foundations [3]. In these cases, it is common that the stator core
yoke is relatively thin compared to the frame shelves radial height, which increases the
influence of the stator frame. Taking into account these effects for such a large structure in
a time and cost-effective manner is quite a real challenge, since available analytical models
assume the stator core only as a free cylinder in space. On the other hand, FE models
depend substantially on the accuracy of the employed equivalent material’s properties and
boundary conditions at the interfaces between frame, core, and foundations.
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Figure 1. Typical cross section of a hydrogenerator.

Several analytical models are available for calculating the stator frequency response at
different mode shapes. Most of them are based on a simplified thick cylinder model, as in
Jordan [4], Arnold and Warburton [5], White [6], and Girgis and Verma [7]. Experimental
measurements are available in Verma and Girgis [8,9] and Verma and Balan [10] for different
types of stators, but for small-sized machines. Although some of these models allow
to consider simply supported boundary conditions at the cylinder axial ends, they are
not able to correctly take into account the effect of the stator frame of a hydrogenerator.
There are also more complex FE models and measurements for large hydrogenerators
including the stator frame, as in Minnier et al. [11], Rau [12], and Zhou et al. [13]. In
these studies, different considerations were made regarding the influence of teeth, yoke,
winding, frame, and foundations; however, there is still a debate on the most suitable
material properties for stacked laminations, winding, and correct contact conditions at the
interface between frame and core. In the last years, several works were dedicated to the
establishing suitable material parameters for small-sized machines [14–18], but the specific
case of hydrogenerators has not been addressed yet. For the equivalent Young’s modulus
of a stator core in the axial direction, values from ~4 GPa [17] to ~110 GPa [18] can be found.
The effect of ventilation ducts is mentioned by Walker [19] only for static tests. For the
winding equivalent Young’s modulus, measurements are available for a single bar hanging
on space [12], but the effect of a bar fixation system inside the slot has not been assessed.

The present work aimed to perform mechanical modal analyses of the stator structure
varying the material properties and contact conditions between core and frame. The effect
of each factor is discussed in relation to the performed measurements.

2. Materials and Methods

In order to evaluate the mechanical response of the core, we developed an FE model
for a prototyped hydrogenerator. This evaluation was also carried out using an existing
analytical model, so that the results could be compared to those obtained with the FE
model. The machine main data are summarized in Table 1.

Table 1. Machine main parameters.

Parameter Value

Rated output 732 kVA
Rated speed 375 rpm

Number of poles 16
Number of stator slots 96

Stator core outer diameter 1640 mm
Stator core total length 330 mm

Ventilation ducts 11 × 6 mm

Firstly, several modal analyses for different material parameters and boundary con-
ditions were performed. Then, an experimental modal analysis (EMA) was carried out,



Vibration 2021, 4 855

and the eigenmodes and frequencies predicted by the different calculation models were
compared.

2.1. Analytical Model

The applied analytical model was developed according to White [6], which described
the stator core as a thin-walled cylinder with thickness corresponding to the stator yoke.
The stator teeth were considered only as additional mass to the system, in order to account
for their kinetic energy during vibration. However, the stiffness of the teeth was not
considered, following the assumption that they did not experience any deformation, but
rather followed the displacement according to the surrounding yoke. This simplification
was also assumed for the winding inside the slots.

The analytical calculation of the eigenfrequencies followed the approach of applying
Lagrange’s equations on the kinetic energy and strain energy of a vibrating cylindrical
shell. Equations (1) and (2) illustrate the involved energies. The complete development
up to the eigenfrequencies can be found in detail in [6]. This approach led to the expected
eigenmodes, also known as mode shapes, as shown in Figure 2.
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where S is the total strain energy, T is the total kinetic energy, a is the mean radius, h
is the core yoke thickness, l is the core length, ei is the direct strain in direction i, γij is
the shear strain in direction ij, Ei: is the Young’s modulus in direction i, Gij is the shear
modulus in direction ij, ρ is the equivalent mass density, µij is the Poisson ratio in direction
ij, λ = 1− µyzµxy.
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Figure 2. Eigenmodes of a thin cylinder.

The displacements of the cylinder intermediate surface in the directions x, y, and z
are represented by the variables the u, v, and w, respectively. In Equation (1), the stator
was assumed as a thin cylinder and, consequently, the direct strain in the radial direction
ex and the shear strains involving the radial direction (γxz and γxy) were neglected. The
trapezoidal shape of the elements in the yoke due to the cylindrical geometry was also not
taken into account.

