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Abstract: Silent speech interfaces (SSIs) enable speech recognition and synthesis in the absence of
an acoustic signal. Yet, the archetypal SSI fails to convey the expressive attributes of prosody such
as pitch and loudness, leading to lexical ambiguities. The aim of this study was to determine the
efficacy of using surface electromyography (sEMG) as an approach for predicting continuous acoustic
estimates of prosody. Ten participants performed a series of vocal tasks including sustained vowels,
phrases, and monologues while acoustic data was recorded simultaneously with sEMG activity from
muscles of the face and neck. A battery of time-, frequency-, and cepstral-domain features extracted
from the sEMG signals were used to train deep regression neural networks to predict fundamental
frequency and intensity contours from the acoustic signals. We achieved an average accuracy of
0.01 ST and precision of 0.56 ST for the estimation of fundamental frequency, and an average accuracy
of 0.21 dB SPL and precision of 3.25 dB SPL for the estimation of intensity. This work highlights
the importance of using sEMG as an alternative means of detecting prosody and shows promise for
improving SSIs in future development.
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1. Introduction

Speech is the basis of human interaction. For many languages, spoken communication
is not only governed by the words that make up a message, but also the relative emphasis
of syllables within each word. Often conveyed by changes in prosody—including vocal
characteristics of pitch, loudness, voice quality, and temporal variability—it is how the
words are said that facilitates understanding, conveys meaning, and grants nuance to an
interaction. Through unique modulations in these characteristics, individuals can develop
their own speaking style and identity. However, people with a limited ability to produce
speech, such as those who undergo laryngectomy due to trauma or disease, lack this
natural method of self-expression. Consequentially, those affected often struggle with daily
communication and tend to face psychosocial challenges, including difficulty integrating at
work, social withdraw, depression, addiction, anxiety, and altered self-identity [1–5].

The development of assistive technologies known as silent speech interfaces (SSIs)
attempts to bridge this gap in self-expression by providing an alternative method of
communication that is independent of an acoustic signal. Instead, SSIs leverage other
physiological signals to infer information about speech content and reconstruct this content
as text or audible outputs [6]. Different approaches have included ultrasound and opti-
cal cameras [7–9], electropalatographic [10], or electromagnetic [11] devices for tracking
tongue and lip movements; non-audible murmur microphones for detecting resonance
in the vocal tract [12,13]; surface electromyography (sEMG) of articulatory muscles or
the larynx (e.g., [14–18]); and motor cortex implants [19], electroencephalography [20] or
electrocorticography (ECoG; [21]) to track speech-related brain activity.
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Despite the advances in SSIs, the resulting synthesized speech often lacks prosody
and, as a result, tends to sound monotone and unnatural. Recent work to overcome this
shortcoming by Herff et al. [22] demonstrated that an SSI utilizing EcoG could preserve
linguistic and conversational cues, wherein listeners found the synthesized speech to be
intelligible 66% of the time. However, the system itself requires a craniotomy to operate,
making it an invasive option that may not be ideal for those already suffering from trauma
or disease. Another study conducted by Gonzalez et al. [23] also demonstrated the ca-
pability of an SSI to produce intelligible and natural speech using permanent magnetic
articulography (PMA), but also suffers in usability due to the invasiveness of PMA and its
current dependence on audio signals.

Using sEMG for alternative communication provides a noninvasive, easy-to-use alter-
native to EcoG- and PMA-based SSIs. Preliminary studies have shown the promise of sEMG-
based SSIs to recognize a range of utterances including individual phonemes, isolated
words, and even continuous speech with relatively high accuracy (e.g., [14,17,18,24,25]).
Subsequent preliminary studies have begun to incorporate prosodic features in their sEMG-
based SSI systems. By tracking articulatory muscle activity, sEMG-based SSIs from Johner
et al. [26] and Vojtech et al. [18] were able to successfully distinguish emphasized words and
questions from normal statements, demonstrating F1 scores of 0.68 and 0.92, respectively.
While these studies demonstrated the ability of an sEMG-based SSI to detect prosodic
features in speech, the metrics used may lack objectivity due to the large phonetic vari-
ation in how a word can be emphasized both within and across people [27]. As such,
acoustic correlates of prosody could fulfill the unmet need to synthesize objective prosodic
characteristics of speech more directly.

Past works have attempted to extract vocal pitch via estimates of fundamental fre-
quency (fo) from sEMG activity but encountered difficulties without the use of machine
learning methods. This is likely because voice production is primarily modulated by the
intrinsic laryngeal muscles, which are not detectable using surface electrodes [28]. Instead,
sEMG-based estimates of fo have largely been attributed to changes in extrinsic laryngeal
muscles. Due to the small, interdigitated, and overlapping nature of the extrinsic laryngeal
musculature, however, it has been postulated that some muscles that are not involved in
the control of voice fo still contribute to the sEMG signal [29]. In turn, more recent work
has turned to machine learning to disentangle voice fo from sEMG signals. Nakamura
et al. [30] was first to extract the fo contour from an sEMG signal via Gaussian mixture
model-based voice conversion. Diener et al. [31] improved on this work by quantizing the
fo values instead of estimating the contour from a trained model, and by introducing a
feed-forward neural network for fo estimation. However, both studies resulted in relatively
low model performance between observed and predicted fo estimates (r < 0.50). On top of
low performance, these works also focused on pitch as a sole prosodic feature even though
modulations in pitch, loudness, timing, and voice quality are often interdependent [32] (i.e.,
a syllable that is perceived as stressed is often produced with simultaneous increases in
fo and intensity; [33]). Nevertheless, these studies provide an important first step toward
introducing linguistic prosody into synthetic speech for sEMG-based SSIs.

