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Abstract: Despite numerous works over the past two decades, friction-induced vibrations, especially
braking noises, are a major issue for transportation manufacturers as well as for the scientific commu-
nity. To study these fugitive phenomena, the engineers need numerical methods to efficiently predict
the mode coupling instabilities in a multiparametric context. The objective of this paper is to approxi-
mate the unstable frequencies and the associated damping rates extracted from a complex eigenvalue
analysis under variability. To achieve this, a deep Gaussian process is considered to fit the non-linear
and non-stationary evolutions of the real and imaginary parts of complex eigenvalues. The current
challenge is to build an efficient surrogate modelling, considering a small training set. A discussion
about the sample distribution density effect, the training set size and the kernel function choice is
proposed. The results are compared to those of a Gaussian process and a deep neural network. A
focus is made on several deceptive predictions of surrogate models, although the better settings were
well chosen in theory. Finally, the deep Gaussian process is investigated in a multiparametric analysis
to identify the best number of hidden layers and neurons, allowing a precise approximation of the
behaviours of complex eigensolutions.

Keywords: friction-induced vibration; squeal; uncertainty; surrogate modelling; Gaussian process;
deep Gaussian process; deep neural network

1. Introduction

In the last few decades, friction-induced vibration problems have been experimen-
tally and numerically investigated and largely discussed thoroughly in the literature [1],
especially for squeal problematics. This phenomenon has received the attention of both
researchers and industrials in order to satisfy environmental acoustic pollution criteria and
customer satisfaction. Firstly, many experimental studies at different scales were performed
with experimental benchmarks to understand the squeal generation and try to reproduce
it [2]. Secondly, Ouyang et al. [3] studied the impact of multiple parameters evolution
in numerical simulations and concluded that the squeal phenomenon can be influenced
by several parameters, such as the damping, material properties or friction coefficient.
Similarly, Fritz et al. [4] highlighted that the damping can strongly affect the stability of
the brake system by either modifying the friction coefficient value at which the instability
appears, or by modifying the real part value, causing the instability to be modified. Similar
results were obtained by Hoffman et al. [5]. Magnier et al. [6] emphasised the effects of
porosity on the evolution of the friction material characteristics. By injecting these experi-
mental results in the numerical simulations, they showed that the stability of the system
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is impacted as long as the contact pressure distributions. AbuBakar et al. [7] assessed the
wear evolution of brake pads and highlighted that the contact interface becomes smoother
and smoother as the braking duration increases. Denimal et al. [8] studied the influence of
the different internal contacts of a brake system and showed that the contact formulation
strongly affects the instability of the system. Graf et al. [9] emphasised that the dynamic
friction formulation also modifies the stability of the system.

Nowadays, the current trend is to introduce the uncertain experimental behaviour in
numerical analyses [10] and optimisation processes [11] to improve the predictivity of simu-
lations [12]. The aim is to increase the reliability and robustness of designs by taking various
kinds of uncertainty into account at the earliest stage of design. Indeed, Sarrouy et al. [13]
proposed solving stochastic quadratic eigenvalue problems using intrusive polynomial
chaos expansions and analysing the stability of a simplified brake squeal model as a func-
tion of variable contact stiffness and friction coefficient. Massa et al. [14] developed a
numerical strategy to perform a friction-induced vibration analysis while considering
model uncertainties using a fuzzy formalism. In a more targeted way, Lu et al. [15] as well
as Renault et al. [16] highlighted the significant sensitivity of pad surface topographies
through specific numerical simulations and experimental correlations.

To perform non-deterministic simulations previously discussed in the design step,
it is important to reduce the computational time by introducing reduced-order models
or surrogate models. Indeed, several authors have integrated reduction techniques to
decrease the size of the studied problem, considering either homotopy developments in
a projection basis [17,18], the double modal synthesis method [19,20], or a generalised
modal synthesis with complex modes [21]. Other researchers focused their developments
on surrogate modelling, mainly on kriging [22,23]. These works highlight the capabilities
of the Gaussian process to approximate frequencies and damping rates and to perform
accurate sensitivity analyses.

Machine learning methods, such as deep neural networks and deep Gaussian processes
were developed and successfully used to model complex behaviours considering large
training sets and to manage high dimensional problems. The interested reader can find a
nice review of deep neural network in [24] and a description of the deep Gaussian process
model in [25]. Recently, Stender et al. [26] proposed to use a deep neural network to detect
and identify vibrations as well as to predict brake squeal. Kong et al. [27] optimised a deep
neural network architecture to detect the fatigue life of automotive coil springs with high
accuracy. The deep Gaussian process was used in nuclear simulations [28] to perform
uncertainty propagation and parameter screening, whereas Tagade et al. [29] employed it
as regression for lithium-ion battery health prognosis and degradation mode diagnosis.
Next, Hebbal et al. [30] integrated a deep Gaussian process in efficient global optimization
to study different mathematical problems and an aeronautic application.

The proposed study is focused on the prediction of the stability behaviour of a friction-
induced vibration problem under variability. The objective is to develop and tune a
surrogate model for each eigenvalue calculated with the complex eigenvalue analysis. The
non-linear and non-stationary evolutions of the unstable frequencies and the associated
damping rates are here approximated with a deep Gaussian process. A discussion about
the sample distribution density effect, the training set size, the kernel function choice
and surrogate architecture is here proposed. The obtained results are compared to those
obtained by a Gaussian process and a deep neural network. Next, a focus is made on
several deceptive predictions of surrogate models, although the better settings were well
chosen in theory. Finally, the deep Gaussian process is investigated in a multiparametric
analysis to identify the best setting allowing approximating the real and imaginary part of
the complex eigenvalues efficiently.

The following sections are organised as follows. Firstly, the stability analysis of
a friction-induced vibration problem and associated quadratic eigenvalue problem are
discussed in Section 2. Secondly, the main concepts of each surrogate model are summarised
in Section 3. Next, Section 4 highlights the performance of each surrogate model in the
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evaluation of a coalescence graph. Here again, the sensitivity of surrogate parameter
settings and training set arrangements are studied. A focus is made on the approximation
of non-linear and non-stationary functions, which gives insight into the lack of prediction.
Section 5 considers a multiparametric analysis, where several parameters of the numerical
model are variable. The aim is to identify the best-performing deep Gaussian process
architecture, which allows characterising the behaviours of the complex eigensolutions.
Finally, some conclusions about this work are drawn in the final section.

2. Resolution of a Friction-Induced Vibration Problem
2.1. Considered Model

The assessment of the capabilities and limitations of the surrogate models presented
in Section 3 is done with the Double Hulten [31], shown in Figure 1.
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Figure 1. Double Hulten model.

The displacement of each mass is given along the X-axis and Y-axis. The contact
between the masses and the bands is supposed to be permanent; the relation between
the tangential friction force FT and the normal friction force FN is linear and given by the
Coulomb law (Equation (1)):

FT = µFN (1)

Applying the classical Lagrangian formalism, the mass, damping, and stiffness matri-
ces are determined in Equation (2).

M =




m1 0 0 0
0 m1 0 0
0 0 m2 0
0 0 0 m2


 C =




c12 + ca 0 −ca 0
0 c11 0 0
−ca 0 c22 + ca 0

0 0 0 c21




(2)

KΣ =




k12 + ka 0 −ka 0
0 k11 0 0
−ka 0 k22 + ka 0

0 0 0 k21


 KNL =




0 µk11 0 0
−µk12 0 0 0

0 0 0 µk21
0 0 −µk22 0




The parameters of the Double Hulten are split into two categories: the system and the
contact parameters. Their reference values are recalled in Table 1.