After application of Lagrange’s equations and some mathematical development (as
described in [6]), the result is a system of differential equations in terms of the displacements
of the cylinder intermediate surface. Such differential equations allow the determination of
the system eigenfrequencies for each of the eigenmodes.
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In general, mode shapes with displacement in all three directions are possible in
this model. However, in this paper, only the mode shapes with dominant radial and
axially uniform displacements will be discussed, since those are the ones excited by axially
uniform radial magnetic forces.

2.2. Finite-Element Model

In this study, the core was modeled in three dimensions using the software ANSYS
(2021 R1, ANSYS Inc, Canonsburg, PA, USA) as a solid body instead of a stack of lamina-
tions, and the material properties were defined as homogenized input parameters. The
effects of air ducts and laminations were then simplified by adjusting the axial stiffness
of the equivalent orthotropic material (Ez). With this approach, the Poisson’s ratio and
shear modulus of the material were also adjusted according to the values of Ez, using the
homogenization formulas from [6]:

µxz = µxy
Ez

Ey
(3)

Gxy =
Ex

2
(
1 + µxy

) (4)

Gxz =
ExEz

Ex(1 + µxz) + Ez
(
1 + µxy

) (5)

The winding inside the slots was also modeled as consisting of equivalent blocks,
according to Figure 3a. The material properties were assumed to be isotropic, and the end
winding region was neglected. The stator frame geometry was imported using a detailed
Computer-Aided Design (CAD). It consisted of structural plates and columns, a set of
double-dovetail bars, and pressure fingers. The double-dovetail bars were designed to
provide tangential support and allow radial thermal expansion of the core, and the pressure
fingers were responsible for keeping the core sheets axially compact. Due to its complexity,
careful simplifications were made to ensure a reasonable computation time while also
preserving the accuracy of the FE model. All thin bodies and plates on the outer part of
the frame—which are represented in Figure 3b—were replaced by two-dimensional shell
elements following the assumption that deformations along the suppressed dimensions
were negligible. This avoided having 3D elements with a poor aspect ratio, which would
lead to calculation inaccuracy or excessive computation time. The stator pressure fingers
and the double-dovetail bars, which were in direct contact with the core, were kept as
3D elements.
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Figure 3. FE model: (a) Stator core and winding; (b) Frame parts replaced by shell elements; (c) Contact between the stator
yoke and the double-dovetail bars.

The boundary conditions for the connection between the stator yoke and the double-
dovetail bars of the frame, illustrated in Figure 3c, were set to either bonded, neglecting
the yoke’s possible displacement designed for thermal radial expansion, or frictionless,
neglecting any movement resistance in the contact region.
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In an FE modal analysis, the system mass and stiffness matrices are determined to
obtain the basic dynamic differential Equation (6), where mechanical damping is neglected,
and the external forces are set to zero:

M
d2→x (t)

dt2 + K
→
x (t) =

→
0 (6)

Following a diagonalization process, as in [20], the system can be decoupled based
on the transformation matrix Ψ formed by the system eigenvectors ψi (7). Each eigen-
vector can be arbitrarily scaled. Typically, the mass matrix is used for the scaling, giving
the orthogonality relation in Equation (8). The output of the FE modal analysis are the
system eigenvectors, which represent the natural mode shapes of the structure, and the
eigenfrequencies associated to each one of them, as described in (9), where r = 1 . . . n.

Ψ =
[→

ψ1,
→
ψ2 . . .

→
ψn

]
(7)

ΨTM Ψ = I = diag(1) (8)

ΨTK Ψ = diag
(

ω2
0(r)

)
(9)

In general, mode shapes with displacement in all three directions are possible. How-
ever, in this paper, only the mode shapes with dominant radial and axially quasi-uniform
displacements will be discussed, since those are the ones excited by axially uniform radial
magnetic forces.

2.3. Validation Measurements on a Prototyped Hydrogenerator

For validation of the model, an experimental modal analysis (EMA) was performed
on a prototyped hydrogenerator. An instrumented hammer with sensitivity of 0.24 mV/N
was used, and a 100 mV/g accelerometer was installed in the back of the stator core, at an
intermediate axial height (Figure 4).
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The experimental modal analysis was performed by exciting the tested structure at
different points with the instrumented hammer, while the accelerometer recorded the
system response at a fixed position. By dividing the FFT of the accelerometer signal by the
FFT of the hammer signal, the frequency response function (FRF) for each excited point
is obtained. Due to the reciprocity property of linear mechanical systems, the transfer
function is equal when applying the excitation in point A and evaluating the response in
point B or vice-versa (excitation in B and evaluation in A) [21]. Therefore, it is possible to
obtain the structure’s natural mode shapes and eigenfrequencies based on the obtained
FRFs. In the analyzed prototyped hydrogenerator, a total of 120 points were excited in
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the back of the stator yoke. Those were equally distributed in 5 axial rows, each one with
24 points around the circumference. The tested machine is illustrated in Figure 4b.