The aim of our current study was to investigate the efficacy of using sEMG to recog-
nize and track continuous estimates of voice fo and intensity. To achieve this goal, a series
of time-, cepstral-, and frequency-domain features derived from sEMG signals was used
to train deep regression models to estimate fo and intensity of a concurrently recorded
acoustic signal. Model performance in generating continuous estimates of fo and intensity
was characterized using outcome measures of percent error, correlation (via Pearson’s
correlation and Lin’s concordance correlation), accuracy (via mean bias error), and pre-
cision (via root-mean-square error). We hypothesized that our regression models would
demonstrate prediction errors below perceptible ranges reported in the literature for fo
(0.20–0.30 semitones; [34–36]) and intensity (2–5 dB SPL; [32,37]).
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2. Materials and Methods
2.1. Participants

Ten adults with typical voices (5 female, 5 male; M = 29.8 years, SD = 9.6 years, range:
21–53 years) participated in the study. All participants were fluent in English and reported
no history of voice, speech, language, or hearing disorders. One participant spoke English
with an Arabic accent. All participants provided informed, written consent in compliance
with the Western Institutional Review Board.

2.2. Experimental Protocol

Participants were seated throughout the study in a quiet room. Surface EMG signals
were collected using eight single-differential electrode pairs connected to either of two
wireless Trigno Quattro sensors (Delsys, Natick, MA, USA). Each differential electrode pair
was placed over a distinct region of the face or neck as described in Meltzner et al. [14,15]
(Figure 1). Neck sensor placements included the anterior belly of the digastric, mylohyoid,
and geniohyoid (sensor 1; [38]); platysma, mylohyoid and stylohyoid (sensor 2; [38]); and
platysma, thyrohyoid, omohyoid, and sternohyoid (sensors 3 and 4; [39]). Face sensor
placements [40] included the zygomaticus major and/or minor, levator labii superioris, and
levator anguli oris (sensor 5); orbicularis oris (sensors 6 and 7); and mentalis (sensor 8). Just
prior to sensor adhesion, the surface of the skin was prepared via alcohol wipe and tape
peel exfoliation methods to remove excess hair and skin oils [41,42]. The eight sensors were
then adhered to the skin using double-sided, hypoallergenic tape. Signals were recorded at
2222 Hz, bandpass filtered with roll-off frequencies of 20 Hz and 450 Hz, and amplified by
a gain of 300.
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Figure 1. Configuration of sEMG sensors (pink) on the neck (left; sensors 1–4) and face (right;
sensors 5–8).

Acoustic signals were recorded using an omnidirectional microphone (Movo LV-6C
XLR) instrumented to a headset; for each participant, the microphone was positioned 45◦

from the midline and 4–7 cm from the lips. Microphone signals were pre-amplified (ART
Tube MP Project Series) and digitized at 44.1 kHz (National Instruments USB NI-6251).

Time-aligned acoustic and sEMG signal acquisition was managed through a triggering
setup within Delsys EMGworks software and involved a custom trigger module to connect
the National Instruments DAQ board and sEMG base station trigger port.
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To calculate sound pressure level (dB SPL) for all voice recordings, electrolaryngeal
pulses were played at the lips while a sound pressure level meter (Check Mate CM-140)
measured dB SPL at the microphone. The known sound pressure levels were later used to
calibrate the microphone recordings.

From here, participants produced seven different types of voice and speech data to
collect a heterogenous sample of vocal activity. A detailed overview of the voice and speech
tasks can be found in Appendix A, and are listed in brief below:

1. Tones—Sustained vowels /a/, /i/, /u/, and /ae/ produced for 3–5 s at a constant
pitch and loudness (normative, high/low pitch, high/low loudness)

2. Legatos—Continuous slide from one pitch to another for vowels /a/, /i/, /u/,
or /ae/

3. VCV Syllables—Vowel-consonant-vowel sequences (e.g., /afa/) where both vowels
are equally stressed or only one vowel is stressed

4. Phrases—Standard, short speech tokens uttered in a normal speaking voice
5. Reading Passages—Standard passages uttered in a normal speaking voice
6. Questions—Short segments of unstructured speech in response to a question
7. Monologues—Long segments of unstructured speech in response to a prompt

Tasks were presented to participants on printouts displayed on a weighted-base
copyholder (Fellowes 21128). Participants were instructed to notify the experimenter
(authors J.V. or C.M.) when ready to begin a task; the experimenter would then start a
recording to collect concurrent sEMG and acoustic data. In this way, participants proceeded
through each task at their own pace. For tasks in which participants were instructed to
alter their pitch and/or loudness (i.e., tones, legatos, nonsense words; see Appendix A),
the degree of change was not assigned a specific sound pressure level or fo. Instead, it was
determined by participants to fit within their comfortable conversational levels, similar to
the recommended clinical instructions for instrumentally assessing voice [43]. An average
of 2975.5 s of data was recorded for each participant (2501.9–3503.9 s), with recording
duration by speech task shown in Table 1.

Table 1. Recording duration by speech task, shown as mean (range).

Speech Task Recording Duration (s)

Tones 351.7 (232.2–620.7)
Legatos 132.1 (97.4–205.8)

VCV Syllables 284.4 (174.6–464.0)
Phrases 649.8 (523.5–790.9)

Reading Passages 1041.1 (888.9–1209.0)
Questions 241.6 (168.5–330.8)

Monologues 274.8 (214.5–374.9)

2.3. Data Processing

The sequence of data processing steps included: (1) signal alignment to align data
recorded from the eight unique sEMG channels to the acoustic data recorded from the
headset microphone, (2) voice fo and intensity contour extraction, (3) feature extraction,
and (4) data splitting. Each processing step is described in detail below.

2.3.1. Signal Alignment

As each sEMG sensor was configured over distinct regions of the face or neck (with
sensor configurations influenced by variable skin-electrode impedances and depth of
the muscle from the skin surface, among other factors), a dynamic time warping (DTW)
algorithm was implemented to capture the non-linear similarities between the acoustic
data and the multiple, spatially distributed EMG sensors. For this procedure, the sEMG
data from each sensor was first upsampled to 44.1 kHz to match the sampling rate of the
acoustic data. An exact, memory-efficient algorithm for DTW was then employed using
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the linmdtw package [44] in Python (v.3.8) to compute signal alignments using a hop value
of 0.010 s.