Table 1. Nominal value of the system parameters of the Double Hulten.

m1 m2 k11 k12 k21 k22 ka c11 c12 c21 c22 ca
(kg) (kg) (N/m) (N/m) (N/m) (N/m) (N/m) (Ns/m) (Ns/m) (Ns/m) (Ns/m) (Ns/m)

1 1 3000 6000 1000 3000 1000 1 1 1 1 1
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To determine the eigensolutions (λi,ψi) of the system, the QEP (Equation (3)) is solved
with the well-known QZ algorithm, where the mass M, damping C and stiffness K matrices
are given in Equation (2).

(
λ2

i M + λiC + K
)

ψi = 0 (3)

where K = KΣ + KNL.
The coalescence graph of this model when considering the nominal parameters pre-

sented in Table 1 is given in Figure 2. Three mode couplings are respectively detected for
friction coefficients of 0.2, 0.57 and 0.84.
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Figure 2. Evolution of the eigenvalue components with respect to the friction coefficient.
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Figure 2. Evolution of the eigenvalue components with respect to the friction coefficient. (a) Real
part, (b) imaginary part.

The imaginary part evolutions of the model eigenvalues are relatively smooth and
present small nonlinearities. Conversely, the real part evolutions of the model eigenvalues
are more complex and exhibit non-stationary behaviour. Indeed, for instance, the first real
part eigenvalue is constant on the majority of the design space, except when the friction
coefficient µ is greater than 0.8.

From all eight functions (real and imaginary parts), the second and the third eigen-
values represent the highest level of complexity. Nonetheless, to efficiently compare the
capabilities and limitations of the considered surrogate model techniques, all of these
functions are considered in this sequel.

2.2. Mode Pairing Strategy

Traditionally, the mode pairing strategy hinges on the MAC, given by Equation (4).

MACik =

∥∥∥ψ
∗(n+1)H
i ψ

∗(n)
k

∥∥∥
2

∥∥∥ψ
∗(n+1)H
i ψ

∗(n+1)
i

∥∥∥
∥∥∥ψ
∗(n)H
k ψ

∗(n)
k

∥∥∥
(4)

where ψi is the ith eigenvector of the considered system.
When considering a multiparametric analysis, the strategy is to compare all eigen-

vectors ψj with a reference set of eigenvectors (for instance, the nominal values of the

parameters of the multiparametric analysis, P̂0) and construct a family Fi for each mode of
the system.

The first limitation comes from the reference set of parameter values P̂0. To be fully
efficient, P̂0 must be quite close, in the MAC sense, to any set of parameter values P̂ of the
design space D.

Figure 3 shows a comparison between two families (circled in gray), generated with
two different reference sets of parameter values P̂0, depicted by a red star. The blue dots
represent the evaluated configurations ψk, and the black arrows represent a pairing with
MAC values greater than the threshold. Figure 3a shows a good choice for the reference set
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P̂0 since the given set is close to any member of the eigenforms ψk. Conversely, Figure 3b
exhibits a poor choice since four configurations are not included into the family F .
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Figure 3. Reference choice impact over the family construction. (a) Good reference choice, (b) bad
reference choice.

The FIV problems are highly subjected to mode veering [32], which appears when
modes are coupled with each other. The veering is characterised by modes which approach
each other and suddenly veer away. Before the veering, the shape of mode 1 and mode 2
are respectively given by φ1 and φ2. The modal form at the loci is a linear combination of
φ1 and φ2. After the veering, mode 1 is characterised by shape φ2, and mode 2 by φ1.

In practice, choosing a veering shape to initialise the pairing strategy creates only
one family. To prevent this issue, the reference has to be a modal form, which is not in
a superposed state (either before or after the veering). For squeal problems, only the
normal contact state (µ = 0) has the highest probability to be veering free. Finally, the other
parameters are set to the nominal values since the uncertainties are always defined around
these values.

However, these conditions place the strategy in the state of Figure 3b, where some
configurations are not paired. To counterbalance this issue, the pairing process is executed
iteratively: first, the process is computed with the red star reference set P̂0. Then, the
configurations ψk, which have just been paired, are added to the reference set P̂0. This
set is thus composed of four reference configurations for the given example of Figure 3b.
The pairing process is started again until all configurations are successfully added to the
reference set P̂0 to create the family F .

3. Surrogate Modelling Theory
3.1. Surrogate Principle

The main idea behind surrogate modelling is to approximate an expensive function
f : D → E , where D = ∏D

i=1[Li; Ui], and E is the image of D through the mapping function
f with a cheaper model. The variable D represents the number of input parameters, whereas
Li and Ui are respectively the lower and upper bounds of the ith dimension. D and E
are respectively subsets of RD and R. To construct an approximation of the considered
function, the surrogate model hinges on the acquisition of a priori knowledge. This a priori
knowledge is given by a training set, from which the statistical relationship between the
inputs and the outputs is deduced.

Let T be a training set such as T = {(xi, yi)|i ∈ [1, n]}, where xi denotes an input
vector of (1× D) dimension, and yi is a scalar corresponding to the image of xi through f .
In addition, the matrix X ∈ Mn,D and the vector Y ∈ Rn contain all the inputs and outputs
of the training set T .

First, the training set is defined using a space filling strategy, such as the LHS [33], and
the evaluation of this training set through a simulator. Then, the surrogate model is chosen,
and its parameters are defined. They are commonly divided into two categories: the fixed
ones and the optimised ones. The distinction is done through the consideration of several
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hypotheses about the training set and the given simulator. Finally, the surrogate model is
fed with the information from the training set to carry out the predictions.

For a fixed training set, the prediction efficiency and time computation of a surrogate
model is clearly dependent on the setting of its parameters. Consequently, the techniques
used to tune these data are presented in the following subsections for both surrogate
models. Throughout this sequel, the fixed parameters are denoted as hyperparameters, as
they can be denoted in the literature, and the optimised parameters are simply denoted
as parameters.

3.2. Gaussian Process

A GP [34] is a stochastic process G, indexed by a set X ⊂ RD, such that any finite
number of random variables is jointly Gaussian: ∀p ∈ N∗, ∀X = [X1, · · · , Xp]T , G(X) ∼
N (µ(X), C(X, X)) with G(X) = [G(X1), · · · G(Xp)]T, where µ(·) and C(·, ·) respectively
stand for the mean and covariance function of the GP. Using a GP as a surrogate model
consists in considering the output prediction, denoted by the random variable Ŷ as a
realisation of this stochastic process.

Since Ŷ is also Gaussian, its density function is described by its first two momenta µ̂
and ŝ, given respectively by Equations (5) and ( 6).

µ̂(x∗) = µ(x∗) + C(x∗, X)
[
C(X, X) + σ2

nI
]−1

(y(X)− µ(X)) (5)

ŝ(x∗) = C(x∗, x∗)− C(x∗, X)
[
C(X, X) + σ2

nI
]−1

C(X, x∗) (6)

where x∗ is any vector defined in D, µ is the mean of the GP, C is its covariance function,
σ2

n is the noise of the data, and I is the identity matrix.
Next, considering the covariance function defined by Equation (7).

C(xr, xs) = σ2
k K(xr, xs) (7)

where (r, s) ∈ [1; n]2, σ2
k is the signal variance (also called the noise of the kernel) and K is

the correlation matrix (also called the kernel function or kernel matrix).
Table 2 presents the most common choice for the kernel function. They are presented

from the least smooth to the smoothest. This property has a direct impact on the approxi-
mation of functions. Indeed, the smoothness drives the GP prediction: the more the kernel
is non-smooth, the greater the non-linearity of the prediction will be.

