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Abstract: We review nonsingular static, spherically symmetric solutions of general relativity with
minimally coupled scalar fields. Considered are wormholes and regular black holes (BHs)
without a center, including black universes (BHs with expanding cosmology beyond the horizon).
Such configurations require a “ghost” field with negative kinetic energy K. Ghosts can be invisible
under usual conditions if K < 0 only in strong-field region (“trapped ghost”), or they rapidly decay
at large radii. Before discussing particular examples, some general results are presented, such as
the necessity of anisotropic matter for asymptotically flat or AdS wormholes, no-hair and global
structure theorems for BHs with scalar fields. The stability properties of scalar wormholes and regular
BHs under spherical perturbations are discussed. It is stressed that the effective potential Veff for
perturbations has universal shapes near generic wormhole throats (a positive pole regularizable by
a Darboux transformation) and near transition surfaces from canonical to ghost scalar field behavior
(a negative pole at which the perturbation finiteness requirement plays a stabilizing role). Positive
poles of Veff emerging at “long throats” (with the radius r ≈ r0 + const · x2n, n > 1, x = 0 is the
throat) may be regularized by repeated Darboux transformations for some values of n.
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1. Introduction

Space-time singularities exist in a great number of solutions of general relativity (GR) with or
without various material sources, and at each of them the theory itself demonstrates conditions under
which it cannot work any more. However, construction of various nonsingular solutions of GR,
which are especially interesting and attractive, is also a long-term tradition. In particular, nonsingular
static, spherically symmetric space-times, which are a subject of this paper, may be classified as follows:
(i) starlike (or solitonic, or particlelike) space-times with a regular center; (ii) black holes (BHs) with
a regular center; (iii) space-times having no center and no horizons, including wormholes and some
other geometries like horns and flux tubes; and (iv) space-times without a center but containing
horizons, and among them are a few classes of regular BHs as well as wormholes with cosmological
horizons—for reviews see, e.g., [1–5] and references therein. Our interest will be in wormholes and
regular BHs (BHs) without a center described by solutions of GR with a minimally coupled scalar field
as a source. Even such a narrow class of geometries turns out to be sufficiently rich in properties of
interest, especially concerning their dynamic stability.

A wormhole is generally understood as a kind of tunnel or shortcut between two manifolds
or two distant parts of the same manifold. However, this term is used in the literature in different
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meanings: the wormholes can be Lorentziian (traversable or not), Euclidean, and even quantum, which
means that a wave function resembles a tunnel geometry in a certain sense. In this paper, the term
“wormhole” is applied to traversable Lorentzian wormholes only. The so-called non-traversable
wormholes are, in general, BHs (or parts of BH space-times) rather than wormholes; thus, a
wormhole-like geometry quite usually appears as a spatial section of a black hole, it is this phenomenon
that was discovered by Flamm [6] as early as in 1916 in his study of Schwarzschild’s solution, and his
article is now referred to as the pioneering paper in wormhole physics. As to Euclidean and quantum
wormholes, they represent quite separate areas of research.

It is well known that the existence of traversable Lorentzian wormholes as solutions to the Einstein
equations requires what is called “exotic matter”, i.e., matter violating the Null Energy Condition
(NEC) [7,8], which is a part of the Weak Energy Condition (WEC) whose physical meaning is that the
energy density is nonnegative in any reference frame. In particular, for static, spherically symmetric
systems sourced by scalar fields, wormhole solutions can be and are really obtained if such a scalar
field is phantom (or ghost), i.e., has negative kinetic energy [9–12]. In theories of gravity alternative
to GR, for example, scalar-tensor theories and the related multidimensional and curvature-nonlinear
theories, wormhole solutions also appear only in the presence of phantom degrees of freedom [9,13–15]
(see also [2,3,5] and references therein). This is true for both continuous matter distributions and thin
shells [13]. In can happen that gravity itself becomes phantom in some region of space [9,13,16], in other
cases the role of a phantom is played by such geometric quantities as torsion [17,18], higher-dimensional
metric components or variables related to higher-order derivatives [19–21] or unusual couplings
between fields and matter [22]. For example, in brane-world theories, a source for wormhole geometry
in four dimensions can be provided by a tidal effect from extra dimensions originating from the Weyl
tensor in the bulk [4,21,23]. Such a source, due to its geometric origin, is not subject to any energy
conditions applicable to ordinary matter.

If, however, our interest is in obtaining (at least potentially) realistic wormholes, it still makes
sense to adhere to GR and to use macroscopic matter or fields, because it is GR that explains all
observations and experiments on the macroscopic level; it is even used as a tool in applications like
GPS navigation.

Still, as yet nobody has observed macroscopic phantom matter, which puts to doubt its possible
existence and therefore a possible realization of wormholes, suitable, for instance, for interstellar
communication and travel, even by any advanced civilization or in the remote future.

In attempts to circumvent such problems and still to find wormhole solutions in GR, a way of
interest is to invoke such a sort of matter that would be phantom in a certain region of space only,
somewhere in the vicinity of a wormhole throat, while away from it it would observe all usual energy
conditions [24]. To obtain such a kind of matter, one can try to use a minimally coupled scalar field
with the Lagrangian

Ls = h(φ)gµν∂µφ∂νφ−V(φ), (1)

where h(φ) and V(φ) are arbitrary functions. If h(φ) can change its sign, it cannot be absorbed by
redefinition of φ in its whole range. A situation of interest for us is if h > 0 (so that the scalar field is
canonical and has positive kinetic energy) in a weak field region and h < 0 (a phantom, or ghost scalar
field) in a strong-field region where one could expect a wormhole throat. One can say that in this sense
the ghost is trapped. Let us note that such a transition between h > 0 and h < 0 was considered in [25]
in a cosmological setting.

It is known that phantom fields can produce not only wormholes but also regular black
holes of different kinds, see, e.g., [26–28]. Among such models, it makes sense to mark separately
those combining the features of BH physics and nonsingular cosmological models, the ones called
black universes [26,27]. Such objects look like “conventional” BHs (spherically symmetric ones in
the existing examples) as seen from spatial infinity, where they can be asymptotically flat, but after
crossing the horizon, a possible explorer gets into an expanding universe instead of a singularity.
Thus such hypothetic objects combine the features of wormholes (no center but a regular minimum of
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the spherical radius r(x)), BHs (static (R-) and nonstatic (T-) regions separated by a Killing horizon),
and regular cosmological models. In addition, in such models the Kantowski-Sachs cosmology of the
T-region can become isotropic at large times and be asymptotically de Sitter, making these models
a potentially viable description of an epoch before inflation. One can apply the trapped ghost concept
to such models on equal grounds with wormholes [29,30]: in such cases, the scalar field should
be phantom close to a minimum of the spherical radius r (and this minimum can be located both
outside and inside the horizon or even coincide with it) but has canonical properties in the weak field
regions on both sides of the strong-field one, at large radii on the static side and at large times on the
cosmological side.

It can also happen that a phantom field is not observed because it decays rapidly enough in
the weak-field region (the so-called “invisible ghost”) but can also create wormhole and regular
BH geometries.

In this paper we briefly review the wormhole and black universe solutions of GR with minimally
coupled scalar fields, including trapped and invisible ghost fields, and also discuss the stability
problem. For any static model, the stability properties are of utmost importance since unstable objects
cannot survive in the real Universe, at least for a long time. It is known from previous studies that
many wormhole and black universe solutions of GR are unstable under radial perturbations [31–38].
Considering the stability problem for trapped-ghost configurations, we shall see that it has some
distinctive features that lead to a somewhat unexpected inference that transitions surfaces between
canonical and phantom regions of a scalar field play a stabilizing role. We will also discuss how the
shape of the throat (its being generic or elongated) affects the stability study.

The paper is organized as follows. Section 2 presents the basic equations and some general
features of spherically symmetric wormhole and regular BH space-times without a center. Section 3
describes the general properties of space-times with scalar sources and presents a number of explicit
solutions with “simple”, trapped and invisible ghosts. Section 4 discusses the stability problem for
spherically symmetric scalar field configurations in GR and its particular features that emerge when
we consider trapped-ghost scalars. Section 5 is a conclusion.

2. Basic Equations and General Statements

We will restrict ourselves to considering only static, spherically symmetric configurations and their
small spherically symmetric perturbations. Before discussing solutions with scalar fields, let us begin
with some general results which, using spherical symmetry as the simplest illustration, reveal some
general features of wormhole solutions in GR.

