Next Issue
Volume 3, June
Previous Issue
Volume 2, December
 
 

Neuroglia, Volume 3, Issue 1 (March 2022) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
20 pages, 7776 KiB  
Article
Unique Astrocyte Cytoskeletal and Nuclear Morphology in a Three-Dimensional Tissue-Engineered Rostral Migratory Stream
by Erin M. Purvis, John C. O’Donnell and D. Kacy Cullen
Neuroglia 2022, 3(1), 41-60; https://0-doi-org.brum.beds.ac.uk/10.3390/neuroglia3010003 - 06 Mar 2022
Cited by 1 | Viewed by 3589
Abstract
Neural precursor cells (NPCs) are generated in the subventricular zone (SVZ) and travel through the rostral migratory stream (RMS) to replace olfactory bulb interneurons in the brains of most adult mammals. Following brain injury, SVZ-derived NPCs can divert from the RMS and migrate [...] Read more.
Neural precursor cells (NPCs) are generated in the subventricular zone (SVZ) and travel through the rostral migratory stream (RMS) to replace olfactory bulb interneurons in the brains of most adult mammals. Following brain injury, SVZ-derived NPCs can divert from the RMS and migrate toward injured brain regions but arrive in numbers too low to promote functional recovery without experimental intervention. Our lab has biofabricated a “living scaffold” that replicates the structural and functional features of the endogenous RMS. This tissue-engineered rostral migratory stream (TE-RMS) is a new regenerative medicine strategy designed to facilitate stable and sustained NPC delivery into neuron-deficient brain regions following brain injury or neurodegenerative disease and an in vitro tool to investigate the mechanisms of neuronal migration and cell–cell communication. We have previously shown that the TE-RMS replicates the basic structure and protein expression of the endogenous RMS and can direct immature neuronal migration in vitro and in vivo. Here, we further describe profound morphological changes that occur following precise physical manipulation and subsequent self-assembly of astrocytes into the TE-RMS, including significant cytoskeletal rearrangement and nuclear elongation. The unique cytoskeletal and nuclear architecture of TE-RMS astrocytes mimics astrocytes in the endogenous rat RMS. Advanced imaging techniques reveal the unique morphology of TE-RMS cells that has yet to be described of astrocytes in vitro. The TE-RMS offers a novel platform to elucidate astrocyte cytoskeletal and nuclear dynamics and their relationship to cell behavior and function. Full article
Show Figures

Figure 1

18 pages, 2011 KiB  
Article
Glia Excitation in the CNS Modulates Intact Behaviors and Sensory-CNS-Motor Circuitry
by Shelby McCubbin, Douglas A. Harrison and Robin L. Cooper
Neuroglia 2022, 3(1), 23-40; https://0-doi-org.brum.beds.ac.uk/10.3390/neuroglia3010002 - 28 Feb 2022
Viewed by 3110
Abstract
Glial cells play a role in many important processes, though the mechanisms through which they affect neighboring cells are not fully known. Insights may be gained by selectively activating glial cell populations in intact organisms utilizing the activatable channel proteins channel rhodopsin (ChR2XXL) [...] Read more.
Glial cells play a role in many important processes, though the mechanisms through which they affect neighboring cells are not fully known. Insights may be gained by selectively activating glial cell populations in intact organisms utilizing the activatable channel proteins channel rhodopsin (ChR2XXL) and TRPA1. Here, the impacts of the glial-specific expression of these channels were examined in both larval and adult Drosophila. The Glia > ChR2XXL adults and larvae became immobile when exposed to blue light and TRPA1-expressed Drosophila upon heat exposure. The chloride pump expression in glia > eNpHR animals showed no observable differences in adults or larvae. In the in situ neural circuit activity of larvae in the Glia > ChR2XXL, the evoked activity first became more intense with concurrent light exposure, and then the activity was silenced and slowly picked back up after light was turned off. This decrease in motor nerve activity was also noted in the intact behaviors for Glia > ChR2XXL and Glia > TRPA1 larvae. As a proof of concept, this study demonstrated that activation of the glia can produce excessive neural activity and it appears with increased excitation of the glia and depressed motor neuron activity. Full article
Show Figures

Graphical abstract

22 pages, 2388 KiB  
Review
Transplantation of Olfactory Ensheathing Cells: Properties and Therapeutic Effects after Transplantation into the Lesioned Nervous System
by Quentin Delarue and Nicolas Guérout
Neuroglia 2022, 3(1), 1-22; https://0-doi-org.brum.beds.ac.uk/10.3390/neuroglia3010001 - 28 Jan 2022
Cited by 3 | Viewed by 3142
Abstract
The primary olfactory system (POS) is in permanent renewal, especially the primary olfactory neurons (PON) are renewed with a turnover of around four weeks, even in adulthood. The re-growth of these axons is helped by a specific population of glial cells: the olfactory [...] Read more.
The primary olfactory system (POS) is in permanent renewal, especially the primary olfactory neurons (PON) are renewed with a turnover of around four weeks, even in adulthood. The re-growth of these axons is helped by a specific population of glial cells: the olfactory ensheathing cells (OECs). In the POS, OECs constitute an “open-channel” in which the axons of PON cause regrowth from peripheral nervous system (PNS) to central nervous system (CNS). The remarkable role played by OECs into the POS has led scientists to investigate their properties and potential beneficial effects after transplantation in different lesion models of the CNS and PNS. In this review, we will resume and discuss more than thirty years of research regarding OEC studies. Indeed, after discussing the embryonic origins of OECs, we will describe the in vitro and in vivo properties exert at physiological state by these cells. Thereafter, we will present and talk over the effects of the transplantation of OECs after spinal cord injury, peripheral injury and other CNS injury models such as demyelinating diseases or traumatic brain injury. Finally, the mechanisms exerted by OECs in these different CNS and PNS lesion paradigms will be stated and we will conclude by presenting the innovations and future directions which can be considered to improve OECs properties and allow us to envisage their use in the near future in clinical applications. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop