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Abstract: In search for an effective model of quark confinement we study the vacuum of SU(2) quantum
chromodynamic with lattice simulations using Wilson action. Assuming that center vortices are the
relevant excitations causing confinement, we analyzed their physical size and their color structure. We
present confirmations for a vanishing thickness of center vortices in the continuum limit and hints at
their color structure. This is the first time that algorithms for the detection of thick center vortices based
on non-trivial center regions has been used.
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1. Introduction

The strong interaction relevant for quantum chromodynamic is governed by an SU(3) symmetric
Lagrangian. One of the most important non-perturbative properties of QCD is confinement. It results
from a non-perturbative vacuum. This raises the question about the corresponding non-perturbative
degrees of freedom. The center vortex model [1,2] is based on the idea that the important ingredients
are center degrees of freedom in the form of closed magnetic flux tubes, quantised to the two non-trivial
center elements of SU(3). In this first study of the detection of finite center regions, we are investigating
SU(2)-QCD which is also confining and breaks chiral symmetry dynamically [3]. It has only one non-trivial
center element and one species of magnetic flux tubes. Working with the Wilson action, the lattice spacing
is adjusted by choosing the inverse coupling β, which is related to the coupling constant g by β = 4/g2. In
this type of studies the closed color magnetic flux lines percolating the vacuum, are located by P-vortices [4],
identified in the direct maximal center gauge, which aims at finding gauge matrices Ω(x) so that

Úµ(x) = Ω(x)Uµ(x)Ω†(x + eµ) maximizes R2
SA = ∑

x
∑
µ

| Tr[Úµ(x)] |2, (1)

with Uµ(x), an element of SU(2), being the gluonic link variable at lattice point x in direction µ. We chose
the gauge by a modified simulated annealing procedure preserving non-trivial center regions, regions
whose perimeter evaluates to a non-trivial center element. This is done by rejecting transformations
that after center projection would result in the vanishing of non-trivial center regions [5]. The details
are described in ref. [6]. As long as non-trivial center regions vanish we keep the simulated annealing
temperature high.
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Plaquettes pierced by a P-vortex are found by projection onto the central degrees of freedom, in SU(2)
just a sign,

Zµ(x) = sign Tr[Úµ(x)]. (2)

They evaluate to the non-trivial center element in the projected configuration. The vortex detection
can be seen as a best fit procedure of a thin vortex configuration to a given field configuration [4,7],
see Figure 1: gauge dependent P-vortices of singular thickness locate gauge independent thick vortices of
finite thickness [8].

Figure 1. Vortex detection as a best fit procedure of P-vortices to thick vortices shown in a two dimensional
slice through a four dimensional lattice.

Center projection leads to plaquettes with non-trivial center values. The P-plaquettes form P-vortices,
closed surfaces in dual space; see Figure 2. We relate the thickness dvort of the vortex to the area A of the
cross section by dvort ∝

√
A .

Figure 2. A closed color magnetic flux evolving in time creates a closed surface in four dimensional
spacetime. On the lattice a flux piercing a plaquette has to be traceable through the four attached cubes.

Assuming independence of vortex piercings, the vortex density $vort, the number of P-plaquettes per
unit volume, is related to the string tension σ by

σ = −ln(1− 2 ∗ $vort). (3)
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Correlations of such piercings lead to an overestimation of σ. To reduce the amount of such short
range fluctuations, smoothing procedures of the vortex surface are used [9]. A determination of σ, more
independent from short range fluctuations is given using R× T Wilson loops W(R, T) by the Creuz ratios

χ(R, T) = − ln
〈W(R + 1, T + 1)〉 〈W(R, T)〉
〈W(R, T + 1)〉 〈W(R + 1, T)〉 , (4)

Comparing the Creutz ratios we can assure that the center projected configuration and the full
configuration have the same lattice spacing and that the center projection captures the full string tension.
The lattice spacing is defined via the physical value of the string tension σph = (440 MeV)2 and calculates
the string tension in lattice units, σlattice, to

a =
√

σlattice ∗
197
440

fm. (5)

For the first time we present results based on our algorithms for locating thick vortices. We get
indications for a vanishing thickness of center vortices in the continuum limit, which is compatible with
the findings in [10]. In addition, we found hints of a color structure on the vortex surface.

2. Materials and Methods

After gauge fixing to direct maximal center gauge preserving non-trivial center regions during
simulated annealing with up to 2700 steps, we identify P-plaquettes in the Zµ(x) − configurations.
We check how good we capture the confining excitations by calculating the Creutz ratios. Our algorithm
detects non-trivial center regions by the identification of loops enclosing thick vortices in the Uµ(x)−
configuration: starting with the full plaquette matrices U2(x) at the position of the identified P-plaquettes,
the loop forming the plaquette is enlarged by pushing its perimeter outwards over neighboring plaquettes
so that the path integrated product of the enlarged region gets closer to the non trivial center element; see
Figure 3.