2.1. General Relations

The general static, spherically symmetric metric which can be written in the general form without
fixing the choice of the radial coordinate u:

ds2 = e2γ(u)dt2 − e2α(u)du2 − e2β(u)dΩ2, (2)

where dΩ2 = dθ2 + sin2 θdϕ2 is the linear element on a unit sphere. Our conventions are: the metric

signature (+ − − −), the curvature tensor Rσ
µρν = ∂νΓσ

µρ − . . . , Rµν = Rσ
µσν, so that the Ricci

scalar R > 0 for de Sitter space-time and the matter-dominated cosmological epoch; the sign of Tν
µ such

that T0
0 is the energy density, and the system of units 8πG = c = 1. In what follows we use different

radial coordinates, to be denoted for convenience by different letters:

u—a general notation,
x—a quasiglobal coordinate, such that α = −γ,
y—a harmonic coordinate, such that α = 2β + γ,
z—a “tortoise” coordinate, such that α = γ.
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Then the nonzero components of the Ricci tensor are

Rt
t = − e−2α[γ′′ + γ′(γ′ − α′ + 2β′)], (3a)

Ru
u = − e−2α[γ′′ + 2β′′ + γ′2 + 2β′2 − α′(γ′ + 2β′)], (3b)

Rθ
θ = Rϕ

ϕ = e−2β − e−2α[β′′ + β′(γ′ − α′ + 2β′)], (3c)

where the prime stands for d/du. The Einstein equations can be written in two equivalent forms

Gν
µ ≡ Rν

µ − 1
2 δν

µR = −Tν
µ , or Rν

µ = −(Tν
µ − 1

2 δν
µTα

α ), (4)

where Tν
µ is the stress-energy tensor (SET) of matter. The most general SET compatible with the

geometry (2) has the form
Tν

µ = diag(ρ, −pr, −pT , −pT), (5)

where ρ is the energy density, pr is the radial pressure, and pT is the tangential pressure, which are
in general different (pr 6≡ pT), so that the SET (5) is anisotropic. It may contain contributions of one
or several physical fields of different spins and masses or/and the density and pressures of one or
several fluids.

Our interest here is in the existence and properties of wormhole and regular BH solutions to the
Einstein equations. A wormhole geometry with the metric (2) requires that the function r(u) ≡ eβ(u)

should have a regular minimum r = rth (this sphere is called a throat) and reach values r � rth on
both sides of the throat. Of greatest interest are wormhole geometries which are asymptotically flat on
one or both sides since only in this case a wormhole may be thought of as a local object in the modern,
very weakly curved universe. To distinguish wormholes from BHs, it is often required that gtt ≡ e2γ

should be everywhere positive; however, it makes sense to admit gtt = 0 (a horizon) sufficiently far
from a throat, which may be of cosmological nature, with a possible de Sitter asymptotic beyond it.

As to regular BH geometries, among their different kinds [27], the most widely discussed are
those with a regular center, which can be obtained, for example, with a matter source satisfying
the vacuum-like condition ρ + pr = 0, such as gauge-invariant nonlinear electrodynamics with
Lagrangians of the form L = L( f ), f ≡ FµνFµν (Fµν being the Maxwell tensor) (see, e.g., [39–42]). In the
present paper we focus on other kinds of regular black holes, those which, like wormholes, have no
center, so that, in general, the spherical radius r = eβ has a minimum.

Before considering such objects with scalar field sources, let us mention two general results
concerning any kinds of matter. To this end, let us use, for convenience, the so-called quasiglobal
coordinate u = x under the condition α + γ = 0; denoting e2γ = e−2α = A(x) and eβ = r(x),
we rewrite the metric as

ds2 = A(x)dt2 − dx2

A(x)
− r2(x)dΩ2. (6)

The three different nontrivial components in the Einstein equations for the metric (6) have the form

Gt
t =

1
r2 [−1 + A(2rr′′ + r′2) + A′rr′] = −Tt

t , (7a)

Gx
x =

1
r2 [−1 + A′rr′ + Ar′2] = −Tx

x , (7b)

Gθ
θ = Gφ

φ =
1
2r

[2Ar′′ + rA′′ + 2A′r′] = pT , (7c)

where the prime denotes d/dx, and Equation (7b) is the constraint equation, free from second-order
derivatives.
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2.2. The Necessity of Exotic Matter

It is quite a well-known fact, first noticed for static, spherically symmetric space-times [7] and
later proved for general static space-times in [8]. The term “exotic matter” is applied to matter whose
SET violates the Null Energy Condition (NEC) (Tν

µkµkν ≥ 0, where kµ is any null vector, kµkµ = 0).
This condition is, in turn, a part of the Weak Energy Condition (WEC) whose physical meaning is that
the energy density is nonnegative as viewed in any reference frame (see any textbook on GR).

The necessity of exotic matter for the existence of a wormhole throat is easily shown using
Equations (7a) and (7b) whose difference reads

2A r′′/r = −(Tt
t − Tx

x ) ≡ −(ρ + pr), (8)

On the other hand, at a throat as a minimum of r(x) we have

r > 0, r′ = 0, r′′ > 0. (9)

(In special cases where r′′ = 0 at the minimum, it always happens that r′′ > 0 in its neighborhood.)
Then from Equation (8) under the condition gtt = A > 0 it immediately follows ρ + pr < 0.

This inequality does indeed look exotic, but to see an exact result, we can choose the null vector
kµ = (1/

√
A,
√

A, 0, 0) and find that Tν
µkµkν = ρ + pr. Thus the inequality ρ + pr < 0 does indeed

violate the NEC.
In the case of regular BHs it may happen that a minimum of r(x) is located in a region beyond

its horizon, in which A < 0 (T-region), where the metric describes a Kantowski-Sachs cosmology,
In such a region, x is a temporal coordinate, then Tx

x = ρ̃ is the energy density while −Tt
t = pt is the

pressure in the (spatial) t direction. Then the requirement r′′ > 0 leads, according to Equation (8),
to ρ̃ + pt < 0. Thus such a minimum also requires NEC violation. And lastly, if a minimum of
r coincides with a horizon, then the same reasoning shows that NEC violation is necessary on either
side in its neighborhood.

2.3. A No-Go Theorem for Isotropic Matter

It is of interest whether or not wormhole solutions can be obtained with a source in the form of
isotropic matter (Pascal fluid), such that pr = pT . We will see that the answer is negative for wormholes
with flat or anti-de Sitter asymptotic behavior at both ends [4].

If pr = pT , we have Gx
x = Gθ

θ , and the difference of Equations (7b) and (7c) gives

r2 A′′ + 2Arr′′ − 2Ar′2 + 2 = 0. (10)

The substitution A(x) = D(x)/r2(x) converts it to

D′′ − 4D′r′

r
+

4Dr′2

r2 + 2 = 0. (11)

A possible minimum of D(x) at some x = x0 requires D′ = 0 and D′′ ≥ 0, and it should be D > 0
for a traversable wormhole. Meanwhile, if D′ = 0, Equation (11) gives D′′ ≤ −2, hence a point where
D′ = 0 is necessarily a maximum.

However, an asymptotically flat traversable wormhole requires r → ∞ and A→ 1 as x → ±∞,
in an asymptotically anti-de Sitter wormhole it must be A ∼ r2 at large r, etc. In all such cases
D(x)→ ∞ on both sides far from the throat, hence it should have a minimum, which, as we have seen,
is impossible. We thus have the following theorem:

Theorem 1. A static, spherically symmetric traversable wormhole with r → ∞ and A(x)r2(x)→ ∞ on both
sides of the throat cannot be supported by any matter source with pr = pT everywhere.
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This excludes, in particular, twice asymptotically flat and twice asymptotically AdS wormholes
as well as those asymptotically flat on one end and AdS on the other. What is not excluded, is that
one or both asymptotic regions are de Sitter: in this case, r → ∞ but A ∼ −r2 at large r, and it is
not necessary to have a minimum of D(x). A number of examples of such asymptotically de Sitter
wormhole solutions have been found in [4], see also references therein.

These inferences were obtained above using a specific coordinate condition, but they have an
invariant meaning since the quantities A = gtt and r2 = gθθ are insensitive to the choice of the radial
coordinate, as well as the mixed components Tν

µ of the SET.
There exist wormhole solutions with isotropic fluids as sources, but in all such cases the fluid

occupies a finite region of space, and there are inevitably “heavy” thin shells on the boundaries between
fluid and vacuum regions [43,44]. Such shells are highly anisotropic in the sense that a tangential
pressure is nonzero while the radial one is not defined (since the radial direction is orthogonal to
the shell). Therefore, these solutions do not contradict the above no-go theorem.

3. Static Systems with a Scalar Field Source

The total action of GR with a minimally coupled scalar field φ as a source of gravity can be
written as

S =
1
2

∫ √
−gd4x

[
R + 2h(φ)gαβφ,αφ,β − 2V(φ)

]
, (12)

where, as before, R is the scalar curvature, g = det(gµν), and V(φa) is a self-interaction potential.
We include here an arbitrary function h(φ) and notice that h(φ) > 0 for a normal scalar field with
positive kinetic energy, and h(φ) < 0 for a phantom scalar. If h(φ) has the same sign in the whole
range of φ, it is easy to redefine φ to obtain h(φ) = ±1, but let us keep it arbitrary to be able to consider
solutions where h(φ) can change its sign.