2.3.2. Voice fo and Intensity Contour Extraction

Two features were extracted from the acoustic data as outcome variables: voice fo (Hz)
and voice intensity (dB SPL). The fo contour was extracted from each acoustic recording
using the Praat autocorrelation-based algorithm [45] via the Parselmouth package [46] in
Python. For this algorithm, minimum and maximum fo values were set to 65 Hz and 475 Hz,
respectively [47–49]. The time step for this algorithm was set to default (0.75/minimum fo).

The intensity contour was extracted following methods used in Praat, wherein the
amplitude of a signal was first squared, then convolved with a Gaussian analysis window
(Kaiser-20 with sidelobes below −190 dB). The duration of the analysis window was set
to the default used in the Praat algorithm (3.2/minimum fo). Resulting intensity values
were converted from units of dB to units of dB SPL using the known sound pressure levels
acquired during data collection.

2.3.3. Feature Extraction

Acoustic (fo and intensity contours) and sEMG signals were windowed at a frame size
of 40 ms with a 20-ms step shift for fo data and 150 ms with a 30-ms step shift for intensity
data. The fo and intensity data were represented per frame by mean values. The sEMG data
were represented per channel and per frame by a set of 20 common EMG features, which
are listed in Table 2. All listed features were extracted for each of the 8 sEMG channels,
then 24 redundant channel-features (e.g., the cross-correlation of channels 3 and 8 vs. the
cross-correlation of channels 8 and 3) were removed. All features were then cascaded into
a final vector with a dimension of 593 per sEMG sample.

Table 2. Features used in sEMG data processing.

Feature Dimension per
Channel References

1 Beta coherence 8 [50,51]
2 Central frequency variance 1 [52,53]
3 Coherence 8 [50,51]
4 Cross-correlation 8 [54]
5 Daubechies 2 wavelet coefficients, maximum (peak) 4 [55]
6 Daubechies 2 wavelet coefficients, mean 4 [55]
7 Daubechies 2 wavelet coefficients, variance 4 [55]
8 Maximum (peak) frequency 1 [52,55]
9 Mean absolute value 1 [56–61]
10 Mean frequency 1 [59,60]
11 Mean power density 1 [53,62]
12 Median frequency 1 [60,61]
13 Mel-frequency cepstral coefficients 24 [14,15,18]
14 Power density wavelength 1 [57]
15 Root mean square 1 [56,57,60,61]
16 Slope sign change 1 [57,60]
17 Spectral moments 3 [52,57,61,62]
18 Variance 1 [56,57,60,61]
19 Waveform length 1 [57,59–61]
20 Zero crossings 1 [17,57,59,60]

Principal component analysis (PCA) was employed on the common set of 593 sEMG
features from each participant to mitigate multicollinearity of features while constructing
relevant features that capture most of the variance in the data. For each participant, the
PCA criterion for the number of selected features was such that 90% of the variance in
the data was explained [63–65]. This process yielded an average of 97.6 ± 2.1 features to
characterize a given observation for intensity data and 106.0 ± 1.6 across participants for fo.
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2.3.4. Data Splitting

The amount of data available for model construction varied within and across par-
ticipants due to differences in participant speech characteristics (e.g., speaking rate), task
type (e.g., a sustained vowel vs. a long monologue), and outcome metric. For instance,
there was substantially more data available for intensity than fo since fo could only be
computed during voiced speech. Data splitting was therefore stratified across speech tasks
to preserve the approximate proportions of the original dataset across models and to ensure
an 80–20 (training-test) split.

Two methods were carried out to minimize overfitting: data augmentation and k-
fold cross-validation. Data augmentation was applied as a regularization technique by
injecting noise from a Gaussian distribution (based on the mean and standard deviations
of the features) into the dataset [66,67]. Following, k-fold cross-validation with k = 5 folds
was employed on the training data to quantify the variation in model performance [68];
resulting was a 60-20-20 split for training-validation-test sets.

2.4. Model Development

Model training was carried out using a Dell XPS 8950 desktop with the Windows
11 Pro 64-bit operating system. The processor was an Intel Core i7-12700 with 12 central
processing unit cores. The computer was equipped with 32 GB random access memory,
and the graphics processing unit of the computer was the NVIDIA GeForce RTX 3080.

Two types of fo and intensity models were created: (1) single-speaker models, meaning
that individual fo and intensity models were trained for each participant, and (2) multi-
speaker models, meaning that data from all 10 participants was used to train, validate,
and test a single model for each outcome measure (fo, intensity). The former scheme
was implemented to account for variations in the sEMG signal that may occur across
participants due to differences in exact electrode configuration, skin-electrode impedances,
skin and adipose thickness, and muscle activation during speech. The latter scheme was
implemented to determine feasibility in creating a generalized architecture for estimating
fo and intensity in spite of person-specific variations in sEMG activity. Importantly, data
augmentation was not implemented for the multi-speaker models due to the large amount
of available data (spanning 10 participants).

A schematic representation of the single-speaker models for fo and intensity can be
found in Figure 2. The hidden layers within both models use the GeLU activation function.
Parameter optimization for the fo (Figure 2a) and intensity (Figure 2b) models is performed
at a learning rate of 0.001 (batch size: 1024) and 0.005 (batch size: 2048), respectively, using
the ADAM optimizer. As the models are intended to solve a regression problem, mean
squared error is used as a loss function. Accordingly, the output layer for each model
comprises one unit with a linear activation function. In the models for fo, all fo values
(predicted, observed) are standardized to semitones (ST) relative to a reference value based
on the speaker’s average fo. Both models are deep regression neural networks that predict
outcome values at a resolution of 0.01 ST (fo) or 0.01 dB SPL (intensity).