1) 2) 3)

Steps 1-3: Starting with a P-plaquette it is tested, which enlargement around a neighbouring plaquette brings the
regions evaluation nearer to a centre element. Enlargement in best direction is done.

4) 5)

Steps 4-5: When no more enlargement results to an improvement of the regions evaluation, the perimeter of the
region is stored and another P-plaquette is taken for a new enlargement procedure.

Figure 3. Thick vortex piercings are identified by detecting non-trivial center regions around P-plaquettes,
plaquettes pierced by P-vortices.

When all minimal planar loops are identified that enclose the thick vortex, its thickness can be
estimated by counting the number of enclosed plaquettes. We take care of the scaling of the lattice spacing
a and fit the cross section A(a) of the piercing by

A(a) = A0 + kA ∗ a + cA ∗ a2, (6)
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with fit-parameters k and c. With the diagrams in the lower row of Figure 4, we want to show that the
term quadratic in a detects whether cross sections have contributions proportional to the plaquette area.
The term proportional a results from the finite resolution of the boundary; see the upper row of Figure 4.
The constant term A0 indicates the predicted size of the physical area in the continuum limit.

To study the color structure of the vacuum, a quantity measuring the homogeneity of the flux building
up the vortex is needed. The concept was first presented in [11] and consists of referencing different
plaquettes to the same lattice point; see Figure 5.
Particles 2020, 0, 00 4 of 11

linear area scaling for physical objects: Alattice(a) = Acontinuum + kA ∗ a

=⇒ =⇒ =⇒ =⇒ ... =⇒

quadratic area scaling for vanishing objects: Alattice(a) = cA ∗ a2

=⇒ =⇒ =⇒ =⇒ ... =⇒

Figure 4. When measuring the area Acontinuum of a physical object piercing a plane in our toy lattice
world, due to the pixel size a linear dependence on the lattice constant a is expected, as depicted in
the upper part. Objects with cross sections proportional to plaquette areas lead to contributions of the
order a2.

Figure 5. To measure the color homogeneity of a 2× 2-loop its four plaquettes are referenced to the
central lattice point of the 2× 2-loop.

By factorizing the plaquettes Wi into Pauli matrices σj,

Wj = cos(αj) σ0 + i
3

∑
k=1

sin(αj) (nj)k σk, with nj ∈ S2, | nj |= 1, (7)

we define the S2-homogeneity of m plaquettes referenced to the same lattice point using the S2 vectors
nj as

hS2 :=
1
m
|

m

∑
j=1

nj | ∈ [0, 1]. (8)

In this work we will only compare two plaquettes for calculating hS2 (m = 2 in Equation (8))
because this allows to clearly distinguish different properties as is shown in the next section. We assume
a scaling dependency with the lattice spacing a of the form

hS2 = hCS2 + kh ∗
a

fm
+ ch ∗

a2

fm2 +O( a3

fm3 ) (9)

and fit hCS2, kh and ch to the data hS2 taken from the lattice. The value of hCS2 corresponds to the
continuum limit of the color homogeneity. The S2-homogeneity of plaquettes at position x and x + µ̂

with | µ̂ |= a can be related to the difference

∆n := | n(x + µ̂)− n(x) | = 2
√

1− h2
S2 ⇒ dn = 2

√
1− h2

CS2. (10)

With given color vector n1 = n(x), the second vector n2 = n(x + µ̂) is only fixed to the cone
shown in Figure 6.

Figure 4. When measuring the area Acontinuum of a physical object piercing a plane in our toy lattice world,
due to the pixel size a linear dependence on the lattice constant a is expected, as depicted in the upper part.
Objects with cross sections proportional to plaquette areas lead to contributions of the order a2.

Figure 5. To measure the color homogeneity of a 2× 2-loop its four plaquettes are referenced to the central
lattice point of the 2× 2-loop.

By factorizing the plaquettes Wi into Pauli matrices σj,

Wj = cos(αj) σ0 + i
3

∑
k=1

sin(αj) (nj)k σk, with nj ∈ S2, | nj |= 1, (7)

we define the S2-homogeneity of m plaquettes referenced to the same lattice point using the S2 vectors nj as

hS2 :=
1
m
|

m

∑
j=1

nj | ∈ [0, 1]. (8)
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In this work we will only compare two plaquettes for calculating hS2 (m = 2 in Equation (8)) because
this allows to clearly distinguish different properties as is shown in the next section. We assume a scaling
dependency with the lattice spacing a of the form

hS2 = hCS2 + kh ∗
a

fm
+ ch ∗

a2

fm2 +O( a3

fm3 ) (9)

and fit hCS2, kh and ch to the data hS2 taken from the lattice. The value of hCS2 corresponds to the continuum
limit of the color homogeneity. The S2-homogeneity of plaquettes at position x and x + µ̂ with | µ̂ |= a can
be related to the difference

∆n := | n(x + µ̂)− n(x) | = 2
√

1− h2
S2 ⇒ dn = 2

√
1− h2

CS2. (10)

With given color vector n1 = n(x), the second vector n2 = n(x + µ̂) is only fixed to the cone shown
in Figure 6.