The field equations may be written as

2h(φ)∇µ∇µφ +
dh
dφ

φ,µφ,µ + Vφ = 0, (13)

Rν
µ = −2h(φ)φ,µφ,ν + δν

µV(φ) (14)

(recall that we are using the units in which 8πG = 1 and c = 1). In static, spherically symmetric
space-time with the metric (2), assuming φ = φ(u), the scalar field SET has the form

Tν
µ = h(φ) e−2αφ′(u)2 diag(1, −1, 1, 1) + δν

µV(u). (15)

In terms of the metric (6) with the quasiglobal radial coordinate the field equations take the form

2(Ar2hφ′)′ − Ar2h′φ′ = r2dV/dφ, (16a)

(A′r2)′ = −2r2V; (16b)

r′′/r = −h(φ)φ′2; (16c)

A(r2)′′ − r2 A′′ = 2, (16d)

− 1 + A′rr′ + Ar′2 = r2(hAφ′2 −V), (16e)

where the prime denotes d/dx. Equation (16a) is the scalar field equation, (16b) is the component
Rt

t = . . ., (16c) and (16d) are the combinations Rt
t − Rx

x = . . . and Rt
t − Rθ

θ = . . ., respectively, and (16e)
is the constraint equation Gx

x = . . ., free from second-order derivatives.
We see that if φ 6= const, the SET (15) is anisotropic, and, in particular, Theorem 1 does not prevent

the existence of twice asymptotically flat wormhole solutions. And indeed, such solutions are easily
found with a massless phantom scalar field (h < 0, V ≡ 0) [9,10], see below.
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As to possible regular black hole solutions, there are significant restrictions, and let us consider
them in some detail.

3.1. Restrictions on Black Holes with Scalar Fields

3.1.1. Global Structure Theorem

Equation (16d) may be rewritten in terms of B(x) ≡ A(x)/r2(x):

r4B′′ + 4B′rr′ + 2 = 0. (17)

According to Equation (17), if at some x = x0 we have B′ = 0, then B′′(x0) = −2/r4(x0) < 0,
so x0 is a maximum of B(x), and a regular minimum of this function is impossible. On the other hand,
since r2 > 0, regular zeros of A(x), i.e., horizons, are also regular zeros of B(x). Since B(x) has no
minimum, this function, having once become negative while moving to the left or to the right along
the x axis, cannot return to zero or positive values. Therefore, if B(x) > 0 in some range of x, it can
have at most two zeros, and these zeros are simple since otherwise there would be B′ = 0 and B′′ > 0
near such a zero, contrary to Equation (17). We obtain the following theorem [11]:

Theorem 2. Consider solutions of Equations (16). Let there be a static region a < x < b where a and b may be
finite or infinite. Then there are at most two horizons [A(x) = 0], which are necessarily simple.

By Equation (17), a double horizon is also possible, but only if it separates two T-regions; in this
case this horizon is unique, and there is no static region at all.

All possible dispositions of zeros of the function A(x), and hence the list of possible global
causal structures, turn out to be the same as for the vacuum solution with a cosmological constant,
i.e., the Schwarzschild-(anti-)de Sitter space-time. This conclusion is valid for any possible choice of the
functions V(φ) and h(φ) since they are not involved in Equation (17). The possible causal structures
and the corresponding Carter-Penrose diagrams are listed, for example, in [3,11].

3.1.2. No-Hair Theorem

The expression “BHs have no hair” belonging to Wheeler [45] means that BHs in GR are characterized
by a restricted set of parameters (the mass, electric and magnetic charges and angular momentum).
There are a number of “no-hair theorems” claiming that no more charges or fields can accompany
a BH under various circumstances. For us here it will be relevant to recall a theorem for the static,
spherically symmetric system (12) [46,47] which can be formulated as follows in terms of the metric (6)
with the quasiglobal radial coordinate:

Theorem 3. Given Equations (16) with h(φ) > 0 and V(φ) ≥ 0, the only asymptotically flat BH solution is
characterized by φ = const and the Schwarzschild metric in the whole range xh < x < ∞, where x = xh is
the horizon.

Let us reproduce its proof following [3].
With h(φ) > 0, without loss of generality we can put h(φ) ≡ 1 and also assume that spatial infinity

corresponds to x → ∞. At the horizon x = xh we have by definition A = A(xh) = 0, and A > 0 at
x > xh. By Theorem 2, the horizon is simple, hence near it A ∼ |x− xh|. Consider the function

F (x) =
r2

r′
(2V − Aφ′2) (18)

One can verify that

F ′(x) = r
(

4V +
φ′2

r′2
+ Aφ′2

)
. (19)
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To do so, when calculating F ′, one can substitute φ′′ from Equation (16a), r′′ from (16c),
and A′ from (16e). Let us integrate Equation (19) from xh to infinity:

F (∞)−F (xh) =
∫ ∞

xh

F ′(x) dx. (20)

Asymptotic flatness implies r(x) ≈ x at large x, therefore r′(∞) = 1, and r′′ ≤ 0 due to
Equation (16c) with h(φ) > 0, so r′ > 1 in the whole range of x, but r′(xh) < ∞ (one can verify [3] that
r′ → ∞ would lead to a curvature singularity instead of a horizon).

The quantity F (xh) should be finite, since otherwise we would obtain infinite SET components
and, via the Einstein equations, a curvature singularity.

If, however, we admit a nonzero value of Aφ′2 at x = xh, then, since A = 0, it would mean
φ′2 ∼ (x− xh)

−1, and the integral in Equation (20) will diverge at x = xh due to the second term in
Equation (19), which in turn leads to an infinite value of F (xh). Therefore Aφ′2 → 0 as x → xh, and
we conclude that F (xh) = 2(r2/r′)V|x=xh > 0. On the other hand, F (∞) = 0 due to the asymptotic
flatness condition. Thus, in Equation (20) there is a nonpositive quantity in the left-hand side and
a nonnegative quantity on the right. The only way to satisfy Equation (20) is to put V ≡ 0 and φ′ ≡ 0
in the whole range x > xh, and the only solution for the metric is then the Schwarzschild solution with
r ≡ x and A(x) = 1− 2m/x.

This concerned normal fields (h(φ) > 0). The main consequence of Theorem 3 is that nontrivial
BH solutions with scalar “hair” require an at least partly negative potential V(φ).

Now, what happens if the scalar field is phantom, h(φ) < 0? It is straightforward to verify that
the whole proof of the theorem can be preserved if we require V(φ) ≤ 0. To prove that, it is sufficient
to replace φ′2 7→ −φ′2 in all relations, then F and F ′ will simply change their sign. The only subtle
point is that now r′′ < 0 due to Equation (16c), therefore, to prove the theorem, we should separately
require r′(xh) > 0. Thus nontrivial BH solutions with a phantom scalar field and r′(xh) > 0 require an
at least partly positive potential V(φ).

To the author’s knowledge, no similar theorem is known for scalar fields with h(φ) having
an alternating sign, corresponding to the “trapped ghost” concept. We may expect, in particular,
the existence of BHs with such fields having completely positive or completely negative potentials.

3.2. Solutions with a Massless Scalar

After making clear the basic restrictions on possible solutions to Equations (16), let us begin
a consideration of their various examples with the simplest case, a massless scalar with V(φ) ≡ 0.
Some properties of the solutions are immediately clear: thus, by Theorem 3, no asymptotically flat BHs
are possible if h(φ) > 0 or h(φ) < 0, and wormhole solutions are impossible if h(φ) > 0. As to h(φ) of
variable sign, some more reasoning is necessary.

For a massless field, the SET (5) with any h(φ) possesses the same structure as is known for
a usual massless scalar with h = ±1. Therefore for the metric we obtain the same well-known form as
in these cases, which reduces to the Fisher metric [48] if h(φ) > 0 and to its counterpart for a phantom
scalar, first found by Bergmann and Leipnik [49] (it is sometimes called “anti-Fisher”) if h(φ) < 0.
We here reproduce this solution in a joint form, following [9]. To this end, it makes sense to return to
the general metric (2).

Two combinations of the Einstein equations (14) for the metric (2) and the SET (5) with V ≡ 0 do
not contain φ and read Rt

t = 0 and Rt
t + Rθ

θ = 0. They can be most easily solved if we choose
the harmonic radial coordinate u = y, defined by the condition α(y) = 2β(y) + γ(y). Indeed,
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the first of these equations takes the form γ′′ = 0, and the second one leads to the Liouville equation
β′′ + γ′′ = e2(β+γ) (the prime here denotes d/dy). Their solution is

γ = −my,

e−β−γ = s(k, y) :=


k−1 sinh ky, k > 0,
y, k = 0,
k−1 sin ky, k < 0.