Table 2. Kernel functions.

Type of Kernel Functions K(xr, xs)

Matern 3/2
(

1 +
√

3 |xr, xs|
)

exp
(
−
√

3 |xr, xs|
)

Matern 5/2
(

1 +
√

5 |xr, xs|+ 5
3 |xr, xs|

)2
exp

(
−
√

5 |xr, xs|
)

Exponential quadratic exp
(
−|xr, xs|2

)

|xr, xs| :=

√√√√
(

D

∑
i=1

(x(r,i) − x(s,i))
2

θ2
i

)
represents the weighted Euclidean distance with

θi being a weight coefficient, called the lengthscale, allowing increasing or reducing the
importance of a dimension.

For the estimation of the parameters of a linear model, the best linear unbiased estima-
tor equals the minimum variance unbiased (or MVU) if the noise is Gaussian. For the linear
Gaussian model, the maximum likelihood estimator (hereby denoted MLE) is equivalent
to the MVU estimator. Here, we follow the common way to optimise the GP parameters
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through the model evidence f(Y|X), which is the multivariate probability density function
of the random variable Y, given the random variable X. This function is supposed to be the
Gaussian of mean µ(X) and of variance C(X, X) + σ2

nI, and it is traditionally optimised to
obtain the MLE by updating the value components of the lengthscale vector. To ease the
optimisation process, the log form of the probability density function is considered and
gives the Equation (8). At last, non-Gaussian behaviours (e.g., positivity, heterogeneity, and
discontinuities) could be captured by the physically informed kernels, and this approach
could be the subject of future work.

Loss(Θ) = −n
2

log(2π)− 1
2

log(det(C + σ2
nI))− 1

2

(
(yT − µ(X))

(
C + σ2

nI
)−1

(y− µ(X))
)

(8)

where Θ is the vector of lengthscale.
The second term of the sum is the regularisation coefficient that prevents the GP from

overfitting. The third term of the sum corresponds to the terms that try to fit the data.
The different surrogate parameters (hyperparameters and parameters) considered for

the GP are summarised in Table 3.

Table 3. GP parameter and hyperparameters.

Name of the
Quantity

Nature of the
Quantity Associated Variable Equation

Data noise Hyperparameter σ2
n Equation (5)

Mean function Hyperparameter µ Equation (5)
Signal variance Hyperparameter σ2

k Equation (7)
Kernel function Hyperparameter K Table 2

Lengthscale Parameter Θ Equation (8)

3.3. Deep Neural Network

A DNN [35] is a deterministic surrogate model composed of artificial neurons. An
artificial neuron corresponds to a coarse and over-simplified version of a brain neuron,
called a perceptron, and aims at mimicking the biological phenomenon that generates a
signal between two neurons. A DNN is then obtained by connecting perceptrons with each
other and organising them in layers.

Figure 4 shows an example of a neural network architecture. In this case, the input
dimension d is 2, and the output dimension is 1. There are two intermediate layers, each
composed of four neurons. The input neurons on the left are associated with the input data
(labelled Xd

s ), whereas the output neuron on the right is associated with the output data
(labelled ŷ1

s ). The value of a neuron on the intermediate layers is determined by carrying the
linear combinations of the connected neurons from the previous layer and then applying
an activation function (Equation (9)).

GD(i)

i = φi(wT
i−1Gi−1) (9)

where i ∈ [1; p], p is the number of hidden layers, D(i), the number of neurons per hidden
layer, φi is the activation function of the ith hidden layer, wi = [w1

i · · · wj
i · · · wD(i)

i ]T is

the weight vector associated with the ith hidden layer, and G = [G1
inonlinear1 · · · Gj

i−1 · · ·
GD(i−1)

i−1 ]T is the neuron vector associated with the previous hidden layer.
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Figure 5. Structure of a neural network.
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Table 4. Common activation functions.

Type of activation function ϕ(x)

ReLU max(0, x)

Hyperbolic tangent tanh(x)

Logistic 1
1+exp(−x)

The most common activation functions used in DNN are summarised in Table 4. These 238
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The most common activation functions used in DNN are summarised in Table 4. These
functions, coupled with the architecture of the neural network, allow capturing the full
complexity of the considered functions. Nielsen [36] proved that one characteristic of this
surrogate model is that it is a universal approximator. Nevertheless, this strength is also one
of its biggest weaknesses. Indeed, this capacity to increase the complexity of the learning
via the increase in neurons in hidden layers can lead to overfitting [37]. Typically, this
overfitting phenomenon is associated with weight values, which are too high. One way
to try to remove this flaw is penalising the weight values with a regularisation coefficient,
such as in Equation (10).

Loss(W) =
1

2n

n

∑
i=1

(yi − ŷi)
2 +

α

2

√√√√√




p

∑
k=1

D(k)

∑
j=1

W2
j,k


 (10)

where W = [w1 · · · wk · · · wp] is the coefficient matrix for which each column corre-
sponds to the coefficient vector from the ith hidden layer and α the regularisation coefficient.

Table 4. Common activation functions.

Type of Activation Function φ(x)

ReLU max(0, x)

Hyperbolic tangent tanh(x)

Logistic 1
1+exp(−x)

The Equation (10) gives the loss function used for the neural network. This equation
is equivalent to the least squares method with an additional contribution, which allows
controlling overfitting. This control is done by adding all the weight values together and
multiplying them with a coefficient, which modifies the impact of the sum on the loss
function. Typically, from the observations made on these considered functions, a value of α
lower than 0.005 corresponds to a small regularisation, between 0.005 and 0.05 corresponds
to a medium regularisation, and a value above 0.05 corresponds to a strong regularisation.
This hyperparameter has to be tuned cautiously since a high value prevents the surrogate
model from going through the training set points, inducing important error values, and a
small value increases the chance of overfitting.

The optimisation of the weight values linking the different neurons is done via the
backpropagation procedure. First, the weight values are initialised randomly. Then, the
loss function is computed and minimised using a classical gradient descent algorithm. In
this research, since the data are scarce, the optimisation is ensured by an L-BFGS (limited-
memory Broyden–Fletcher–Goldfard–Shanno) algorithm [38].

Once the weight matrix is optimised, the prediction is carried with the Equation (11).
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ŷ(x∗) = φp(φp−1(. . . (φ1(w1x∗)) . . . )) (11)

Table 5 summarises the different quantities considered in the DNN surrogate model.

Table 5. DNN parameters and hyperparameters.

Name of the
Quantity

Nature of the
Quantity Associated Variable Equation

Activation function Hyperparameter φ Table 4
Weight matrix Parameter W Equation (9)

Number of hidden
layers Hyperparameter p Equation (11)

Number of neurons
per hidden layer Hyperparameter D(i) Equation (9)

Regularisation
coefficient Hyperparameter α Equation (10)

3.4. Deep Gaussian Process

The DGP is a recent class of surrogate models [25] and is inspired by the deep learning
theory. The main idea is to capture complex variations of the underlying function by
decomposing the information embedded in the training set, i.e., through nested structures.
Thus, the DGP hinges on neurons and layers, being a stack of GPs.

Hence, a random vector H` (Equation (13)) is introduced for each layer of the DGP.
This random vector is defined by a GP G` given by Equation (12). This prior hinges on
the fundamental assumption that the current layer is only conditionally dependent on the
previous layer random vector H`−1.

G`(H`−1) ∼ N (µ(H`−1), C(H`−1, H`−1)) (12)

for ` ∈ [1, L], H0 = X and L is the number of hidden layers. µ and C are respectively the
mean and the covariance function of the `th layer.