A schematic of the multi-speaker models that were constructed for fo and intensity
are shown in Figure 3. As in the single-speaker models, the hidden layers within both
models use the GeLU activation function, mean squared error is used as a loss function,
and the output layer consists of one unit with linear activation. Parameter optimization
for fo (Figure 3a) and intensity (Figure 3b) models is performed at a learning rate of 0.001
(batch size: 1024) and 0.0005 (batch size: 4096), respectively, using the ADAM optimizer.
Batch normalization is included before the first activation layer of the intensity model to
normalize the inputs to the first GeLU activation function. Due to differences in habitual
pitch and loudness, fo values are standardized to ST using a reference value of 90 Hz rather
than the speaker’s average fo and intensity values are normalized (0–1) within-participant
across the available data. Both models are deep regression neural networks that predict
outcome values at a resolution of 0.01 ST (fo) or 0.01 dB (intensity).
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Figure 3. Structure of the multi-speaker deep regression neural networks used to estimate (a) fo and
(b) intensity from sEMG signals.

2.5. Model Performance

Model performance was quantified using metrics of mean absolute percent error
(MAPE) as well as Pearson product-moment correlation coefficients (r) and Lin concordance
correlation coefficients (CCC) to enable comparisons to the literature. Model performance
was also quantified as the root-mean-square error (RMSE) and mean bias error (MBE) be-
tween observed and predicted estimates to provide insight into the precision and accuracy
of fo or intensity estimates. Performance for the training (60%) and validation (20%) data
was compared across k = 5 folds. The fold that yielded the highest CCC value for validation
data was identified as the final model for fo or intensity. Final fo and intensity models were
then evaluated using the unseen test data (20%), and model performance was quantified
per participant via MAPE, r, CCC, RMSE, and MBE.
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3. Results
3.1. Single-Speaker Models
3.1.1. Training and Validation Set Performance

Mean outcomes from both models (fo, intensity) were of the same magnitude between
training and validation datasets, with validation results exhibiting slightly larger standard
deviation values across the k = 5 cross-validation folds. Average model performance across
cross-validation folds is shown by participant in Table A2 for fo and Table A3 for intensity
as well as summarized below.

Model performance in estimating fo was comparable across cross-validation folds for
training and validation datasets. Results for MAPE were, on average, 1.58% (SD = 0.24%)
for the training data and 2.39% (SD = 0.72%) for the validation data. Findings were of
similar magnitude for r and CCC, demonstrating average values of r = 0.98 (SD = 0.01) and
CCC = 0.97 (SD = 0.01) for training data and r = 0.92 (SD = 0.05) and CCC = 0.92 (SD = 0.06)
for validation data. Average training RMSE values were 0.34 ST (SD = 0.05 ST) and 0.52 ST
(SD = 0.15 ST) for validation. Finally, MBE results were 0.27 ST (SD = 0.04 ST) and 0.41 ST
(SD = 0.12 ST) for training and validation data, respectively.

Performance in estimating intensity demonstrated similar errors between training
and validation datasets. Across the cross-validation folds, average training MAPE was
1.87% (SD = 0.41%) whereas validation MAPE was 3.31% (SD = 0.94%). Pearson’s r and
Lin’s CCC values were above 0.90 for both datasets, averaging at r = 0.98 (SD = 0.01) and
CCC = 0.98 (SD = 0.01) for training data with r = 0.92 (SD = 0.04) and CCC = 0.91 (SD = 0.04)
for validation data. Average training RMSE was 2.38 dB SPL (SD = 0.96 dB SPL) whereas
validation RMSE was 4.81 dB SPL (SD = 1.89 dB SPL). Results demonstrated an average
MBE of 1.82 dB SPL (SD = 0.73 dB SPL) and 3.15 dB SPL (SD = 1.22 dB SPL) for training
and validation data, respectively.

3.1.2. Test Set Performance

Within-participant performance on the test set is shown in Table 3. In the model for fo,
MAPE was under 5% for all participants (M = 2.54%, SD = 0.72%). Pearson’s r and Lin’s
CCC values demonstrated mean values of r = 0.92 (SD = 0.05) and CCC = 0.91 (SD = 0.07).
The mean ST error between observed and predicted values was 0.01 ST (SD = 0.08 ST),
with precision estimates averaging at 0.56 ST (SD = 0.16 ST). An example of observed and
predicted contours is shown for fo in Figure 4b.

Table 3. Single-speaker fo and intensity model performance on the test set for 10 participants.

ID

fo Intensity

MAPE
(%) r CCC RMSE

(ST)
MBE
(ST)

MAPE
(%) r CCC RMSE

(dB SPL)
MBE

(dB SPL)

1 1.75 0.96 0.95 0.38 0.05 2.21 0.98 0.98 2.06 −0.27
2 1.82 0.95 0.94 0.40 0.09 2.44 0.98 0.98 2.23 −0.03
3 2.49 0.94 0.94 0.55 −0.02 1.60 0.97 0.97 4.17 0.88
4 2.33 0.95 0.94 0.51 0.03 1.46 0.98 0.98 3.53 −0.69
5 2.36 0.94 0.94 0.52 −0.04 3.40 0.96 0.95 3.35 0.85
6 2.26 0.96 0.95 0.50 −0.01 1.36 0.97 0.97 3.33 −0.35
7 2.25 0.96 0.96 0.49 0.00 4.60 0.94 0.94 6.17 2.04
8 3.79 0.79 0.74 0.86 −0.16 2.75 0.98 0.98 2.41 0.10
9 2.41 0.95 0.94 0.53 0.07 1.54 0.97 0.97 3.11 −1.00

10 4.03 0.83 0.80 0.90 0.12 2.50 0.98 0.98 2.17 0.52
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Figure 4. Example data for one participant from the phrase “Easy for you to say”. The normalized
microphone signal is shown (a), with observed (navy lines) and predicted (pink lines) contours
for (b) fo and (c) intensity. Contours for fo have been converted from semitones to Hertz (Hz) for
visualization purposes.

Results for intensity also showed MAPE values under 5% for all participants (M = 2.38%,
SD = 0.97%). Pearson’s r and Lin’s CCC values were over 0.94 for all participants, showing
mean values of r = 0.97 (SD = 0.01) and CCC = 0.97 (SD = 0.01). The RMSE between
observed and predicted values was 3.25 dB SPL (SD = 1.18 dB SPL), with MBE averaging at
0.21 dB SPL (SD = 0.85 dB SPL). An example of observed and predicted contours is shown
for intensity in Figure 4c.