(21)

where k and m are integration constants, and other two constants have been excluded by choosing
the zero point of the coordinate y and the scale along the time axis. As a result, the metric takes the
form [9]

ds2 = e−2mydt2 − e2my

s2(k, y)

[
dy2

s2(k, y)
+ dΩ2

]
. (22)

Note that without loss of generality we have y ≥ 0, spatial infinity corresponds to y = 0, at small
y the spherical radius r behaves as r ≈ 1/y, and m has the meaning of the Schwarzschild mass.

All this was obtained from the general properties of the scalar field SET and does not depend
on the choice of h(φ) in any way. Such a dependence emerges only when we take into account the
constraint, i.e., the (1

1) component of the Einstein equations (14) that leads to

k2 sign k = m2 + h(φ)φ′2. (23)

It means, in particular, that h(φ)φ′2 = const, hence h(φ) cannot change its sign as long as we are
dealing with a particular solution, characterized by fixed values of the integration constants m and k.
(A detailed description of the properties of Fisher and anti-Fisher solutions can be found in [3,12,50,51],
see also references therein. Let us only mention here that the metric (22) describes wormholes [9,10]
if the parameter k is negative, which is only possible if h(φ) < 0; the two flat spatial infinities then
correspond to y = 0 and y = π/|k|.)

This situation does not change even if we use, instead of a single scalar field, a set of scalars φa,
forming a nonlinear sigma model with the Lagrangian

Lσ = −habgµν∂µφa∂νφb, (24)

where hab are functions of φa: in such a case, the metric has again the form (22), and instead of (23) we
have the relation [51]

k2 sign k = m2 + hab(φ
a)′(φb)′.

Therefore the quantity hab(φ
a)′(φb)′ that determines the canonical or phantom nature of the

scalar fields is inevitably constant. If the matrix hab is positive-definite, the sigma model consists of
canonical fields, and then k > 0, so (22) is the Fisher metric containing a central naked singularity.
If, on the contrary, hab is negative-definite, we are dealing with a set of phantom scalars, leading to
solutions with k < 0 (wormholes), and, in addition, there is a subset of solutions with k > 0 containing
horizons of infinite area which have been given the name of “cold black holes” [50] because of their
zero Hawking temperature. If the matrix hab is neither positive- nor negative-definite, then there exist
special solutions of wormhole nature (with k < 0) while other solutions correspond to a canonical
scalar field and are described by Fisher’s metric with a central singularity [51]. However, there cannot
appear solutions of trapped-ghost nature. More complicated and more interesting examples can appear
only with nonzero potentials V(φ), such as those considered below.

3.3. Scalar Fields with a Potential: Wormholes and Black Universes

Let us return to field equations with an arbitrary potential, Equation (16), written for the metric (6)
in terms of the quasiglobal coordinate x (the “gauge” α + γ = 0 for the general metric (2)). It is
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hard to obtain exact solutions with a prescribed potential V(φ), and, on the other hand, there is no
clear physical reason to prefer any specific potential if our purpose is to find solutions with physical
properties of interest. Instead, we will use the inverse problem method and choose the metric function
r(x) with required properties.

It is easy to verify that Equations (16a) and (16e) follow from (16b)–(16d), which, if the potential
V(φ) and the kinetic function h(φ) are known, form a determined set of equations for the unknowns
r(x), A(x), φ(x). Furthermore, Equation (16d) does not contain the scalar field, therefore, if r(x) is
known, then, solving (16d) to find A(x), we determine the metric completely, after which φ(x) and
V(x) are found from (16c) and (16b), respectively, and V(φ) is then defined unambiguously if φ(x) is
monotonic.

Moreover, Equation (16d) is easily integrated giving

B′(x) ≡ (A/r2)′ = 2(3m− x)/r4, (25)

where (as before) B(x) ≡ A/r2, and the integration constant m has the meaning of Schwarzschild mass
if the metric (2) is asymptotically flat as x → ∞ (so that r ≈ x, A = 1− 2m/x + o(1/x)). If the metric
is asymptotically flat with A→ 1 as x → −∞, the Schwarzschild mass is there equal to −m (r ≈ |u|,
A = 1 + 2m/|u|+ o(1/u).

This leads to a general result valid for any solution to Equations (16) possessing two asymptotically
flat regions in the presence of any potential V(φ) compatible with such a behavior (such solutions
can describe either wormholes or regular black holes): the masses inevitably have opposite signs,
as exemplified by the special case of a massless scalar— the anti-Fisher wormhole [10,12,50] whose
metric in the gauge (6), easily obtained from Equation (22) with k < 0, reads

ds2 = − e−2mydt2 + e2my[dx2 + (k2 + x2)dΩ2],

where y = |k|−1 cot−1(x/|k|) is the harmonic radial coordinate.
It is also clear that in solutions to Equations (16) with m = 0 and an even function r(x), the metric

is symmetric with respect to x = 0, since A(x) is also an even function according to (25). Even is also
V(x) found from Equation (16b). However, the scalar field obtainable from (16c) behaves in another
way.

The simplest solution with a nonzero potential is obtained by putting h(φ) ≡ −1 and [26,27]

r = (x2 + a2)1/2, a = const > 0, (26)

then Equation (25) leads to

B(x) ≡ A(x)
r2(x)

=
c
a2 +

1
a2 + x2 +

3m
a3

(
ax

a2 + x2 + arctan
x
a

)
, (27)

with c = const. Equations (16c) and (16b) then lead to expressions for φ(x) and V(x):

φ = ± arctan(x/a) + φ0, φ0 = const, (28)

V = − c
a2

r2 + 2x2

r2 − 3m
a3

(
3ax
r2 +

r2 + 2x2

r2 arctan
x
a

)
(29)

with r = r(x) given by Equation (26). In particular,

B(±∞) = −1
3

V(±∞) =
2ac± 3πm

2a3 . (30)

Choosing in Equation (28), without loss of generality, the plus sign and φ0 = 0, we obtain for V(φ)
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V(φ) = − c
a2 (3− 2 cos2 φ)− 3m

a3

[
3 sin φ cos φ + φ(3− 2 cos2 φ)

]
. (31)

The solution behavior is controlled by two integration constants: c that actually moves the plot of
B(x) up and down, and m that affects the position of the maximum of B(x). Both B(x) and V(x) are
even functions if and only if m = 0, in agreement with the above-said. Asymptotic flatness at x = +∞
implies 2ac = −3πm.

Under this asymptotic flatness assumption, the m = 0 solution describes the simplest symmetric
configuration, the Ellis wormhole [10]: A ≡ 1, V ≡ 0. At m < 0, by Equation (30), we obtain
a wormhole with an AdS metric at the far end (x → −∞), corresponding to the cosmological constant
V− < 0. If m > 0, so that V− > 0, there is a regular BH with a de Sitter asymptotic behavior far beyond
the horizon, precisely corresponding to the above description of a black universe. These hypothetic
configurations combine the properties of a wormhole (absence of a center, a regular minimum of the
area function) and a BH (a Killing horizon separating R- and T-regions).

The horizon radius r(xh) can be obtained by solving the transcendental equation A(xh) = 0,
where A(x) is given by Equation (27). It depends on the parameters m and a = min r(x) and cannot
be smaller than a, which plays the role of a scalar charge since r ≈ x and φ ≈ π/2− a/x at large
x. Since A(0) = 1 + c, the point x = 0 (minimum of r) is located in the static R-region if c > −1,
i.e., if 3πm < 2a (it is then a throat), precisely at the horizon if 3πm = 2a, and in the T-region beyond
the horizon if 3πm > 2a. This relationship between the parameters m and a prompt (and very probably
it is the case in more general situations) that if the BH mass dominates over the scalar charge, then there
is no throat in the static region, and a distant observer sees the BH approximately as usual in GR.

As is clear from Equations (58) and (16b), the potential V tends to a constant at each end of the x
range and, moreover, we have there dV/dφ→ 0. It is true for all classes of regular solutions mentioned
in [26]. More precisely, a regular scalar field configuration requires a potential with at least two zero-slope
points (which are not necessarily extrema) at different values of φ.

Among suitable potentials are V = V0 cos2(φ/φ0) and the Mexican hat potential
V = (λ/4)(φ2 − η2)2, with constants V0, φ0, λ, η. It there is flat infinity at x = +∞, it certainly
requires V+ = 0, while a de Sitter asymptotic can correspond to a maximum of V since phantom fields
tend to climb up a slope of the potential instead of rolling down, as follows from Equation (16a).
Note that a consideration of spatially flat isotropic cosmologies with a phantom filed [52] has
shown that if V(φ) is bounded above by V0 = const > 0, then the de Sitter solution is a global
attractor. Quite probably, this result is also true for Kantowski-Sachs cosmologies becoming isotropic
at large times.

The de Sitter expansion rate at late times is determined by the value of the potential V− > 0
(it corresponds to the late-time effective cosmological constant value Λ) rather than by other details of
the solution, such as the Schwarzschild mass defined in the static region. A general conclusion is that
black universes are a generic kind of solutions to the Einstein-scalar equations in the case of phantom
scalars with proper potentials.