H` =




H`
1,1 · · · H`

1,j · · · H`
1,D(`)

...
. . .

...
. . .

...
H`

i,1 · · · H`
i,j · · · H`

i,D(`)

...
. . .

...
. . .

...
H`

n,1 · · · H`
n,j · · · H`

n,D(`)




(13)

where D(`) is the number of neurons per hidden layer.
These priors are quite expensive to compute since they involve an inversion of the

covariance matrix C(H`−1, H`−1)), which is O(n3) for each layer of the surrogate model.
To reduce the computational cost of the matrix inversion, the pseudo-inputs [39] (also
called inducing points in the literature) are introduced. The main idea behind this trick is
to increase the probability space with non-observed points which will, to a certain extent,
summarise the data and reduce the cost of the inversion to O(m3), where m is the number
of pseudo-inputs. For significant effects, m has to be a lot smaller than n when considering
large training sets. If the number of samples is small, this number can be chosen with
more flexibility.

For each layer, a random vector U` and a set of pseudo-inputs, denoted as Z`, are
introduced. The random vector U` is defined using the aforementioned GP (Equation (14)).

G`(Z`−1) ∼ N (µ(Z`−1), C(Z`−1, Z`−1)) (14)

where ` ∈ [1, L] and Z` = [z`1,1, ..., z`
m,D(`) ]

T .
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Figure 5 graphically exhibits how the different random variables interact with each
other. The straight green circles correspond to variables, which are strictly Gaussian. The
dashed orange circles correspond to variables that are not conditionally Gaussian, and the
blue rectangles symbolise the conditioning process. In addition, each layer is conditionally
independent to the others.
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)
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From this additional assumption, the model evidence f(Y|H0) can be written as
Equation (15) and similarly to the GP, it is optimised to obtain optimal values for the parameters.

log
(

f(Y|H0)(y)
)
= log

(∫

U`

∫

H`
f(Y,H`,U` |H0)(y, h`, u`|h0)dH`dU`

)

= log
(∫

U`

∫

H`
f(Y|HL) f(H` |H`−1,U`) f(U`)dH`dU`

) (15)

where H` := {H`}L
`=1, U` = {U`}L

`=1,
∫

H` :=
∫

HL · · ·
∫

H1 ,
∫

U` :=
∫

UL · · ·
∫

U1 and

f(H` |H`−1,U`) f(U`) :=
L

∏
`=1

f(H` |H`−1,U`)
f(U`)

.

This model evidence can be decomposed into two parts. The first member of the inte-
grand f(Y|HL) corresponds to the likelihood of the data. The second member f(H` |H`−1,U`) f(U`)
is the DGP prior. Unfortunately, this prior is not analytically tractable due to the successive
inversion of the covariance matrix C(H`−1, H`−1) which prevents the computation of the
conditional density function f(H` |H`−1,U`).

Following a variational inference approach, the variational distribution q(H`,U`), re-
minded in Equation (16), is introduced to remove this issue of tractability. The representa-
tiveness of the distribution is maintained over the conditional density function f(H` |H`−1,U`)
and the approximation is carried out on the inducing variables.

q(H`,U`) =
L

∏
`=1

f(H` |U`,H`−1)q(U`) (16)

where q(U`) is the variational distribution of U` and is Gaussian distributed with (U`)q ∼
N (m`, S`). The subscript q refers to the variational nature of the distribution describing
the random variable. m` and S` are the mean and the variance of U`.

The inducing variables can be marginalised to obtain the variational distribution of H`,
which is still Gaussian distributed with the mean given by Equation (17) and the variance
given by Equation (18).

µ̃` = µ(H`−1) + A(m` − µ(Z`)) (17)

Σ̃` = CHH −A(CZZ − S`)AT (18)
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where A = CHZC−1
ZZ, CHZ = C(H`−1, Z`−1), CZZ = C(Z`−1, Z`−1) and

CHH = C(H`−1, H`−1)
Thus, due to the conditional dependence of each layer given the previous layer, the

computation of a realisation of the density function (HL) is carried out by propagating the
given input x through each layer.

Combining the Equation (16) with the Equation (15) gives the logarithmic mathemati-
cal expectation of the model evidence over the variational distribution of inducing variables
(Equation (19)).

log
(

f(Y|H0)(y)
)
= log

(∫

U`

∫

H`
f(Y|HL) f(H` |H`−1,U`) f(U`)

q(H`,U`)

q(H`,U`)

dH`dU`

)

= log

(∫

U`

∫

H`
q(H`,U`) f(Y|HL)

f(U`)

q(U`)

dH`dU`

)
(19)

= log

(
E(H`,U`)q

[
f(Y|HL)

f(U`)

q(U`)

])

Since the logarithmic function is a concave function, the Jensen’s inequality [40] can
be used to obtain a lower bound of the model evidence.

log
(

f(Y|H0)(y)
)
≥ E(H`,U`)q

[
log

(
f(Y|HL)

f(U`)

q(U`)

)]

≥ E(H`,U`)q

[
log
(

f(Y|HL)

)]
+E(H`,U`)q

[
log

(
f(U`)

q(U`)

)]

≥ E(HL)q

[
log
(

f(Y|HL)

)]
+E(U`)q

[
log

(
f(U`)

q(U`)

)]

≥ E(HL)q

[
log
(

f(Y|HL)

)]
−

p

∑
`=1

DKL

(
q(U`)|| f(U`)

)

(20)

where DKL is the Kullback–Leibler divergence between the variational and the true distri-
bution of U`.

The lower bound given by the Equation (20) is called the efficient lower bound (hereby
denoted ELBO) and provides a tight bound for the model evidence. The Kullback–Leibler
divergence is in closed form since both distributions are Gaussian distributed. Nevertheless,
the tractability of the first term is dependent on the type of likelihood chosen. Indeed, for
the Gaussian and Poisson likelihood, this term can be determined analytically. Otherwise,
a Gaussian quadrature or a Monte Carlo sampling can be used. For either case, the
computation of the first term is done by propagating each instance into the surrogate model.

Considering the expectation of the likelihood given the variational distribution, the
first ELBO term becomes (Equation (21)) since each sample from the training set T
is independent.

E(HL)q

[
log
(

f(Y|HL)

)]
= E(UL

s )q

[
log
(

f(ys |HL
s )

)]
(21)

where (UL
s )q is a realisation of the variational distribution of UL for the sample xs; ys is the

image of xs through the function f ; and (HL
s )q is a realisation of the distribution of HL for

the sample xs.
In addition, the re-parameterisation trick, introduced by Rezende et al. [41] and

Kingma et al. [42], in the context of Bayesian inference, is considered and given by
Equation (22). This trick allows a better optimisation of variational distributions.

H`
s = µ̃(H`−1

s ) + ε`s

√
Σ̃(H`−1

s , H`−1
s ) (22)
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where ε`s is a Gaussian-distributed random variable given by (ε`s) ∼ N (0, I) with I being
the identity matrix.

Considering this trick and the Equation (21), the ELBO reduces to (Equation (23)).

ELBO = E(εL
s )

[
log
(

f(ys |HL
s )

)]
−

L

∑
`=1

DKL

(
q(U`)|| f(U`)

)
(23)

where HL
s is determined with the Equation (22). The analytical forms for both terms are

given in (Equations (A1) and (A2)) from the Appendices A and B.
Once the parameters are optimised, the prediction is done by propagating vectors x∗

through the surrogate model with the Equation (24). Since (HL) is not Gaussian distributed
and depends on the ε`s random variable, T samples are drawn from its distribution and
then averaged.

q(HL∗ )
=

1
T

T

∑
t=1

q(HL
t )

(24)

where q(HL
t )

is the tth realisation of the variational distribution of (HL).
Table 6 summarises the different quantities considered in the DGP surrogate model.