3.2. Multi-Speaker Models

Results for the multi-speaker fo model is shown for the training, validation, and
test datasets in Table 4. The multi-speaker fo model demonstrated similar trends across
outcome metrics, wherein performance was worst on the validation data, followed by the
training data. Performance in the test set was comparable to the training and validation
data. Specifically, MBE which was lowest (most accurate) for the test dataset (0.13 ST).
Average MAPE values were below 10% across all three dataset types, with poor validation
correlations (r = 0.25, CCC = 0.10) and moderate training (r = 0.41, CCC = 0.17) and test
(r = 0.36, CCC = 0.25) correlations.
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Table 4. Multi-speaker fo model performance on training, validation, and test datasets.

Dataset MAPE (%) r CCC RMSE (ST) MBE (ST)

Training * 8.15 (0.53) 0.41 (0.04) 0.17 (0.12) 1.67 (0.12) 1.42 (0.11)
Validation * 8.16 (0.62) 0.25 (0.10) 0.10 (0.07) 1.66 (0.11) 1.42 (0.11)

Test 7.95 0.36 0.25 1.65 0.13
* Results are shown across cross-validation folds as mean (standard deviation) for training and validation datasets.

Results for the multi-speaker intensity model is shown for the training, validation,
and test datasets in Table 5. As the multi-speaker model was evaluated on normalized SPL
values, results for RMSE and MBE are shown in units of decibels (dB). The multi-speaker
intensity model showed the best performance on the test dataset in terms of correlation
(r = 0.56, CCC = 0.48) and accuracy (−0.02 dB). MAPE was under 15% for all datasets,
with poor-to-moderate training (r = 0.51, CCC = 0.44) and validation (r = 0.32, CCC = 0.24)
correlations. Finally, the precision of intensity estimates was comparable across the three
datasets (0.11–0.12 dB).

Table 5. Multi-speaker intensity model performance on training, validation, and test datasets.

Dataset MAPE (%) r CCC RMSE (dB) MBE (dB)

Training * 12.67 (2.27) 0.51 (0.10) 0.44 (0.10) 0.12 (0.03) 0.10 (0.02)
Validation * 13.18 (1.97) 0.32 (0.10) 0.24 (0.09) 0.12 (0.01) 0.10 (0.01)

Test 12.36 0.56 0.48 0.11 −0.02
* Results are shown across cross-validation folds as mean (standard deviation) for training and validation datasets.

4. Discussion

The goal of this study was to determine the feasibility of using sEMG signals of the
face and neck to predict two primary attributes of linguistic prosody: voice fo and intensity.
This study builds on our primary work in using sEMG activity for silent speech recognition
(i.e., identifying the words in a message; [14,15]) and for classifying basic manipulations in
prosody (i.e., identifying how the words in a message are conveyed; [18]). Taking this past
work into account, the current study successfully demonstrates efficacy in using sEMG as
an alternative method for detecting prosody via continuous estimates of fo and intensity.

4.1. Single-Speaker vs. Multi-Speaker Models

Single- and multi-speaker models were examined in this work. The single-speaker
models were trained and tested on data recorded for an individual participant, whereas
the multi-speaker models were trained and tested from the data of 10 participants. The
motivation for examining both single- and multi-speaker models stems from the reliance
of each model on the acoustic signal. Both models rely on audio data for training, but the
multi-speaker models could, in theory, be used by other individuals without an inherent
reliance on their specific audio data. Applications for this latter model include situations in
which the individual cannot supply acoustic data to train a model (e.g., those who cannot
voice due to trauma or disease, such as laryngectomees).

Unsurprisingly, our single-speaker models performed better than the multi-speaker
counterparts, as sEMG signals are speaker-dependent due to skin-electrode impedances,
skin and adipose thickness, as well as differences in muscle activation during speech.
Indeed, most prior works in this area focus on single-speaker models for this very reason
(e.g., [18,25,31,69]). We argue that the overall performance of the multi-speaker models is
still promising, as our results provide preliminary evidence of predicting fo and intensity
within 10% and 15% error, respectively. Additional work is still necessary to extend this
approach toward a robust system that is independent of the user’s acoustic information.
Moreover, the multi-speaker models examined here included data from all 10 participants
with each dataset (training, validation, test), such that model performance on unseen
participants was not evaluated. This was done to determine the feasibility of using a
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single model to capture sEMG and acoustic variability across individuals to estimate fo or
intensity prior to doing so in unseen individuals. However, future work should aim to
train and test such models on independent participants to determine the generalizability of
our approach (e.g., for those who cannot contribute acoustic information to model training).
Future work should also consider acquiring more data from individuals across a wide
range of vocal function as one potential method of increasing the generalizability of our
multi-speaker models, as a small sample size of only ten individuals with typical voices
was included here.

4.2. Significance of Single-Speaker Model Performance
4.2.1. Comparisons to Model Performance in the Literature

We investigated the ability of deep regression models to predict discrete estimates
of voice fo and intensity from sEMG data of the face and neck musculature. This work
expands on studies from the literature that utilize different machine learning approaches for
estimating prosodic information from EMG data alone. Our results notably surpass values
reported in the literature for fo estimation while also detailing one of the first accounts (to
our knowledge) of predicting vocal intensity (loudness) from sEMG signals.

The use of sEMG for estimating voice fo is a concept that has been scarcely explored
over the past decade, resulting in a limited number of comparative works. A pioneering
study by Nakamura et al. [30] sought to use a Gaussian mixture model-based approach
to estimate fo from five sEMG sensors, demonstrating an average correlation between
observed and predicted fo values of r = 0.49 across three speakers. De Armas et al. [69]
sought to predict fo using support vector machine regression and classification from sEMG
traces. In estimating fo from tones, the authors reported an average correlation of r = 0.96;
however, this correlation decreased to r = 0.88 when estimating fo from phrases. Making use
of a similar protocol, Ahmadi et al. [70] aimed to achieve better correlations in predicting fo
values from sEMG data as compared to De Armas et al. [69]. As anticipated, the authors
reported an average correlation of r = 0.93 when estimating fo from phrases from a small
sample of three participants.