The existence of black-universe solutions seems to be a natural feature of metric theories of gravity
in the presence of any phantom degrees of freedom. All this leads to the idea [26] that our Universe
could emerge due to phantom-dominated collapse in some parent universe and undergo isotropization
soon after crossing the horizon. It is known that Kantowski-Sachs models of our Universe are not
excluded by observations [53] if they became almost isotropic early enough, before the last scattering
epoch (at redshifts z & 1000). We are thus facing one more mechanism of universes multiplication,
in addition to other known mechanisms such as, e.g., the chaotic inflation scenario.

3.4. Models with a Trapped Ghost

The above example has shown that wormhole and black-universe solutions must be quite a generic
content of GR with a phantom scalar field. The trapped ghost concept potentially reconciles the
existence of such objects with the absence of phantom matter in a weak-field environment.
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It is worth recalling that a variable sign of the kinetic term for a scalar field is not simply introduced
ad hoc but naturally follows from some models of multidimensional gravity, such as the one considered
in [54], with the action

S =
∫

dDx
√

gD [F(R) + c1RABRAB + c2RABCDRABCD] (32)

where R, RAB and RABCD are the D-dimensional scalar curvature, Ricci and Riemann tensors,
respectively, and gD = |det gAB|. Under some additional assumptions, after reduction to a 4D
theory and conversion to Einstein’s conformal frame one obtains the effective Einstein-scalar theory
with the action

S ∼
∫

d4x
√

g4[R4 + KEin(φ)(∂φ)2 − 2VEin(φ)] (33)

with certain functions KEin and VEin depending on the choice of the function F(R) and the parameters
c1,2 in Equation (32). Choosing a quadratic function f (R), for some particular parameter values,
one obtains these functions in the form shown in Figure 1.

Figure 1. The functions VEin(φ) (left) and KEin(φ) (right) for some parameters of the action (32),
showing a transition from canonical to phantom nature of the scalar field at values marked with the
letters A and B.

Let us try to obtain particular solutions of this kind by choosing, as before, a proper shape of the
function r(x). This function should possess the following properties:

1. For both wormhole and black universes, a minimum of r(x) must exist (located at x = 0 without
loss of generality), so that

r(0) = a, r′(0) = 0, r′′(0) > 0, a = const > 0.

2. By definition, in a trapped-ghost configuration it must be h(φ) < 0 near a minimum of r, and
h(φ) > 0 far from it. By Equation (16c), this implies r′′ > 0 at small |x| and r′′ < 0 at sufficiently
large |x|.

3. For obtaining asymptotically flat or asymptotically (anti-) de Sitter models, we should have

r(x) ≈ |x| as x → ±∞.

A simple choice of the function r(x) that satisfies the conditions 1–3 is [30] (see Figure 2)

r(u) = a
(x/a)2 + 1√
(x/a)2 + n

, n = const > 2, (34)
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where a is is an arbitrary constant, related to the throat radius r(0) by r(0) = a/
√

n, and the value of a
can be used as a length scale. Note that the function (34) is different from r(x) used in [24,29], and the
resulting expressions slightly simpler than there.

Further on we put a = 1; this actually means that the length scale remains arbitrary, but r and m
(it is the Schwarzschild mass in our geometrized units) and other quantities with the dimension of
length are expressed in units of a, accordingly, B, V and other quantities with the dimension (length)−2

are expressed in units of a−2, etc.; the quantities A, φ, h are dimensionless. Since

r′′(x) =
x2(2− n) + n(2n− 1)

(x2 + n)5/2 , (35)

we obtain r′′ > 0 at x2 < n(2n− 1)/(n− 2) and r′′ < 0 at larger |x|, as required; it is also clear that
r ≈ |x| at large |x|. It guarantees h < 0 at small |x| and h > 0 at large |x| (see Figure 2, right panel).
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Figure 2. (Left) Plots of r(x) under different assumptions: by (26) (solid), by (34), n = 3 (trapped ghost,
dashed), and by (42) (long throat, dot-dashed); (Right) Plot of r2r′′ for (34), n = 3; zeros of this function
show the surfaces h(φ) = 0.

To avoid cumbersome expressions for B(x) and other quantities, let us restrict our discussion to
the value n = 3. An inspection shows that a particular choice of the parameter n > 2 does not change
the qualitative features of the solutions.

Integrating Equation (25) for n = 3, we obtain

B = B0 +
26 + 24x2 + 6x4 + 3mx(69 + 100x2 + 39x4)

6(1 + x2)3 +
39m

2
arctan x, (36)

where B0 is an integration constant.
Now suppose that our system is asymptotically flat as x → +∞. Since B = A/r2 and A → 1

at infinity, we require B→ 0 as x → ∞ and thus fix B0 as

B0 = −39πm
4

. (37)

The form of B(x) (and accordingly A(x) = Br2) substantially depends on the mass m, see Figure 3.
It is clear that with m < 0 we obtain B(x) that tends to a positive constant as x → −∞, so that A ∼ r2,
and a wormhole with an AdS asymptotic behavior at the far end is obtained (an M-AdS wormhole
for short, where M stands for Minkowski). If m = 0, we obtain a twice asymptotically flat (M-M)
wormhole. Lastly, if m > 0, then B(x) changes its sign at some x and tends to a negative constant,
which means that there is a black universe tending to de Sitter geometry as x → −∞, in full analogy
with our first example (26)–(31).
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Now the metric is known completely, while φ(x) and V(φ(x)) are found, as before, from
Equations (16c) and (16b). To construct V as an unambiguous function of φ and to find h(φ), it makes
sense to use the parametrization freedom for φ(x) and to choose

φ(x) =
1√
3

arctan
x√
3

, (38)

a behavior common to kink configurations, such that φ has a finite range: φ ∈ (−φ0, φ0),
φ0 = π/(2

√
3). Thus we have x =

√
3 tan(

√
3φ), ant its substitution to the expression for V(x)

found from Equation (16b) gives V(φ) defined in this finite range.
The kinetic coupling function h(φ) is then expressed from (16c):

h(φ) =
x2 − 15
x2 + 1

=
3 tan2(

√
3φ)− 15

3 tan2(
√

3φ) + 1
. (39)

This function is also defined on the interval (−φ0, φ0), which may be extended to R if we suppose
h(φ) ≡ 1 at |φ| ≥ φ0. As is clear, the NEC is violated where and only where h(φ) < 0.

B(x), n=3

m = -0,02

m = 0,02

m = 0

-4 -2 2 4

-1

1

2

3

4

5

m = 0.005

m = 0

m = - 0.005

V(x)

-4 -2 2 4

-1.0

-0.5

0.5

1.0

Figure 3. Plots of B(x) (left) and V(x) (middle) for different values of m in a model with r(x) given
by Equation (34) with n = 3. With m < 0 we obtain an asymmetric M-AdS wormhole, with m = 0
a symmetric M-M wormhole, and with m > 0 a black universe with de Sitter behavior as x → −∞.
The right panel shows the behavior of V at larger x, where the curves almost merge (colors have the
same meaning as in the middle panel).

For V(x) we obtain [30]

V(x) =
1

12(1 + x2)2(3 + x2)3

{
32(−6 + x2 + 3x4)

+ 6mx(2655 + 6930x2 + 5420x4 + 1326x6 + 117x8)

+ 117m(1 + x2)2(15 + 89x2 + 29x4 + 3x6)(−π + 2 arctan x)
}

. (40)

The function V(φ) can also be extended to the whole real axis, φ ∈ R, by putting V(φ) ≡ 0 at all
φ ≥ φ0 (since V(x = +∞) = 0) and V(φ) = V(−φ0) > 0 at all φ < −φ0.

One can easily verify that the values of B(x) as x → −∞ are directly related to the asymptotic
values of the potential V, which plays the role of an effective cosmological constant at large negative x:

V(−∞) = 117mπ/2 = −3B(−∞). (41)

We see that the trapped-ghost solution preserves all qualitative features of the simplest solution
with the dependence (26) of the spherical radius.

Other, more complicated solutions with diverse global structures are obtained if, besides a scalar
field, we introduce an electromagnetic field. Such solutions, including M-M and M-AdS wormholes as
well as regular black holes having up to three horizons (up to four horizons if asymptotic flatness is
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not required), have been found in [30]; their structures turn out to be quite similar to those obtained
earlier with a purely phantom scalar field [28].

3.5. Wormholes with an Invisible Ghost and a Long Throat

In the previous subsection, having admitted the existence of phantom fields, we discussed a way
to explain why they are not observed under usual conditions using the “trapped ghosts” concept.
Another way to explain the same is what may be called the “invisible ghost” concept, which means
that the phantom field decays rapidly enough at infinity and is there too weak to be observed [55,56].
To achieve this goal, we need rapidly decaying quantities φ′ and hence, by Equation (16c) r′′/r. Let us
therefore replace the previous ansatz (26), r = (a2 + x2)1/2, with [56]

r(x) = a(1 + x2n)1/(2n), n ∈ N, (42)

where a > 0 is, as before, an arbitrary constant, now equal to the throat radius. We will again put
a = 1, so that lengths are expressed in units of the throat radius; the quantities like B(x) and V(x) with
the dimension (length)−2 are expressed in units of a−2, while the dimensionless quantities A(x) and
φ(x) are insensitive to this assumption.