The hyperparameters and parameters in italics are repeated for each layer. The signal
variance and data noise are fixed, invoking the same reasons as for the GP.

Table 6. DGP parameters and hyperparameters.

Name of the
Quantity

Nature of the
Quantity Associated Variable Equation

Hidden layer number Hyperparameter p Equation (12)
Neuron number Hyperparameter D(`) Equation (7)
Pseudo-inputs

number Hyperparameter m Equation (14)

Kernel Hyperparameter K Table 2
Likelihood Hyperparameter f(Y|HL) Equation (15)

Lengthscale Parameter
(Deterministic) Θ` Equation (7)

Pseudo-inputs locations Parameter
(Deterministic) Z` Equation (14)

Signal variance Hyperparameter σ2,`
k Equation (7)

Data noise Hyperparameter σ2
n Equation (A1)

Mean function Hyperparameter µ` Equation (17)
Variational mean Parameter (Variational) m` Equation (16)

Variational covariance
matrix Parameter (Variational) S` Equation (16)

4. Analysis of the Performance of the Surrogate for a One Dimensional Problem
4.1. Preamble

The aim of this section is to evaluate the performance of the surrogate models presented
in Section 3, when considering the approximation of the four complex eigenvalues of the
Double Hulten. To do so, the effects of the hyperparameter setting are thoroughly studied.

The most challenging one dimensional configuration is considered by taking the
friction coefficient as an input variable. This parameter generates non-linear behaviours and
asymmetries in the contact matrices and is, thus, the most complex parameter to manage.

Finally, for engineering applications, small training sets (about 200 to 300 samples,
maximum) are mandatory to maintain the computational cost compliant with industrial
process. Hence, the number of samples used to train the surrogate models is reduced
following this limitation. The samples number is parameterised with regard to the number
of dimension to give a reference for the comparison of scenarios with different number
of dimensions.
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4.1.1. Toolboxes and Hyperparameter Setting

The current applications are based on different Python toolboxes. The GP model is
constructed with the GPFlow toolbox [43], and its parameters are optimised using the
LBFGS algorithm [38]. Next, the DGP model is generated with the doubly stochastic
toolbox [25], and its deterministic parameters, namely the location of the pseudo-points
and the lengthscales of the kernel of each layer, are optimised using Adam [44]. With regard
to the variational parameters, namely the mean and variance matrix of each layer, they are
optimised using the natural gradient descent method, introduced by Salimbeni et al. [45].
For the DNN, the Scikit-Learn toolbox [46] is used, and the optimisation is carried out with
the LBFGS algorithm.

Some of the hyperparameters, shown in Tables 3, 5 and 6, are put aside in this sequel
and are not studied based on the following reasons. Since the solver is exact and the data
are standardised, there is no need to optimise the data noise and signal variance with respect
to the loss function. Following Ginsbourger’s conclusions [47], for the GP and the DGP, the
mean function is not considered and taken to be a zero function. As for the number of DGP
pseudo-inputs, Salimbeni’s formalism [25] does not allow inferring an optimal number, but
rather to impose a user selection of this number. Concerning the likelihood, it is also user
defined and carries the hypothesis on the relationship between the output and the realisation
of the DGP. Finally, for the DNN, the regularisation is traditionally set to 0.0001 [46].

Table 7 summarises the fixed hyperparameters of the study with their associated values.

Table 7. Fixed hyperparameters for the GP, the DNN and the DGP.

Surrogate
Model

Hyperparameter
Name Symbol Equations Value

GP Signal variance σ2
k Equation (7) 1

GP Data noise σ2
n Equation (5) 10−6

GP Mean function µ Equation (5) Zero ()
DNN Regularisation α Equation (10) 0.0001

DGP Pseudo-inputs
number m Equation (14) n

DGP Likelihood f(Y|HL) Equation (15) Gaussian
DGP Signal variance σ`

k Equation (7) 1
DGP Data noise σ2

n Equation (A1) 10−3

DGP Mean function µ` Equation (17) Zero ()

Similarly, the parameters of the optimisers are given in Table 8.

Table 8. Optimisation parameters for the DGP.

Optimiser Name Value

Adam

Step 10−3

Learning rate (Alpha) 0.8
First moment decay rate (Beta) 0.8

Epsilon 10−8

Natural Gradient Step 10−3

4.1.2. Experimental Protocol

The approximated functions are given in Section 2.1 and correspond to the real and
imaginary parts of the four eigenvalues of the Double Hulten. As mentioned earlier, the
friction coefficient is considered variable, while the other parameters are fixed, following the
values of Table 7. Ten randomly distributed training sets are generated for three different
sizes: 6, 10 and 15 samples per dimension, using an LHS.
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Considering the surrogate model definition and the remaining hyperparameters
(Table 9), several values are tested to evaluate the performance of each surrogate model
depending on its setting and the number of samples used for training.

Table 9. Studied hyperparameters for the three surrogate models.

Surrogate Kernel/Activation
Function Hidden Layers Neurons

GP
RBF, Matern 3/2

(M32), Matern 5/2
(M52)

- -

DNN ReLU, Tanh, Logistic [1, 4] {50,100,150,200,250,300}

DGP Matern 3/2 (M32),
Matern 5/2 (M52) [1, 4] 1-3-7-10

For the GP, only the kernel is taken into account here. For the DGP and DNN, the deep
nature of these surrogate models requires a more complex architecture than the one of the
GP. Thus, a parametric study of the definition of hidden layers and associated neurons per
layer is carried out in addition to the analysis of the kernel/activation functions. The RBF
function is put aside for the DGP due to the non convincing results. The DGP architecture
values were chosen with regard to the literature [25,30], and the DNN was set according to
many tests.

For the GP and DGP, the lengthscale is initialised at a value of 1, while the weight
of the DNN is randomly initialised. These quantities are then optimised, considering the
optimisation algorithms, presented in Section 4.1.1.

As the purpose is here to assess the surrogate performance over the entire model,
the whole spectrum is considered. Nonetheless, each real and imaginary parts of the
eigenvalue is assumed to be independent, inducing one surrogate training per quantity
of interest. A CRMSE criterion, given by Equation (25), is used to account for the whole
spectrum approximation capabilities. To validate our different predictions, a validation set
of 10,000 values is defined.

CRMSE =

√√√√√√

t

∑
j=1

ntest

∑
i=1

(
yij − ŷij

)2

t× ntest
(25)

where ntest is the number of test values, and t is the number of considered eigenvalues to
approximate. Then, yij and ŷij are the reference and the surrogate approximation values for
the ith sample of the jth eigenvalue.

4.2. Best Hyperparameter Setting for Small Training Sets
4.2.1. Performance Overview

Figure 6 presents the CRMSE range of variation for the ten randomly distributed
training sets—the min-max bounds are given with squares, while the mean performance
over the training sets is displayed with a circle. In addition, the results considering the
sample density (6, 10 and 15 samples) are respectively shown in red, blue and black interval
performance. For all the tested hyperparameter settings, the CRMSE value is compared,
and the configurations associated with the lowest CRMSE value are denoted as the best
configuration. This analysis is carried out on the averaged CRMSE over the training set.