3. Results

The results from the calculation models and measurements are compared in the
following sections. Different material properties were analyzed for the simulations, as
summarized in Table 2, where x is the radial direction, y is the tangential direction, and z is
the axial direction.

Table 2. Material properties.

Parameter Core Winding Frame

ρ (kg/m3) 7600 7965.5 7850
Ex, Ey (GPa) 180

0.1...67.4 200Ez (GPa) 1...180
Gxy (GPa) 69.23

0.04...25.15 1 76.92Gxz, Gxz (GPa) 0.99...69.23 1

µxy 0.3
0.34 0.3

µxz, µyz 0.0017...0.3 1

1 Calculated based on defined values of Young’s modulus according to Equations (3)–(5).

The mass density of the winding was defined by dividing the total mass of the winding,
including insulation and overhang, by the volume of the equivalent body representing the
winding inside the slots in the FE model. Furthermore, two different contact conditions
between stator core and double-dovetail bars were evaluated: bonded and frictionless.

3.1. Comparison between Models Using Different Input Parameters

Firstly, the stator including winding was simulated with the analytical and FE models
in the same conditions. It means that the stator core material was assumed to be isotropic
(Ez = 180 GPa), and the winding Young’s modulus in the FE model was set to a very low
value (0.1 GPa), so that it behaved only as additional mass to the system, as also assumed in
the analytical model. In this analysis, the stator frame was still not included. The obtained
eigenfrequencies for radial mode shapes with uniform axial displacement are shown in
Figure 5, where the percentage deviation of the FE model with respect to the analytical
model is depicted. In general, two mode shapes in quadrature with each other were
found for the same mode order in the FE simulations. However, due to the circumferential
symmetry of the cylinder, these two mode shapes presented the same eigenfrequency and
therefore, initially, they will not be treated separately.
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Figure 5. Comparison of analytical and FE models.

It can be noticed that the analytical and FE models generated consistent results when
compared. In the analytical model, the observed deviations were related to the neglection
of the stresses in the radial direction and the neglection of the trapezoidal shape of the
elements, due to the simplification of considering a thin cylinder. Furthermore, some
geometric details of the stator yoke, such as the holes and slots for the double-dovetail bars
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shown in Figure 3a, were also not considered in the analytical model and could contribute
to the observed deviations.

As a second step, the FE model with an isotropic stator core, still without the frame,
was calculated for different values of Young’s modulus of the winding, varying from
0.1 GPa to 67.4 GPa. The results are shown in Figure 6, where the eigenfrequencies in the
y-axis are presented as percentage deviation related to the corresponding value predicted
by the analytical model for each mode shape. One can observe two distinct behaviors. For
the mode orders 0 (also known as the “breathing mode”) and 1, the effect of the winding
stiffness was less significant and reached a maximum deviation of approximately 20%
in the studied range. For the mode orders 2 to 6, the effect of the winding stiffness was
more noticeable and, even for Young’s modulus values as low as 10 GPa, an increase in the
range of 30% to 50% was already visible. Additionally, the mode order 2 was more affected
than the mode order 3, which was more affected than the mode order 4, and so on, with
increasing mode order.
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Figure 6. Effect of winding stiffness on FE calculation.

As a third step, the stator frame was included in the FE model. Initially, the winding
Young’s modulus and core Young’s modulus in the axial direction were both fixed at
10 GPa, and the contact between core and double-dovetail bars was assumed as frictionless.
The results for modes 2 and 3 are shown in Figure 7.
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When the frame was included, the mode shapes did not present a perfectly uniform
axial distribution anymore, as in the model without the frame (Figure 7b,c). This happened
due to the contact between core and pressure fingers at the cylinder axial ends. Furthermore,
the circumferential symmetry of a free cylinder was no longer preserved, since the frame
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was not cylindrically symmetrical. As a consequence, several different eigenfrequencies
occurred for the same apparent mode order, instead of only two with the same value, as
observed for the model without frame. Some of these modes were dominated by a global
displacement of the core, while others were dominated by local eigenfrequencies of the
frame structure. They can be distinguished by a detailed visual evaluation of the plotted
mode shapes from the FE program.