The value n = 1 returns us to the ansatz (26). Higher values of n lead to a new feature of the
space-time geometry: the spherical radius r(x) is changing quite slowly near the throat x = 0, making
it possible to call it a long throat, see the dot-dashed curve in Figure 2, left panel. At large |x| we now
have r′′/r ≈ (2n− 1)x−2n−2, hence φ′ ∼ 1/xn+1, which at large enough n conforms to the “invisible
ghost” concept.

Let us put m = 0, restricting ourselves to massless wormholes. Then B′(x) (25) is an odd function:

B′(x) = − 2x
(x2n + 1)2/n , (43)

whose integration gives

B(x) = −x2F
( 1

n
,

2
n

; 1 +
1
n

;−x2n
)
+ B0, (44)

where B0 is an integration constant, and F(a, b; c, z) is the Gaussian hypergeometric function. Assuming
asymptotic flatness at large positive x, since B = A/r2 and A → 1 at infinity, we require B → 0 as
x → ∞ and thus fix B0 as

B0 = lim
x→∞

x2F
( 1

n
,

2
n

; 1 +
1
n

;−x2n
)

(45)

We see that it is a twice asymptotically flat (M-M) wormhole, and a plot of B(x) is similar to
the curve m = 0 in Figure 3 (left). Curiously, the behavior of A(x) shows that there is a domain of
repulsive gravity around the throat.

Now the metric is known completely, while φ(x) and V(φ(x)) are again easily found from
Equations (16c) and (16b). The expression for the scalar field φ(x) in the case n = 4 is (assuming
φ(0) = 0)

φ(x) =
√

7
4

(sign x) arctan(x4), (46)

see Figure 4 (left). For the potential V(x) there is rather a cumbersome expression in terms of
hypergeometric functions, gamma functions and Legendre functions, and we will not present it
here. It is plotted in Figure 4 (right). Since V(x) is an even function, the plot is restricted to x ≥ 0.

Models with diverse global structures emerge if there is a nonzero Schwarzschild mass m or/and,
besides a scalar field, we consider an electromagnetic field with the corresponding electric or magnetic
charge. Examples of such solutions, including M-M, M-dS (de-Sitter), M-AdS (anti de-Sitter) wormholes
and regular black holes containing up to four horizons, can be found in [28–30,55]. The global
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qualitative features of our present field system are similar to those described above, and the same
kinds of regular solutions can be obtained using the same methods.

Figure 4. The scalar field φ(x) (left) and the potential V(x) (right) for n = 4.

4. The Stability Problem

4.1. Spherically Symmetric Perturbation Equations

The stability problem is of great importance while studying any equilibrium configurations since
only stable or very slowly decaying ones have a chance to exist for a sufficiently long time. On the other
hand, the development of instabilities can lead to a lot of important phenomena, such as, for example,
structure formation in the early Universe and Supernova explosions.

Let us discuss the stability problem for configurations with scalar fields like those described
in the previous section. The problem is whether an initial small time-dependent perturbation can
grow strongly enough to destroy the system. As in a majority of such studies, we consider linear
perturbations and neglect their quadratic and higher-order combinations. Moreover, we restrict the
study to perturbations that preserve spherical symmetry (in other words, only radial, or monopole
perturbations). On one hand, they are the simplest, but on the other, they are the most “dangerous”
ones since they lead to instabilities in many known models with self-gravitating scalar fields [31–38].
Other modes of perturbations are usually found to be stable, see, e.g., [38,57]. Let us suppose that
some static solution is already known (the solutions described above being special cases) and consider
its time-dependent perturbations.

We will follow the lines of [3,37,55,58] and consider the same field system as before, that is,
Equations (12)–(14), with the scalar field SET:

Tν
µ [φ] = h(φ)[2φµφν − δν

µφαφα] + δν
µV(φ), (47)

The general spherically symmetric metric can be written in the form (2), that is,

ds2 = e2γdt2 − e2αdu2 − e2βdΩ2, (48)

where now γ, α and β are functions of both the radial coordinate u and time t. We use again the
notation r(u) ≡ eβ and preserve the freedom of choosing the coordinate u.

Consider linear spherically symmetric perturbations of static solutions (known by assumption) to
the field equations due to (12). Now we write

φ(u, t) = φ(u) + δφ(u, t), γ(u, t) = γ(u) + δγ (49)
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for the scalar field and the metric function γ and similarly for all other quantities, assuming small
“deltas”.

All nonzero components of the Ricci tensor are (with only linear terms with respect to
time derivatives)

Rt
t = e−2γ(α̈ + 2β̈)− e−2α[γ′′ + γ′(γ′ − α′ + 2β′)], (50)

Ru
u = e−2γα̈− e−2α[γ′′ + 2β′′ + γ′2 + 2β′2 − α′(γ′ + 2β′)], (51)

Rθ
θ = R3

3 = e−2β + e−2γ β̈− e−2α[β′′ + β′(γ′ − α′ + 2β′)], (52)

Rtu = 2[β̇′ + β̇β′ − α̇β′ − β̇γ′], (53)

where dots and primes denote ∂/∂t and ∂/∂u, respectively.
The background (zero-order, static) scalar field equation and the (t

t), (
u
u), and (θ

θ) components of
the Einstein equations (4) read

2h[φ′′ + φ′(γ′ + 2β′ − α′)] + h′φ′ = e2αdV/dφ; (54)

γ′′ + γ′(γ′ + 2β′ − α′) = − e2αV; (55)

γ′′ + 2β′′ + γ′2 + 2β′2 − α′(γ′ + 2β′) = −2hφ′2 − e2αV; (56)

− e2α−2β + β′′ + β′(γ′ + 2β′ − α′) = −V e2α. (57)

The first-order perturbed equations (scalar, Rut = . . ., and Rθ
θ = . . .) have the form

2 e2α−2γhδφ̈− 2h[δφ′′ + δφ′(γ′ + 2β′ − α′) + φ′(δγ′ + 2δβ′ − δα′)]

− 2δh[φ′′ + φ′(2β′ + γ′ − α′)]− h′δφ′ − φ′δh′ + δ( e2αVφ) = 0, (58)

δβ̇′ + β′δβ̇− β′δα̇− γ′δβ̇ = −hφ′δφ̇, (59)

δ( e2α−2β) + e2α−2γδβ̈− δβ′′ − δβ′(γ′ + 2β′ − α′)

− β′(δγ′ + 2δβ′ − δα′) = δ( e2αV), (60)

Equation (59) is easily integrated in t; being interested in time-dependent perturbations only,
we omit the arbitrary function of u that emerges at this integration and describes static perturbations.
This leads to

δβ′ + δβ(β′ − γ′)− β′δα = −hφ′δφ. (61)

Our system possesses two independent forms of arbitrariness: the freedom to choose a radial
coordinate u in the static background solution, and the perturbation gauge, a freedom related to the choice
of a reference frame in perturbed space-time. As a result, we can impose some relation containing
δα, δβ, etc. Further on we employ both kinds of freedom. All the above equations are written in
a universal form, where neither the u coordinate nor the perturbation gauge are fixed.

Let us simplify the equations by choosing the “tortoise” coordinate u = z, specified by the
condition α = γ (it is the best for wave equations), and the perturbation gauge δβ ≡ 0. Then from
Equation (61) we find δα in terms of δφ (now the prime stands for d/dz):

β′δα = h(φ)φ′δφ. (62)

From Equation (60) we find δγ′ − δα′ in terms of δα and δφ:

β′(δγ′ − δα′) = 2 e2α−2βδα− δ( e2αV). (63)
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With all that substituted to Equation (58), the following wave equation is obtained:

δφ̈− δφ′′ − δφ′(2β′ + h′/h) + Uδφ = 0, (64)

U ≡ e2α

[
2hφ′2

β′2
(V − e−2β) +

2φ′

β′
Vφ +

Vφφ

2h

]
−

h′′ + hφφ′′

2h
− 2β′h′

h
, (65)

where the index φ denotes d/dφ. The expression (65) for U is a generalization of the one obtained
in [37] for scalar-vacuum systems with h = ε = ±1.