The real and imaginary approximation performance are displayed on the left and
right sides of each figure. Finally, a colour map is added in the background to denote
the interpretation of the CRMSE: a CRMSE value greater than 1 is associated with a bad
performance, while a CRMSE value lower than 0.5 is linked to a good performance. Between
these two bounds, the results are mitigated and cannot be considered efficient nor bad.
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Figure 6. CRMSE range of variations for the best hyperparameter setting of the three considered
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Observations

First, considering the best hyperparameter setting, the best surrogate model is clearly
the DNN: whatever the training set size, the mean performance over the 10 training sets
is associated with a good CRMSE for the real part approximation, or at least a mitigated
CRMSE (6 samples) and then a good CRMSE (10 to 15 samples) for the imaginary part.

With regard to the DGP, the overall performance is slightly better than for the GP.
Indeed, for 6 samples, both surrogate models almost perform identically. For the approxi-
mation of the real parts with 10 samples, the DGP provides a better approximation since
both the mean and maximum CRMSE are linked to a good CRMSE value (respectively, 0.35
and 0.48). Conversely, the GP slightly performs worse by providing a mean CRMSE of 0.61
and a maximum CRMSE of roughly 1. For other scenarios, the results differ little.

Finally, the real part approximations are more sensitive to the sample distribution,
especially for the GP and the DNN. Indeed, the min-max bounds of the first surrogate
roughly spread about 0.3 CRMSE points, while the latter bounds spread about 0.6. Con-
versely, the DGP allows more stable approximations since the bounds spreads are roughly
0.1 CRMSE points.

Table 10 exhibits the hyperparameter settings that led to the mean CRMSE, shown
in Figure 6. These best settings are determined by taking the mean trend of the surrogate
model performance over all the considered training sets. Typically, a hyphen is put for
surrogate models, where no particular mean trend can be emphasised, highlighting the
instability of the given surrogate model toward its hyperparameter setting. Moreover, for
the DNN and the DGP, the values in the brackets give the number of hidden layers and
neurons. The bold text of Table 10 highlights the following observations about the best
hyperparameter setting.



Vibration 2022, 5 359

Table 10. Best hyperparameter setting of GP, DGP and DNN.

Surrogate Model
Training Set Size 6 Points 10 Points 15 Points

Approximated Function Real Imag. Real Imag. Real Imag.

GP Kernel M32 M32 M52 M32 M32 M32

DGP Kernel M32 M32 M32 M32 M32 M32
Architecture (4,10) (2,10) (2,7) (3,7) (2,10) (1,10)

DNN Activation function ReLU ReLU ReLU Tanh Tanh Tanh
Architecture (4,150) - (4,300) - - -

The GP and DGP exhibits the highest performance when the Matern 3/2 is used,
whatever the considered approximated functions. For the architecture of the DGP, the best
hyperparameter setting is almost always associated with a medium deep structure. Finally,
for the DNN, the results are rather mitigated. Indeed, the performance for the small density
sample distribution (real and imaginary approximation) and the medium density sample
distribution is maximised when the ReLU activation function is considered; however, for
the other considered scenarios, the Tanh is needed. In addition, no particular trend has
been highlighted for the imaginary approximation with regard to the hidden layer and
neuron settings of the DNN.

Discussions

The results of the kernel functions are, in a way, relevant to the mathematical prop-
erties of these functions. Indeed, Matern 3/2 is only once differentiable, making it highly
rough. The roughness of this function allows the surrogate model to deal with higher
non-linearities than the RBF, which is infinitely differentiable and therefore highly smooth.
This property is, thus, highly interesting while dealing with friction-induced vibration
problems, due to the non-linearities involved in the models.

For the DNN, the hyperparameter setting instability is one of the main flaws of this
surrogate model. Indeed, this issue enforces the user to evaluate numerous configurations
to find the best one. As a result, no conclusion can be drawn toward the hyperparameter
setting of this surrogate. Piotrowski et al. [48] tried to tackle this issue, but it is still
open research.

4.2.2. Sample Distribution Density Effect

Figure 7 proposes an assessment of the approximation quality with respect to the
sample distribution density for a given training set. The first row of Figure 7a–c corresponds
to the approximation with 6 samples; the second row of Figure 7d–f, with 10 samples; and
the final row of Figure 7g–i, with 15 samples. The hyperparameters used for training the
surrogate models are given in Table 10.

First, whatever the training set size, the prediction of each surrogate model is merely
identical, except for the 10 samples (Figure 7d–f) where the approximations are slightly
different for a friction coefficient between 0.8 and 1.

Moreover, as the use of a 6 sample training set allows a coarse prediction of the
behaviour of the considered function, a 10 sample training set gives a rather good approx-
imation. The 15 samples training set generates a perfect prediction, but the additional
computation cost for computing the 5 additional samples is not justified, considering the
given increase in accuracy.

Table 11 shows the CRMSE values for the configurations considered in Figure 7. The
previous observations are confirmed by the numerical values of the CRMSE, namely that,
for 15 samples, each surrogate model provides the same level of performance, and that, for
10 samples, the approximation is fair enough for any surrogate model.
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Figure 7. Comparison of each surrogate model approximation with respect to the sampling density.
(a) Gaussian process (6 points), (b) deep Gaussian process (6 points), (c) deep neural network
(6 points), (d) Gaussian process (10 points), (e) deep Gaussian process (10 points), (f) deep neural
network (10 points), (g) Gaussian process (15 points), (h) deep Gaussian process (15 points), (i) deep
neural network (15 points).

Table 11. CRMSE values with respect to the sampling density for each surrogate model.

Number of Samples Gaussian Process Deep Gaussian
Process

Deep Neural
Network

6 samples 0.91 0.518 0.666
10 samples 0.57 0.357 0.206
15 samples 0.119 0.113 0.128

4.3. Worst Hyperparameter Setting for Small Training Sets
4.3.1. Performance Overview

Figure 8 presents the CRMSE range of variation for the ten randomly distributed
training sets in a similar way than for the best hyperparameter setting. For all the tested
hyperparameter settings, the CRMSE value is compared, and the configurations associated
with the highest CRMSE value is denoted as the worst configuration. This analysis is
carried out on the averaged CRMSE over the training set.

Observations

First, for the DGP and the DNN, the real-part approximations are clearly acceptable
when the number of samples is greater than 10 points, even with a bad hyperparameter
setting. Indeed, for the DNN, the worst performance of the mean approximation of the real
part is always associated with a good CRMSE value. Conversely, for the DGP, it is at least
linked to a mitigated CRMSE value.
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Figure 8. CRMSE range of variations for the worst hyperparameter setting of the three considered
surrogate models. (a) Gaussian process, (b) deep Gaussian process, (c) deep neural network.

However, for the GP approximation, the results are more problematic. Indeed, for the
first surrogate model, the CRMSE range of variation is wider for a sample number of 15 than
for the smaller training set sizes. For instance, the range of variations is respectively about
1 CRMSE point and 3 CRMSE points for the approximations of the real and imaginary parts.
With regard to the DNN imaginary part approximations, the results are also problematic,
whatever the training set size. The CRMSE is even greater than 10 for 6 training samples.

Table 12 shows the hyperparameter settings that led to the mean CRMSE, shown in
Figure 8. The procedure is similar to the one explained for Table 10.

Table 12. Worst hyperparameter setting of GP, DGP and DNN.

Surrogate Model
Training Set Size 6 Points 10 Points 15 Points

Approximated function Real Imag. Real Imag. Real Imag.

GP Kernel RBF RBF RBF RBF RBF RBF

DGP Kernel function M52 M52 M52 M52 M52 M52
Architecture (3,10) (4,10) (3,10) (4,10) (4,10) (4,10)

DNN Activation function TanH ReLU Logistic ReLU Logistic ReLU
Architecture (4,200) (4,300) - (4,200) - (4,200)

The worst GP and DGP settings are stable with regard to the kernel function. Whatever
the considered approximated functions, the RBF (respectively, Matern 5/2) gives the worst
results. For the architecture of the DGP and the DNN, deeper structures cause the worst
approximations since the worst hyperparameter setting is associated with four hidden
layers for both surrogate models. The DNN produces unstable approximation results, espe-
cially for the real prediction with 10 and 15 samples, where no particular hyperparameter
setting is clearly identified.