Although the average correlations in Nakamura et al. [30], De Armas et al. [69], and
Ahmadi et al. [70] are lower than or comparable to those observed in the current study
(r = 0.92), it must be noted that it is difficult to directly compare model performance across
studies. There are substantial differences in methodology across these works, ranging
from experimental setup (e.g., sEMG hardware), protocol (e.g., vocal tasks), and model
construction (e.g., support vector machine vs. deep regression models) that complicate in-
terpretations for why a given model may have performed better than another. For instance,
our study utilized bipolar sEMG sensors sampled at 2222 Hz whereas that of Nakamura
et al. [30] acquired sEMG activity via a mix of bipolar and monopolar sEMG sensors
sampled at 600 Hz. Nakamura et al. [30] recorded participants as they produced phrases
and De Armas et al. [69] and Ahmadi et al. [70] recorded participants as they produced
tones, legatos, and phrases, whereas the current study incorporated these three vocal tasks
as well as additional types of continuous (i.e., reading passages) and spontaneous (i.e.,
monologues and questions) speech. Thus, we caution readers to consider the differences
in methodology across sEMG-based SSI studies rather than taking the correlative results
presented here at face value.

Still, it must be considered that developing an SSI that estimates fo from basic speech
units like tones or legatos may be a necessary first step to demonstrate the proof of principle;
however, the introduction of continuous and spontaneous speech tasks as in the current
study is important to consider for ensuring ecological validity. In fact, these tasks repre-
sented more than 52% of the total data recorded in the study. Without such tasks, the SSI is
inherently constrained in requiring basic fo manipulations (in the case of tones or legatos)
and pauses (in the case of phrases) to decipher fo. Moreover, De Armas et al. [69] observed
an average RMSE of 2.81 ST for fo estimation, which is about 5-fold greater than the average
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RMSE obtained in the current work of 0.56 ST. These results show the importance of using
multiple outcome metrics to provide comprehensive insight into model performance.

More recently, Diener et al. [31] examined the relationship between acoustic (ob-
served) and sEMG-derived (predicted) speech features when using electrode arrays. The
authors opted to build upon their prior work by deriving “quantized” estimates of fo
rather than continuous estimates; however, the authors still observed poor correlative
performance (r = 0.27). A shift from direct fo estimation can be observed in Janke et al. [69]
and Botelho et al. [70], wherein algorithmic performance did not specifically include fo as
an outcome. Instead, the authors sought to determine the output quality of the speech
(via mel-cepstral distortion and mel-frequency cepstral coefficients) rather than the quality
of specific prosodic attributes (e.g., fo, intensity). Though outside the scope of the cur-
rent study, future work could incorporate these speech quality features in addition to the
prosodic features examined here.

4.2.2. Comparisons to Meaningful Changes in fo and Intensity

Our results show a high degree of agreement between acoustic and sEMG-derived
estimates of fo and intensity within each participant. Within this analysis, RMSE and
MBE were calculated as an estimate of prediction precision and accuracy, respectively. For
multi-speaker fo models, our results indicate a mean MBE of 0.03 ST. This suggests that our
models will, on average, generate a positively biased systematic error (i.e., overestimated)
of approximately 0.03 ST. The average RMSE across participants was 0.56 ST, indicating
that the average spread of errors will approach 0.56 ST when using our models to estimate
fo. For single-speaker intensity models, our findings indicate an average MBE of 0.21 dB
SPL and RMSE of 3.25 dB SPL. These results suggest that using our models to estimate
intensity from sEMG signals will generate a positively biased error of 0.21 dB SPL, with the
precision of intensity estimates approaching 3.25 dB SPL.

It is important to consider how these errors between observed and predicted fo values
compare to meaningful differences in the literature. For instance, the average vocal pitch
discrimination ability of an adult has been reported to be within the range of 0.20 to
0.30 ST [34–36]. The average accuracy of our fo estimations was found to be 0.01 ST, meaning
that the MBE associated with using our single-speaker fo models is on the order of one
magnitude smaller than the pitch discrimination abilities of a typical adult reported in the
literature. This suggests that erroneous fo values predicted by our model will, on average,
not be perceived by the typical adult.

The average errors obtained for vocal intensity can also be compared to meaningful
values reported in the literature. Specifically, the mean short-term variation in vocal
intensity has been reported to be approximately 2–5 dB SPL for adults [37,71]. With an
average MBE of 0.21 dB SPL, our results suggest that average erroneous intensity estimates
predicted by the single-speaker intensity models will be within the bounds of typical,
short-term variations in vocal intensity.

4.3. Physiological Interprations of Model Performance

The results of the current study suggest that fo and intensity can be sufficiently esti-
mated on a per-individual basis from sEMG activity of the face and neck. The notion that
these prosodic attributes—fo, in particular—can be estimated from relatively surface-level
muscles is interesting when considering the orofacial and laryngeal muscles necessary for
voicing, as voice production is primarily modulated by the intrinsic laryngeal muscles.
Specifically, the primary function of the cricothyroid is to lengthen and stretch the vocal
folds to, in turn, increase the vibratory rate of the vocal folds (and thus, increase fo; [72]).
The thyroarytenoid, on the other hand, stabilizes the onset of phonation and contributes
to increases in the vibratory rate of the vocal folds [71,73]. Taken together, the contraction
force of these muscles has been shown to jointly increase with increases in voice fo and
intensity [74].
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Due to the relatively deep location of muscles within the larynx, however, it is unlikely
that the activity of the cricothyroid or thyroarytenoid contributes to the detected signal
when using surface electrodes [75]. Instead, it is more likely that activity from the extrinsic
laryngeal muscles—which induce changes in laryngeal elevation to indirectly affect the
vibratory rate of the vocal folds [76]—along with muscles of the face contributed to the
detected sEMG signals. Indeed, prior work examining the thyrohyoid, sternothyroid, and
sternohyoid (“strap muscles”) during different vocal tasks suggests that these extrinsic
laryngeal muscles are involved in the dynamic modulation of voice production (i.e., rising
or falling frequency) rather than in the specific fo itself [77]. It has also been reported that
the strap muscles are differentially active during high and low fo productions [78–80], as
well as during voice productions at varying loudness levels [81]. In addition to the extrinsic
laryngeal muscles, changes in vocal intensity from habitual loudness to either softer or
louder levels has been shown to significantly alter average sEMG amplitude of the lip
muscles [82]. Increases in voice fo have also been associated with differential changes in
surface electromyographic activity of the face [83].