Next, the first-order derivative of δφ in Equation (64) is removed by the substitution

δφ = ψ(z, t) e−η , η′ = β′ +
h′

2h
, (66)

which reduces the wave equation to the canonical form

ψ̈− ψ′′ + Veff(z)ψ = 0, (67)

with the effective potential

Veff(z) = U + η′′ + η′2 = e2α

[
2hφ′2

β′2
(V − e−2β) +

2φ′

β′
Vφ −

hφ

4h2 Vφ +
Vφφ

2h

]
+ β′′ + β′2. (68)

One more substitution, using the static nature of the background,

ψ(x, t) = Y(x) eiωt, ω = const, (69)

leads to the Schrödinger-like equation

Y′′ + [ω2 −Veff(x)]Y = 0. (70)

Now, if there exists a nontrivial solution to Equation (70) such that Im ω < 0, for which
some physically reasonable conditions hold at the ends of the range of z (including the absence
of ingoing waves), then we can conclude that the static background system is unstable since the
perturbation δφ can exponentially grow with time. Otherwise our static system is stable in the linear
approximation. The value ω = 0 makes possible a linear growth of perturbations. As usual in such
studies, the stability problem is thus reduced to a boundary-value problem for Equation (70)—see,
e.g., [3,31–33,35,37,38,57,59].

The gauge δβ = 0 is convenient for calculations but looks doubtful when applied to configurations
with throats. The reason is that writing δβ = 0, we suppose that the throat radius is not subject to
perturbations, whereas its changes are in general admissible [3,35,59]. It might seem that the pole in
Veff related to δβ in the denominator in Equation (65) is an artifact of this gauge. It turns out, however,
in full similarity with [3,35,37], that Equation (70) is in fact gauge-invariant, and the perturbation δφ

represents a certain gauge-invariant quantity in the gauge δβ = 0. This issue is discussed in detail,
e.g., in [3,37,58].

4.2. Perturbations Near a Generic Throat

Since Equation (70) is gauge-invariant, boundary value problems in the stability study are really
meaningful. However, the problems are rather complicated due to the singular nature of the effective
potential Veff. The singularities are of two kinds: one is related to throats, if any, due to terms containing
1/β′2 and 1/β′ in Veff (since β′ = 0 on a throat); the other takes place at transition surfaces from usual
to phantom scalar fields because Veff contains terms proportional to h−2 and h−1, while h = 0 at such
a transition. Let us first discuss the singularities related to throats, following [58] and partly [35,37].
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Suppose that there is a throat at (say) z = 0, where the spherical radius r(z) = eβ possesses
a generic minimum, such that r(z) = r0 +

1
2 r2z2 + o(z2), where r0 > 0, r2 > 0. Also, without loss

of generality, close to the throat we put h(φ) = −1 since due to Equation (16c) it should be h < 0,
and h(φ) = −1 is obtained by a regular redefinition of φ. Then, from the zero-order (background)
equations it follows that near the throat

Veff(φ) = 2/z2 + O(1), (71)

and a contribution of the form O(z−1) is absent. Thus we have an infinite potential wall that separates
perturbations to the left (z < 0) of the throat from those to the right (z > 0) because a natural boundary
condition at z = 0 is ψ(0) = 0. All other perturbations also vanish at z = 0. As a result, a mode
of evident physical significance, connected with time-dependent perturbations of the throat radius,
drops off from the consideration.

A way to solve this problem is to apply a Darboux transformation (see, e.g., [60] for a recent
presentation and application to BH physics), also called S-deformation, to the effective potential
Veff. It was used in [61,62] in order to convert a partly negative potential to a positive-definite
one in a stability problem for higher-dimensional black holes. Later on this method was used by
Gonzalez et al. [35] for transforming a singular effective potential for perturbations of anti-Fisher
wormholes to a nonsingular one, which has led to finding an exponentially growing mode. Thus such
wormholes are unstable, the instability being connected with a changing radius of the throat.
The same method in a slightly more general formulation was applied in [37,38] in a stability study for
other spherically symmetric configurations with throats, in particular, some black universe models.
The method can be briefly described as follows.

Consider a wave equation of the type Equation (67)

ψ̈− ψ′′ + W(z)ψ = 0, (72)

with an arbitrary potential W(z) (the above potential Veff is its specific example). The potential W(z)
may be presented in the form

W(z) = S2(z) + S′, (73)

which may be treated as a Riccati equation with respect to S(z), and its solution makes it possible to
find S(z) for given W(z). Then we can rewrite Equation (72) as

ψ̈ + (∂z + S)(−∂z + S)ψ = 0. (74)

If we introduce the new function

χ = (−∂z + S)ψ, (75)

then, applying the operator −∂z + S to the left-hand side of Equation (74), we obtain a wave equation
for χ:

χ̈− χ′′ + W1(z)χ = 0, (76)

with the new effective potential

W1(x) = −S′ + S2 = −W(z) + 2S2. (77)

If a static solution ψs(z) of Equation (72) is known, so that ψ′′s = W(z)ψs, then we can choose

S(z) = ψ′s/ψs (78)
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to use in the above transformation. Next, if we assume that W(x) ≈ az−n at small z and require
that W1 should be finite at z = 0, then, using Equation (77), we find that a necessary condition for
removing such a singularity is n = 1, a = 2, that is, W ≈ 2/z2. Fortunately, according to Equation (71),
the potential Veff exhibits precisely the required behavior. One can notice that this regularization works
for a positive pole, W → +∞ as z→ 0, and removes a potential wall in W(z) whereas a potential well
cannot be removed in this way. A point of interest is that the Darboux transformation, being isospectral
when it connects regular wave equations, loses isospectrality in the singular case and actually reveals
a mode of perturbations which was hidden when the wave equation had a singular potential.

From Equation (77) with finite W1 it also follows that at small z

S ≈ −1/z ⇒ ψs ∝ 1/z. (79)

Summarizing, we see that the singularity of the effective potential Veff occurring at a throat can be
regularized for a throat of generic shape [35,37]. What is also of great importance is that solutions to the
regularized wave equation lead to regular perturbations of the scalar field and the metric. It was this
procedure that has led to a proof of the instability of anti-Fisher (Ellis type [9,10]) wormholes [35] and
other configurations with scalar fields in GR [37,38]. Examples of such results are depicted in Figure 5:

Figure 5. Regularized effective potentials for perturbations of some black-universe solutions
Equations (26) and (27) (left) and the time-domain profiles of their time evolution [38] (right). Only one
of the models under study is stable (the time-domain plot is asymptotically constant), it is the model
where the throat coincides with the event horizon.

4.3. Perturbations Near the Surface h = 0

The effective potential Veff also possesses another kind of singularities at values of the radial
coordinate where the factor h(φ) in Equation (12) changes its sign, if certainly such values of φ do exist,
which happens in the trapped ghost situation. The nature of these singularities is different from that
described above. Somewhat similar singularities were previously found in systems with conformal
continuations at the corresponding transition surfaces [16,32,33]. The latter phenomenon takes place,
for example, in scalar-tensor theories of gravity where it can happen that at certain values of the
parameters the whole Einstein-frame manifold maps to only a region in the Jordan-frame manifold
(or vice versa). It was found that for static, spherically symmetric configurations of this kind, monopole
perturbations obey wave equations of the form (67) with effective potentials possessing singularities
of the form

Veff ≈ −1/(4z2) as z→ 0 (80)

where z = 0 is a transition surface on which the Einstein frame terminates while the Jordan frame has
a regular metric [32].
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Returning to our system, let us assume that close to the value of z at which h = 0 (let it be z = 0)
the metric functions α = γ (according to our “tortoise” gauge) and β as well as the scalar φ are regular
and can be approximated by the Taylor expansions

α = α0 + α1z + . . . , β = β0 + β1z + . . . , φ = φ0 + φ1z + 1
2 φ2 + . . . ,

h(z) = h1z + 1
2 h2z2 + . . . , φ1 6= 0, h1 6= 0. (81)

One can show that in such a generic situation the potential (68) is approximated near z = 0 by the
Laurent series

Veff(z) = −
1

4z2 +
1
z

[
h2

h1
+ 2
(

β1 − α1 +
φ2

φ1

)]
+ O(1). (82)

Thus the surface where h = 0 is a location of a potential well of infinite depth. In quantum
mechanics such a well, according to the stationary Schrödinger equation, would cause the existence
of arbitrarily deep negative energy levels. As regards the stability study, it would be tempting to
conclude, by analogy, that there are perturbation modes with ω2 < 0 and arbitrarily large |ω|, and
then the corresponding perturbations would grow as (δφ ∼ e|ω|t), immediately leading the system out
of a linear regime and making necessary a nonlinear or nonperturbative analysis.

However, in the stability study, the quantities ψ in Equation (67) or Y in (70) are subject to quite
different physical requirements: the perturbation δφ should remain finite in the whole space and
also vanish at infinities or horizons, while in quantum mechanics the only requirement is quadratic
integrability of ψ.