Discussions

The instability of the hyperparameter setting of the DNN is highlighted for the worst
setting. Here, the ReLU activation function generates bad approximations, especially for
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the imaginary functions. This can be easily explained by the characteristics of the activation
function. Indeed, the ReLU cannot be differentiated due to the use of the maximum
operator. Consequently, it is more adapted to highly non-linear approximations. Here, the
imaginary functions are the frequencies of the studied problem, which remain relatively
smooth, despite the (large) variation of the friction coefficient.

Conversely, the DGP exhibits more stable results than the DNN. The performance for
the worst hyperparameter setting is pretty close to the performance with the best setting.
For instance, the approximation of the imaginary functions with 10 samples generates an
error of 0.42 with the best setting, while an error of 0.5 is generated with the worst setting.

Finally, the observations about the roughness of the kernel functions are still valid
here since the smoothest functions (the RBF and the Matern 52) generate the worst approxi-
mations, respectively, for the GP and the DGP.

The next section focuses on the two scenarios where the GP and the DNN produce erro-
neous predictions. The purpose is to highlight the consequence of the issue of both surrogate
models over their approximation capabilities and to compare with the DGP approximation.

4.3.2. Erroneous Predictions for GP and DNN

Figure 9 focuses on a limitation of the GP surrogate model for specific training sets.
The GP prediction Figure 9a is constant on the majority of the design space, except at the
vicinity of the samples of the training sets. Hence, this deceptive approximation clearly
affects the predictivity of the surrogate model, yielding it unusable in this case. However,
when a deep architecture is taken into account, this problem of deceptive approximation
does not appear. For both other surrogate models, the prediction is almost perfect.
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Figure 10. Comparison of each surrogate model prediction for a faulty GP setting.
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Figure 11. Comparison of each surrogate model prediction for a faulty DNN setting.
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Figure 9. Comparison of each surrogate model prediction for a faulty GP setting. (a) Gaussian process
(15 samples), (b) deep Gaussian process (15 samples), (c) deep neural network (15 samples).

Similarly, Figure 10 highlights a limitation of the DNN surrogate model that appears
with six samples, but can appear whatever the considered training set. Whereas GP and
DGP approximation are almost similar and quite efficient with regard to the training set
information, the DNN does not give a good approximation at all. Indeed, between each
sample, the prediction is highly fractured.
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This phenomenon is called overfitting and was first emphasised by Runge [37]. In a
nutshell, overfitting corresponds to the case when the surrogate model becomes very effi-
cient to explain the training set, but cannot explain other set of samples (namely the test set).
Consequently, the prediction oscillates quickly, and the surrogate model is unusable. This
issue is known to be frequent with the neural network [35,49]. This is still an open research
field, although many methods have been proposed to overcome this phenomenon [48].
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Figure 10. Comparison of each surrogate model prediction for a faulty DNN setting. (a) Gaussian
process (6 samples), (b) deep Gaussian process (6 samples), (c) deep neural network (6 samples).

4.4. Conclusions

This section shows that, considering an optimal hyperparameter setting, the approxi-
mations provided by the surrogate models are interchangeable and any of them can be used.
In addition, the optimal sample density is showed to be 10 samples per dimension since it
allows a good representation of the design space, while limiting the computational cost.

For the hyperparameter setting, the GP and the DGP were showed to be pretty stable.
Indeed, for both surrogate models, Matern 3/2 corresponds to the best kernel function. For
the DGP, a mid-deep structure gave the most efficient approximations. For the DNN, the
results were more mitigated. Indeed, no clear conclusions were drawn from these results,
and a good hyperparameter setting for a given training set can become a bad setting for
another sample distribution. This enforces the user to evaluate a lot of configurations to
find the most efficient one.

Consequently, the DNN is set aside due to its instability with respect to the hyperpa-
rameter setting, whatever the number of samples in the training set and the quantity to
approximate. In addition, the DNN does not provide a direct measure of the modelling
uncertainty (the variance of GP and DGP), which is a critical issue in Bayesian optimisation,
for instance [50]. It is possible to obtain a substitute to the variance when using the DNN,
but the implementation is more complex.

5. Applications of Gaussian Processes and Deep Gaussian Processes in a
Multiparametric Analysis
5.1. Hyperparameter Setting of the Deep Gaussian Process in a Multiparameteric Analysis
5.1.1. Preamble

This section aims at highlighting the evolution of the DGP performance with respect
to the dimensionality of the problem. Many tests showed that, unlike the GP, the hyperpa-
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rameter setting conclusions on the 1-dimensional problem do not extend to n-dimensional
problems. Thus, a discussion on the optimal architecture of the DGP is given to emphasise
the relation between the system parameters and the capacity of the DGP to efficiently
approximate the whole frequency spectrum.

To do so, the analysis is decomposed into two steps: first, the approximation of the
eigenvalues of the Double Hulten model is considered with five variable parameters. Then,
three scenarios are studied with three, five and seven variable parameters.

5.1.2. Five-Dimensional Study

The following parameters of the Double Hulten are considered variable: m1, m2, ka, ca
and µ, with a variation of ±10%, except for the friction coefficient, which varies between
0 and 1. The first four parameters are similar to the structural parameters of a real brake
system. With regard to the training set T , used to train the surrogate model, 10 sets,
composed of 50 samples (10 per parameter) are randomly generated using an LHS. A DGP
is built for different hidden layers and neurons setting.

Observations

Tables 13 and 14 show the CRMSE values for the DGP prediction over a MC sampling
of 10,000 reference samples. The values for the hidden layers and neurons setting are given
in these tables.

Table 13. CRMSE for real part approximations.

Neurons
Hidden Layers

1 2 3 4

1 6.29 6.13 6.23 6.29
3 4.35 4.33 4.32 4.32
5 0.468 0.469 0.47 0.47
7 0.467 0.469 0.478 0.478
10 0.467 0.468 0.491 0.489

Table 14. CRMSE for imaginary part approximations.

Neurons
Hidden Layers

1 2 3 4

1 6.29 6.13 6.23 6.29
3 4.35 4.33 4.32 4.32
5 0.468 0.469 0.47 0.47
7 0.467 0.469 0.478 0.478
10 0.467 0.468 0.491 0.489

First, two levels of performance are highlighted in these tables. The DGP provides bad
approximations when the number of neurons is lower or equal to 3. Conversely, when the
number of neurons is at least equal to 5, the approximations are efficient for both real and
imaginary parts of the eigenvalues.

Secondly, the performance is quite stable over the number of neurons and the number
of hidden layers, with a CRMSE around 0.47 for the real part and around 0.45 for the
imaginary part. Thus, one hidden layer is sufficient to provide efficient approximations.

From the analysis of the previous results, the number of neurons has to be at least
set to 5, which corresponds to the number of parameters taken into account, for either the
real or the imaginary part approximations. To validate this assertion, the following section
focuses on the study of scenarios which involve several variable parameters.

5.1.3. N-Dimensional Study

The three considered scenarios are the following ones:
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• 3 input parameters: m1, m2 and µ ;
• 5 input parameters: m1, m2, ka, ca and µ ;
• 7 input parameters: k11, k12, k21, k22, ka, ca, and µ.