Taking these prior works into account, it is likely that our models were able to learn
from the sEMG activity from the sensors placed over the extrinsic laryngeal muscles (i.e.,
sensors 1–4 in Figure 1) and the orofacial muscles (i.e., sensors 5–8 in Figure 1) to understand
how a given participant’s dynamic patterns used to modulate their voice, including fo and
intensity. It is also important to note that these past studies examined the amplitude of
the sEMG signal relative to voice fo and intensity, whereas the current study leveraged a
combination of 57 time-, frequency-, and cepstral-domain features from the sEMG signal.
Our results suggest that this combination of features can effectively detect changes in
extrinsic laryngeal and orofacial muscle activity in a way that is associated with changes in
voice fo and intensity. Additional investigations should be undertaken to examine these
voice attributes relative to specific sEMG sensor sites (e.g., over the strap muscles vs. over
the lip muscles) to further elucidate the relationship between extrinsic laryngeal or orofacial
muscle activity and fo or intensity.

4.4. Limitations and Future Directions

Although the current study details favorable results regarding the performance of
deep regression neural networks for predicting voice fo and intensity, further investigation
is warranted to continue to enhance the accuracy and accessibility of the models. For
instance, voice fo is relatively position-independent whereas voice intensity may vary
based on the distance from the microphone to the mouth. Though outside the scope of
this study—which sought to demonstrate the proof-of-concept that fo and intensity could
be estimated from sEMG activity of the face and neck—future work should investigate
normalization methods to account for differences in microphone distance that may occur
within and across individuals who use the system. Within this vein, our multi-speaker
models did not perform as well as single-speaker models for fo and intensity predictions.
As a result, the current methods must rely on an individual’s acoustic signal to train a
model, hampering usability in the target population of individuals who are unable to voice
(due to trauma or disease). As discussed in Section 4.2, future work is needed to increase
the accuracy and precision of multi-speaker fo and intensity models possibly by expanding
the number of participants as is done for acoustic speech recognition models (e.g., [84–86]);
in this way, the models could be trained using sEMG and acoustic data from individuals
with typical voices and then tested (used) by those without a voice.

Voice fo and intensity are important as suprasegmental characteristics of speech but are
not the only two attributes of linguistic prosody. Though outside the scope of the current
study, future investigations should incorporate attributes of timing (e.g., word duration)
and voice quality into the models for fo and intensity estimation. Within a similar vein, the
current study aimed to examine suprasegmental characteristics of speech separately from
segmental characteristics, such as word or phoneme prediction. Subsequent efforts will be
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undertaken to combine our approach with the word recognition methods detailed in our
prior works toward developing a prosodic, sEMG-based SSI.

5. Conclusions

Surface EMG is a promising modality for SSIs due to its noninvasive nature and ease
of application; however, most sEMG-based SSIs fail to convey the expressive attributes of
prosody, including pitch and loudness. This work details the construction and evaluation
of deep regression neural networks for predicting continuous estimates of voice fo and
intensity from sEMG recordings from muscles of the face and neck. When evaluated in ten
participants, model estimation of fo yielded an average accuracy of 0.01 ST and precision of
0.56 ST while model estimation of intensity provided a mean accuracy of 0.21 dB SPL and
precision of 3.25 dB SPL. The average accuracy of fo estimation was approximately one order
of magnitude smaller than the pitch discrimination abilities of a typical adult, suggesting
that erroneous fo values predicted by our model will, on average, not be perceived by the
typical adult. Moreover, our results suggest that erroneous model estimates of intensity
will, on average, be within the bounds of typical, short-term variations in vocal intensity.
This study is a critical first step toward introducing linguistic prosody into synthetic speech
for sEMG-based SSIs.
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Appendix A

Table A1. Overview of speech tasks.

Task Description Subtasks

Tones
Sustained vowels /a/, /i/, /u/, and /ae/
produced at a constant pitch and loudness,
repeated three times for each variation

1. Typical pitch and loudness
2. High pitch
3. Low pitch
4. High intensity
5. Low intensity

Legatos Continuous slide from one pitch to another
using the vowels /a/, /i/, /u/, and /ae/

1. Low pitch
2. Mid pitch
3. High pitch
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Table A1. Cont.

Task Description Subtasks

VCV a Syllables Bisyllabic productions repeated three times
for each variation

1. Equal stress
2. Stress on first vowel
3. Stress on second vowel

Phrases Standard, short speech tokens that introduce
various stress placements

1. UNL Phrases
2. RFF Phrases

Reading
Passages

Standard reading passages that introduce
various stress placements

1. The Caterpillar Passage
2. My Grandfather Passage
3. Rainbow Passage
4. Golf Passage
5. Pronunciation Reading Passage
6. Please Call Stella
7. Comma Gets a Cure
8. Frog and Toad
9. Excerpt from Harry Potter and the Chamber of Secrets
10. Excerpt from The Little Prince
11. Excerpt from the Boston University Radio Speech Corpus

Questions Short (<30 s) segment of unstructured,
conversational speech

1. If you could live in any decade, what would it be and why?
2. What is your favorite time of day and why?
3. If you were to make a movie about your life, what genre
would you choose and why?
4. How did you get here today?
5. Do you have any vacation or travel plans?
6. Tell me about how the weather has been recently.
7. What did you do last weekend?