With the potential (82), the general solution of Equation (70) at small z has, independently of ω,
the leading terms

Y(z) =
√
|z|(C1 + C2 ln |z|) + O(z3/2), C1, C2 = const. (83)

Furthermore, according to (66), δφ ∼ Y/
√

h ∼ Y/
√
|x|, and

δφ ∼ C1 + C2 ln |z|+ O(z), (84)

so physically meaningful perturbations correspond to C2 = 0. The negative pole of (82) thus leads to
a new constraint that should be considered together with the ordinary boundary conditions specifying
the boundary-value problem for the Schrödinger equation. From this additional constraint it may
follow that this boundary-value problem does not possess any discrete spectrum. Indeed, assuming
a background configuration with a surface where h = 0 (say, at z = 0), Equation (70) has a solution
satisfying the boundary conditions imposed at infinities and/or a horizon; then there will be in general
a zero probability that such a solution is finite at z = 0. A possible exception is a Z2-symmetric
background with respect to the surface z = 0 (then the whole boundary-value problem is the same
for z < 0 and z > 0, and the whole spectrum is also the same), but in our system it is manifestly not
such a case since we have h > 0 on one side of the surface z = 0 and h < 0 on the other. A situation
like this was discussed in [63,64] for the stability of BHs with a conformal scalar field [65,66], and after
all, using some more reasoning, it was concluded that these black holes are stable under monopole
perturbations [64].

Unlike this situation, in a quantum-mechanical problem setting, the quadratic integrability
requirement for Y(z) is satisfied as long as

∫
zn ln2 z dz < ∞ near z = 0 for any n ≥ 0. A quantum

particle in such a potential well, as is sometimes said, “falls onto the center” [67] since, as one descends
to deeper and deeper negative energy levels, the wave function becomes more and more concentrated
near z = 0.

We can conclude that if there is a transition surface from canonical to phantom scalar field,
it plays a strong stabilizing role for any such configuration. However, it looks impossible to say about
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a particular trapped-ghost solution, whether it is stable or not: an individual investigation is necessary
since a conclusion must depend on the details of each model.

Figure 6 shows the effective potentials Veff for different trapped-ghost configurations. In the case
of a symmetric, twice asymptotically flat wormhole there are four regions separated by poles of Veff.
The positive pole at x = 0 can be regularized by an S-transformation as described above, while the
poles where h = 0 impose conditions similar to C2 = 0 in Equation (84). Thus, for Equation (70),
as many as three boundary-value problems should be considered in three ranges of z separated from
each other by h = 0 points. Though, in this particular solution two of them coincide due to symmetry
(x ↔ −x) of the wormhole.

For black-universe solutions without throats outside the horizon, an additional regularization
is unnecessary, two boundary-value problems on different sides of the pole at h = 0 may be solved
directly, and the resulting spectra should be then compared to find out whether there are coinciding
eigenvalues leading to unstable perturbation modes. A tentative conclusion is that at least for some
values of m there is such an unstable mode with ω = 0, which means that there are perturbations
growing with time by a linear law.

h = 0 h = 0
Veff(x)
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Figure 6. Effective potentials Veff = Veff(x) for perturbations of trapped-ghost solutions with the metric
coefficients (34) and (36), n = 3. (Left) Veff for a massless (m = 0) symmetric wormhole; (Right) Veff

for trapped-ghost black universe solutions with m > 0, in which the minimum of r (x = 0) is beyond
the horizon. Note that in terms of z, the first plot would remain qualitatively the same, whereas in the
second one a finite x > 0 at the horizon would turn into z = −∞.

4.4. Perturbations Near a Long Throat

Now, let us apply the above formalism to static solutions where the spherical radius r(x) behaves
near the throat like the function (42). More specifically, let the throat be located at z = 0 and, as z→ 0,
let the radius r behave as r ≈ r0 + O(z2n) (as is the case with Equation (42)). (Since the coordinates
x and z are related by dz = dx/A(x), and A(x) is finite at the throat, the function r(z) qualitatively
behaves in the same way as r(x).) Then at small z, as can be directly verified [56],

Veff(z) = 2
[( β′′

β′

)2
− β′′′

β′

]
+ O(1) =

2(2n−1)
z2 + O(1), (85)

Models with ordinary (generic) throats correspond to n = 1 and those with long throats to n > 1.
As described above, for n = 1 the potential Veff can be regularized using a Darboux transformation,

which is a special kind of substitution in Equation (70): the transformed equation is regular at z = 0,
and solutions to the corresponding boundary-value problem describe regular perturbations of the
scalar field and the metric, including those in which the throat radius changes with time. However,
a necessary condition for singularity removal is that Veff = 2/z2 +O(1), which does not hold for n > 1.

Now suppose that (without loss of generality) at z = 0 the potential behaves as

W(z) =
N
z2 + O(1), N = const, (86)
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and apply the S-transformation according to Equations (72)–(77). It is then easy to verify that

W1(z) =
N1

z2 + O(1), N1 = N + 1±
√

1 + 4N. (87)

The minus sign should be chosen here if we wish to “weaken” the pole of W, that is, make N1 < N.
In particular, if N = Nk = k(k + 1), k ∈ N, then the S-transformation leads to a new potential with
Nk−1 = (k− 1)k, or symbolically

Nk = k(k + 1) −→
S

Nk−1 = (k− 1)k. (88)

Therefore, if a potential behaves as W(z) = −k(k + 1)/z2 +O(1), k ∈ N, then each described step
“lowers the order” k by one, and after k such steps we obtain a regular potential.

For long throats with radii of the form r ≈ r0 + const · z2n, the effective potential (85) thus admits
regularization in k steps if 2n = 2nk = 1 + k(k + 1)/2. Thus, for k = 1, 2, 3, 4, 5, the corresponding
values of n = nk admitting this procedure are n = 1, 2, 7/2, 11/2, 8, etc. If the quantity n in (85) does
not belong to this sequence, the potential Veff cannot be regularized by S-transformations.

Thus a general formalism for studying the stability of wormhole models with long throats is ready,
at least for n belonging to the sequence nk = 1/2 + k(k + 1)/4. However, a practical implementation
of this formalism for particular models is difficult and requires significant numerical work (now in
progress) since even if static background solutions are known analytically, the perturbation equations
can be solved only numerically.

We have considered [56], as a tentative study, the stability properties of a configuration with
a constant spherical radius r(x), which may be called a maximally long throat. It is not a wormhole
since there are no spatial asymptotics. The corresponding static solution to the field equations reduces
to the well-known Nariai metric [68] with a constant scalar field, and it has been explicitly shown that
it is unstable under linear perturbations. Therefore, one can speculate that a slowly varying radius
near a throat does not stabilize a wormhole supported by a phantom scalar field.

5. Conclusions

Having recalled some general properties of static, spherically symmetric space-times in GR,
in particular those with a scalar field source, we have discussed some examples of globally regular
solutions, among which are wormholes and black universes. The latter seem to be a viable possible
description of a pre-inflationary epoch in cosmology and an attractive opportunity that the cosmic
evolution began from a horizon instead of a singularity.

Some of the existing solutions confirm that scalar fields may change their nature from a canonical
one to a ghost one in a smooth way without leading to space-time singularities [24,25,29,30].
This circumstance widens the possible choice of scalar field dynamics and, in addition, the possible
formulations of scalar-tensor theories of gravity, even though we have so far considered minimally
coupled fields only.

More specifically, the trapped ghost concept makes it possible to obtain spherically symmetric
wormhole and regular BH models with a ghost behavior in a restricted strong-field region whereas
outside it, where any observers can live, the scalar has usual properties. One can speculate that if
such ghosts do exist in Nature, they are all confined to strong-field regions (“all genies are sitting
in bottles”).

In addition to particular examples of exact solutions, some general properties of static, spherically
symmetric scalar field configurations have been revealed:

(i) Trapped-ghost solutions to the field equations are only possible with nonzero potentials V(φ).
(ii) If the Einstein-scalar equations have a twice asymptotically flat solution (be it of trapped-ghost

nature or not), then the Schwarzschild mass has different signs at the two infinities, while mirror
(Z2) symmetry with respect to a certain surface is only possible if m = 0.
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(iii) Transition surfaces between regions of canonical and phantom behavior of a scalar field create
a potential well for spherically symmetric perturbations, with a universal shape (see Equation (82))
for all such models. The finiteness requirement for perturbations on this surface forms an
additional constraint that, being added to the standard boundary conditions, restricts the set of
possible solutions and thus plays a stabilizing role.

This latter result may seem somewhat unexpected but, in my view, it can raise an interest in
trapped-ghost models. One can try to use this opportunity for solving various problems of gravitational
physics and cosmology.

Of certain interest are the properties of perturbations near a long throat which is obtained in some
of the solutions. More generally, one can conclude that a general formalism for stability studies in the
presence of throats and transition surfaces has been prepared, but studies of particular models lead to
rather involved numerical tasks to be considered in the near future. Another task is to try to extend
the present results to some alternative theories of gravity, such as scalar-tensor and f (R) theories.

One should also mention such a task of utmost importance in the present and future studies as
the analysis of observational properties of wormholes, such as gravitational lensing and shadows
(see [69–71] and references therein) as well as possible constraints on their existence that follow from
any already known observational data ([72] and references therein).
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