In Figure 8, the eigenfrequencies predicted by the models with bonded and frictionless
contact between core and double-dovetail bars are compared for the mode shapes with
dominant radial and axially uniform or quasi-uniform displacements. Among the several
eigenmodes with same apparent mode order in the stator core, two were selected for
evaluation, i.e., those with the most significant core displacement when the eigenmodes
were normalized based on the mass matrix [20]. They are referred to as mode types A and
B in Figure 8. In the y-axis, the eigenfrequencies are presented as percentage deviation
related to the corresponding value predicted by the analytical model for each mode shape.
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Figure 8. Effect of stator frame with bonded and frictionless contact between core and double-
dovetail bars.

The mode order 1 depends strongly on the boundary conditions defined for the
fixation of the frame on the foundations and was not evaluated in this work. For this
reason, the eigenfrequencies for mode order 1 are not included in Figure 8. One can
notice that, compared to the analytical model, the eigenfrequency deviation for mode
order 2, for example, jumps from approx. 50% (value from Figure 6) to at least 150% when
the stator frame is included with frictionless contact between core and double-dovetail
bars. If bonded contact is considered, this deviation increases to 174% for the same mode
order 2, making then clear the importance of considering the frame in the eigenfrequency
calculation. Additionally, the effect of the stator frame was more accentuated for low mode
orders, while the deviation value decreased for high mode orders, as observed in Figure 8.

Finally, the effect of core Young’s modulus in the axial direction was investigated, as
shown in Figure 9. For that, the winding Young’s modulus was fixed at 10 GPa, frictionless
contact between core and double-dovetail bars was assumed, and the core Young’s modulus
in the axial direction was varied from 1 GPa to 180 GPa. Only the modes of type A were
used for this comparison. In the y-axis, the eigenfrequencies are presented as percentage
deviation related to the corresponding value predicted by the analytical model for each
mode shape.

For mode order 2, for example, the relative eigenfrequency deviation varied from 128%
to 184% in the analyzed range. For higher-mode orders, a similar tendency was observed.
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3.2. Experimental Results

The results from the performed EMA are summarized in Figure 10. The sum of the
obtained FRFs absolute values is plotted in the range between 0 and 1 kHz with a frequency
resolution of 1.25 Hz, and the relevant eigenmodes for the machine operation are depicted.
The eigenfrequencies can be identified by the peaks of the individual FRFs absolute values
and were confirmed by their corresponding phase shifts at these points. Since there were
multiple FRFs (one for each excited point) and some of them may correspond to a node of
a mode shape, the sum of the amplitudes of all obtained FRFs is presented in Figure 10.
This was done for the sake of simplicity, instead of showing the amplitude and phase
graphs for each of the FRFs. The FRFs were obtained by using the commercial software
“m + p Analyser” (version 5.3.0.20979, m + p international Mess- und Rechnertechnik GmbH,
Hannover, Germany) for postprocessing the measured time signals. In some cases, multiple
eigenfrequencies were identified with similar apparent mode shapes. This was due to the
fact that, although no point in the frame structure was directly excited by the hammer,
some local modes of the frame could still be indirectly excited and influence the measured
acceleration in the stator core. For those cases, the main eigenmode with the highest
amplitude in the sum of FRFs is indicated in Figure 10 by a bold solid arrow, while for the
other situations, a dashed arrow is used.

Vibration 2021, 4 FOR PEER REVIEW  10 
 

 

      

 

Mode 2 

100 Hz 

 

Mode 3 

240 Hz 

 

Mode 4 

432 Hz 

 

Mode 5 

580 Hz 

 

Mode 6 

744 Hz 

 

Mode 0 

814 Hz 

 

Figure 10. Results from experimental modal analysis. 

A comparison between the measured eigenfrequencies and the predicted values from 

the analytical and FE models is represented in Figure 11, where the main modes from 

Figure 10 (those indicated by a bold solid arrow) are considered. The FE model selected 

for this comparison was that characterized by a winding Young’s modulus of 10 GPa and 

a core Young’s modulus in the axial direction of 10 GPa and with frictionless contact be-

tween core and double-dovetail bars. The relative deviation of the calculated values with 

respect to the measurements is also presented in the graph. 

In general, the analytical calculation resulted in lower eigenfrequencies than the 

measurements, since it did not take into account the stiffness of stator winding and frame. 