Monologues Long (>60 s) segment of unstructured,
conversational speech

1. Tell me how to make a peanut butter and jelly sandwich.
2. Tell me how you do your laundry.
3. Tell me how you get ready for work.
4. Tell me how you make your bed.

a VCV = vowel-consonant-vowel, with vowels /a/, /i/, or /u/ and consonants /f/, /v/, /p/, or /b/.

Appendix B

Table A2. Performance for the fo models across k = 5 cross-validation training (Train) and validation
(Valid) datasets for N = 10 participants. Results are shown as mean (standard deviation).

ID
MAPE (%) r CCC RMSE (ST) MBE (ST)

Train Valid Train Valid Train Valid Train Valid Train Valid

1 1.36
(0.04)

2.21
(0.71)

0.98
(0.00)

0.92
(0.06)

0.97
(0.00)

0.90
(0.08)

0.29
(0.01)

0.49
(0.16)

0.23
(0.01)

0.38
(0.13)

2 1.27
(0.03)

2.07
(0.43)

0.98
(0.00)

0.93
(0.04)

0.97
(0.00)

0.92
(0.04)

0.28
(0.01)

0.46
(0.10)

0.22
(0.01)

0.36
(0.07)

3 1.60
(0.02)

1.69
(0.08)

0.98
(0.00)

0.98
(0.00)

0.98
(0.00)

0.97
(0.00)

0.34
(0.00)

0.36
(0.02)

0.28
(0.00)

0.29
(0.01)

4 1.79
(0.04)

2.69
(0.75)

0.97
(0.00)

0.92
(0.06)

0.97
(0.00)

0.91
(0.06)

0.38
(0.01)

0.60
(0.18)

0.31
(0.01)

0.47
(0.13)

5 1.66
(0.02)

3.67
(2.63)

0.97
(0.00)

0.80
(0.29)

0.97
(0.00)

0.78
(0.32)

0.36
(0.01)

0.77
(0.51)

0.29
(0.00)

0.62
(0.43)

6 1.79
(0.02)

2.77
(0.80)

0.97
(0.00)

0.93
(0.06)

0.97
(0.00)

0.92
(0.06)

0.39
(0.01)

0.61
(0.20)

0.31
(0.00)

0.48
(0.14)

7 1.63
(0.02)

2.66
(0.84)

0.98
(0.00)

0.93
(0.06)

0.98
(0.00)

0.92
(0.06)

0.35
(0.00)

0.59
(0.20)

0.28
(0.00)

0.46
(0.15)

8 1.13
(0.01)

1.23
(0.09)

0.98
(0.00)

0.98
(0.00)

0.98
(0.00)

0.98
(0.00)

0.25
(0.00)

0.27
(0.02)

0.19
(0.00)

0.21
(0.02)

9 1.80
(0.03)

3.03
(1.18)

0.97
(0.00)

0.89
(0.11)

0.97
(0.00)

0.88
(0.13)

0.38
(0.01)

0.68
(0.29)

0.31
(0.00)

0.53
(0.21)

10 1.78
(0.01)

1.86
(0.02)

0.97
(0.00)

0.97
(0.00)

0.97
(0.00)

0.97
(0.00)

0.38
(0.00)

0.40
(0.00)

0.31
(0.00)

0.32
(0.00)
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Table A3. Performance for the intensity models across k = 5 cross-validation training (Train) and
validation (Valid) datasets for N = 10 participants. Results are shown as mean (standard deviation).

ID
MAPE (%) r CCC RMSE (dB SPL) MBE (dB SPL)

Train Valid Train Valid Train Valid Train Valid Train Valid

1 1.96
(0.31)

3.88
(2.77)

0.99
(0.00)

0.90
(0.15)

0.99
(0.00)

0.89
(0.17) 1.7 (0.25) 3.94

(3.00)
1.28

(0.21)
2.60

(1.95)

2 2.30
(1.01)

3.80
(1.58)

0.99
(0.00)

0.95
(0.05)

0.99
(0.01)

0.94
(0.05)

1.72
(0.67)

3.33
(1.38)

1.36
(0.59)

2.28
(0.93)

3 1.68
(0.36)

3.44
(2.13)

0.97
(0.01)

0.81
(0.23)

0.97
(0.01)

0.81
(0.24)

3.90
(0.88)

9.30
(6.42)

2.94
(0.62)

5.96
(3.70)

4 1.78
(0.81)

2.39
(0.80)

0.96
(0.03)

0.93
(0.05)

0.96
(0.04)

0.92
(0.05)

4.16
(1.85)

5.91
(2.01)

3.20
(1.41)

4.31
(1.41)

5 2.11
(0.16)

4.27
(1.75)

0.99
(0.00)

0.92
(0.08)

0.99
(0.00)

0.91
(0.08)

1.68
(0.09)

4.21
(1.99)

1.29
(0.09)

2.67
(1.15)

6 1.27
(0.16)

2.07
(0.64)

0.98
(0.01)

0.93
(0.06)

0.98
(0.01)

0.92
(0.07)

2.83
(0.35)

5.06
(1.91)

2.17
(0.27)

3.54
(1.12)

7 2.46
(0.09)

4.65
(0.96)

0.99
(0.00)

0.94
(0.03)

0.99
(0.00)

0.94
(0.03)

2.33
(0.09)

5.87
(1.47)

1.75
(0.08)

3.41
(0.72)

8 2.11
(0.12)

3.55
(1.50)

0.99
(0.00)

0.95
(0.06)

0.99
(0.00)

0.94
(0.06)

1.72
(0.08)

3.25
(1.51)

1.32
(0.07)

2.21
(0.91)

9 1.20
(0.21)

1.83
(0.84)

0.98
(0.01)

0.91
(0.12)

0.98
(0.01)

0.91
(0.12)

2.28
(0.46)

4.39
(3.00)

1.74
(0.30)

2.62
(1.18)

10 1.88
(0.05)

3.18
(1.29)

0.99
(0.00)

0.96
(0.04)

0.99
(0.00)

0.96
(0.04)

1.50
(0.03)

2.88
(1.34)

1.15
(0.03)

1.93
(0.76)
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