Similar to the previous test, for the performance evaluation, 10 training sets are
randomly generated with 10 samples per input parameter (30, 50 and 70 samples on overall
for each scenario).

Observations

The CRMSE values for each configuration and each scenario are given in Tables 15 and 16.
The assertion of the previous section is validated by those results since, for the 3D scenario,
the number of neurons has to be at least 3, and, for the 7D scenario, it should at least be 7.

Table 15. CRMSE for real part approximations with 3D, 5D and 7D scenarios.

3D 5D 7D

Neurons CRMSE Neurons CRMSE Neurons CRMSE

1 6.355 1 6.29 1 6.219
2 4.349 3 4.35 3 5.319
3 0.491 5 0.468 5 4.722
4 0.491 7 0.467 7 0.541
5 0.491 10 0.467 10 0.541

Table 16. CRMSE for imaginary part approximations with 3D, 5D and 7D scenarios.

3D 5D 7D

Neurons CRMSE Neurons CRMSE Neurons CRMSE

1 6.079 1 6.159 1 5.876
2 3.915 3 4.266 3 4.969
3 0.471 5 0.448 5 4.101
4 0.471 7 0.448 7 0.537
5 0.471 10 0.448 10 0.538

Discussions

This observation has a strong implication: the formalism of the DGP used in this
research is not capable of doing dimension reduction. This limitation of the considered
DGP allows stating a rule of thumb about the setting of the DGP: the number of neurons
has to be at least equal to the number of parameters.

Moreover, taking a number of neurons greater than the number of parameters also
yields efficient results, but, due to the stability of the DGP, its performance is not improved.
In the studied applications, one hidden layer provides good performance for the surrogate
model approximations. It limits the computational cost induced by the inference of deeper
and deeper models.

5.2. Comparison between GP and DGP Performance

This section compares the prediction of the GP using the best hyperparameter setting,
highlighted in Sections 4.2 and 5.1. To do so, the same experimental procedure than the
one of the previous section is used, meaning 10 randomly generated training sets with
10 points per dimension, for three scenarios: 3, 5 and 7 parameters.

Observations

Table 17 shows the CRMSE value for each surrogate approximation. The DGP performs
better than the GP, whatever the considered scenario or the approximated quantity (real or
imaginary). Nonetheless, the improvements brought by the DGP are small, roughly 0.2
points of CRMSE value.
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Table 17. Comparison between the GP and DGP CRMSE for real and imaginary part approximations
with 3D, 5D and 7D scenarios.

Function GP DGP

Type 3D 5D 7D 3D 5D 7D

Real 0.53 0.479 0.56 0.491 0.468 0.541
Imag. 0.51 0.464 0.55 0.471 0.448 0.537

Discussions

This observation raises some concerns about the relevance of the DGP, used for the
approximation of the eigenvalues of an FIV problem. Indeed, all the tests performed in
Sections 4 and 5 proved the efficiency of the DGP; however, the computational cost of
training this surrogate model is high. For instance, a GP shows a training time of less than
1 s. The DGP training time is highly dependent on its architecture and the dimensionality
of the problem. For these tests, in a one-dimensional problem, the training lasted 2 min to
30 min, on average; for a 5-dimensional problem, the training lasted 2 h to 6 h. Obviously,
this training cost can be leveraged by using heavy parallelism, but, because of the accuracy
improvement, using the DGP may not be relevant for FIV problems.

Two main reasons can be invoked to justify this weak improvement of accuracy. The
first one is that, in the literature, the majority of works on DGP [51,52] use a great amount
of samples (from 39 to 5081 samples per dimension in [25], for instance). These training set
sizes are not reachable for our kind of application, especially with industrial models, and
the DGP may not have sufficient data to be trained.

A second explanation is that the considered functions (the eigenvalues of the squeal
problem) are not sufficiently non-linear to highlight a large difference between GP and
DGP approximations. Hebbal et al. [30] used the DGP to approximate the constraints of
the optimisation problem. Typically, Figure 2a,b clearly shows that the evolution of the real
or imaginary part eigenvalues is non-abrupt, even in the coupling areas.

6. Conclusions

In this paper, the performance of the Gaussian process, the deep neural network
and the deep Gaussian process were investigated for friction-induced vibration problems
subject to variations of mechanical properties. The study aims at illustrating the impact
of the surrogate models parameterisation in the case of non-linear and non-stationary
evolutions. A focus is mainly made on suboptimal training sets. This suboptimality is
a consequence of the use of common random training sets, which need a high sampling
density to be fully efficient, non-achievable for traditional engineering applications.

The effects of the most complex parameter of a friction-induced vibration problem,
namely the friction coefficient, were studied. Three different training set densities were con-
sidered, namely 6, 10 and 15 samples, for 10 randomly distributed training sets. The results
showed that, given an optimal hyperparameter setting, all the surrogates are interchange-
able. In addition, from a computational cost aspect, the 10 samples per parameter density
produces relevant results. The 15 samples density is better, but the small improvement in
precision does not counterbalance the increase in the computational cost.

With regard to the hyperparameter setting of the surrogate models, the GP and
DGP gave the most efficient results when using the Matern 3/2 kernel function. The
performance of the DNN was highly unstable, and no trend was drawn from the results.
Many architecture configurations must be evaluated to determine the most suitable one.
For specific training sets and non-stationary evolutions, some deceptive predictions were
also detected for the Gaussian process. On the other hand, the deep Gaussian process
showed an interesting robustness in these situations as soon as rules about the architecture
definition were known. The deep Gaussian process is a serious alternative to the GP
when the nature of studied behaviours is highly non-stationary, but its main weakness
is obviously the computational time when no parallel computations are considered. The
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results showed that the number of hidden layers and neurons can be controlled to lower the
computational cost of the DGP. Indeed, the number of neurons can be set to be equal to the
number of uncertain parameters. As for the hidden layer number, it can generally be fixed
to one. Finally, a comparison between the GP and the DGP for these multidimensional
scenarios was performed. The results showed that the latter one outperforms the first one
in term of accuracy. However, the future developments about DGP must be focussed on
the reduction in the computational cost to make the method compatible with numerical
simulations, currently used in mechanical engineering.

Moreover, a natural extension of this work is to study the deceptive prediction of
the Gaussian process. Indeed, the performance of the Gaussian process is quite good for
the majority of the considered scenarios, except for specific sample locations. It would
be interesting to have a strategy to detect and handle those deceptive predictions. In
addition, the use of surrogate modelling is especially interesting when the number of calls
to the solver is important. The uncertainty propagation and the optimisation are of those
types of application. The use of machine learning techniques was already considered
in the literature, but two limitations naturally arise: the curse of dimensionality, which
corresponds to an exponential need of samples when the number of parameters increase,
and the quality of the approximation, which depends on the representativeness of the
randomly evaluated samples. Adaptive sampling strategies could provide an efficient way
to tackle these limitations. It would be interesting to investigate these approaches in the
case of non-linear functions in the future.
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Appendix A. Derivation of the Expectation of the Likelihood in ELBO for a Gaussian
Likelihood

The expectation of the evidence given the distribution of εL
s is given by Equation (A1)

for a Gaussian likelihood.
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where µs and Σs correspond to propagation of a vector x ∈ D through the layers of the DGP.

Appendix B. Derivation of the Kullback–Leibler Divergence in ELBO

For the `th layer, the Kullback–Leibler divergence is given by Equation (A2).
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=

1
2

n

∑
i=1

log(det(CH`,H`)))− 1
2

n

∑
i=1

log(det(Σ̃`)))

− n
2
+

1
2

trace(C−1
H`,H` Σ̃

`) + m`T
CH`,H`m`

(A2)
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