On the other hand, the selected FE model showed higher eigenfrequencies than the meas-

urements for n ≥ 2, which is an indication that the winding Young’s modulus and/or core 

Young’s modulus in the axial direction could have been set to values even lower than 10 

GPa. Such values, however, would be considerably far from the rated isolated materials 

properties (180 GPa for the core lamination and 120 GPa for copper, for example). Alt-

hough it is theoretically possible, since the equivalent properties incorporate other effects 

such as lamination stacking, core air ducts, and contact condition of the winding inside 

the slots, it is recommended to isolate these effects in future works by performing specific 

material tests on prototypes of one parcel of the stator without the frame, with and with-

out winding. This would bring more accuracy than defining multiple material parameters 

based on the measured eigenfrequencies of the complete system, where many effects are 

acting at once. It is important to highlight that the exact values for the material equivalent 

parameters are still not well defined in the existing literature for hydrogenerators. 

Figure 10. Results from experimental modal analysis.



Vibration 2021, 4 862

A comparison between the measured eigenfrequencies and the predicted values from
the analytical and FE models is represented in Figure 11, where the main modes from
Figure 10 (those indicated by a bold solid arrow) are considered. The FE model selected for
this comparison was that characterized by a winding Young’s modulus of 10 GPa and a
core Young’s modulus in the axial direction of 10 GPa and with frictionless contact between
core and double-dovetail bars. The relative deviation of the calculated values with respect
to the measurements is also presented in the graph.
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In general, the analytical calculation resulted in lower eigenfrequencies than the mea-
surements, since it did not take into account the stiffness of stator winding and frame.
On the other hand, the selected FE model showed higher eigenfrequencies than the mea-
surements for n ≥ 2, which is an indication that the winding Young’s modulus and/or
core Young’s modulus in the axial direction could have been set to values even lower than
10 GPa. Such values, however, would be considerably far from the rated isolated materials
properties (180 GPa for the core lamination and 120 GPa for copper, for example). Although
it is theoretically possible, since the equivalent properties incorporate other effects such as
lamination stacking, core air ducts, and contact condition of the winding inside the slots, it
is recommended to isolate these effects in future works by performing specific material
tests on prototypes of one parcel of the stator without the frame, with and without winding.
This would bring more accuracy than defining multiple material parameters based on the
measured eigenfrequencies of the complete system, where many effects are acting at once.
It is important to highlight that the exact values for the material equivalent parameters are
still not well defined in the existing literature for hydrogenerators.

4. Discussion and Conclusions

In this work, different models for the calculation of the stator core eigenfrequencies in
hydrogenerators were discussed and compared. The analytical model was based on the
simplification of a thin cylinder, where stator teeth and winding are considered only as
additional mass. The performed FE model without frame and with negligible winding
Young’s modulus showed good agreement with the analytical model; however, significant
deviations started to appear between the two models when the winding Young’s modulus
was increased. As an example, even for Young’s modulus values as low as 10 GPa, an
increase in the range of 30% to 50% was already visible for the eigenfrequencies of mode
orders 2 to 6 in comparison to the analytical calculation. When the stator frame was in-
cluded in the FE calculation, even bigger deviations could be observed. The eigenfrequency
deviation compared to that of the analytical model for mode order 2, for example, jumped
from approx. 50% (value from Figure 6) to at least 150% when the stator frame was included
with frictionless contact between core and double-dovetail bars. When assuming a bonded
contact, this deviation increased up to 174% for the same mode order 2, making then clear
the importance of considering the frame in the eigenfrequency calculation with suitable
contact conditions at the interface with the core. Furthermore, it was shown that the core
Young’s modulus in the axial direction can significantly affect the results.
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For a practical verification of the models, an experimental modal analysis was per-
formed for a prototyped 732 kVA hydrogenerator. The comparison with measured values
showed that, in general, the analytical calculation provided lower eigenfrequencies than
the measurements, since it did not take into account the stiffness of stator winding and
frame. The selected FE model, for comparison, determined 10 GPa for the Young’s modulus
in the winding and core in the axial direction, and frictionless contact between core and
double-dovetail bars. It showed, in general, higher eigenfrequencies than the measure-
ments, which is an indication that the defined Young’s modulus could have been set to
values even lower than 10 GPa. The exact values for the material equivalent parameters
are, however, still not well defined in the existing literature for hydrogenerators and need
to be deeply investigated in future works. One proposal is to perform specific material tests
on prototypes of one parcel of the stator without the frame, with and without winding,
where the multiple effects occurring in the complete stator could be isolated from each
other. One can highlight that the stator core of these machines is composed of stacked
laminations separated in packages by ventilation ducts, which can have a great influence on
the system equivalent Young’s modulus in the direction perpendicular to the laminations.
Furthermore, the contact of the winding bars with the slot walls may be not perfectly
homogeneous due to the winding fixation system, and this should also be investigated in
future works.
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