Figure 6. By Equation (10) the S2-homogeneity hS2 of two color vectors n1 and n2 is related to the norm
∆n =| n2 − n1 |.

The sign of k indicates whether we have long or short ranged fluctuations.

∆2n ≈ − 2hS2√
1− h2

CS2

∗ kh. (11)

Negative k indicates, that the ∆n increases with growing distance between the considered color
vectors and positive kh implies decreasing ∆n with growing distance; see Figure 7.

Figure 7. Starting from a lattice point x with corresponding color vector n(x), the S2-homogeneity gives
information about the neighbouring color vectors. The sign of k can be represented geometrically, as is
depicted above. The left part can be interpreted as long range fluctuations of n-vectors, the right side as
short range fluctuations of n-vectors.
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For an analysis of a geometric structure we need to define some terms, distinguishing different
orientations and positions of pairs of plaquettes in spacetime. By calculating the S2-homogeneity
of two neighboring plaquettes in the same plane in spacetime we can distinguish four “planar”
color homogeneities:

• Inside the thick vortex (“Interior”): both plaquettes lying within the loop;
• Outside the thick vortex (“Outside”): both plaquettes lying outside the loop;
• On the vortex edge (“Edge”): one plaquette within and one outside the thick vortex;
• Average over the whole lattice (“Vacuum”): no further criteria.

Two non-planar plaquettes are considered “longitudinal” if they belong to the same cube, see Figure
2 and therefore can be pierced by the same flux line. For two such non-planar plaquettes it is not
necessary that they are of same direction and we distinguish four relative positions in order to study the
corresponding S2-homogeneities:

• Along the vortex flux (“online”): both plaquettes are P-plaquettes;
• Outside the vortex (“offline”): non of the plaquettes is a P-plaquette;
• Trespassing the vortex (“leaving”): only one of the two plaquettes is a P-plaquette;
• Average over the whole lattice (“Vacuum”): no criteria.

Figure 8 tries to clarify the idea behind these planar and longitudinal properties. The S2-homogeneities
of planar and longitudinal vacuum can deviate because the distance of the compared plaquettes is not
necessarily identical.

Figure 8. The colorful thick line in the middle of the figure represents flux building a thick vortex and the
black thin line in its center indicates the fluxline of the corresponding P-vortex. On the non-projected field
configuration this vortex is detected by the non-trivial center region, surrounded by a black rectangle on the
original lattice in the left diagram. We investigate the S2-homogeneity on the pairs of plaquettes, outside
the vortex, inside the vortex and on its edge, indicated there by shaded regions. With pairs of non-planar
plaquettes, depicted in the right diagram, an analysis of the longitudinal color structure is possible.

As calculations of the lattice spacing require much more statistics than we need for the calculations of
the piercing area and the color structure, we do a cubic interpolation of the literature values given in Table
1 to determine the lattice spacing.
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Table 1. The values of the lattice spacing in fm and the string tension corresponding to the respective value
of β are based on [12–16] by setting the physical string tension to (440 MeV)2.

β 2.3 2.4 2.5 2.635 2.74 2.85

a [fm] 0.165(1) 0.1191(9) 0.0837(4) 0.05409(4) 0.04078(9) 0.0296(3)

σ [lattice] 0.136(2) 0.071(1) 0.0350(4) 0.01459(2) 0.0.00830(4) 0.00438(8)

Our calculations cover an interval from β = 2.1 to β = 2.55 in steps of 0.05. To each value of β

we generate 120 configurations with Wilson action, respectively, 10 for lattices of size 144 and 164 and
100 for lattices of size 184. By calculating the string tension via Creutz ratios χ in the center projected
configuration and comparing with the literature values we can quantify how good we detected the center
vortices and by approximating the string tension via the vortex density $vort we can check how many short
range fluctuations perturb our analysis. As can be seen in Figure 9, our identification of the excitations
relevant for confinement are quite satisfactory for the middle β-regime, although slightly underestimate the
literature values in the lower β regime and slightly overestimate it for higher β. We accept an overestimated
vortex density in order not to overlook excitations relevant for confinement when reconstructing thick
vortices.

Figure 9. Comparison of the string tension calculated via Creutz ratios in the projected configuration and
calculations based on the vortex density with the literature values.

3. Results

Figure 10 shows our results and fits with extrapolations to the continuum limit. All parameters of the
respective fits are shown with full value and standard error in the tables below. The T-statistic and P-value
are shown to check the quality of the fit. First we present indications for a vanishing thickness of vortices
in the continuum limit, then we discuss their color structure.
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Figure 9. Comparison of the string tension calculated via Creutz ratios in the projected configuration
and calculations based on the vortex density with the literature values.

3. Results

Figure 10 shows our results and fits with extrapolations to the continuum limit. All parameters of
the respective fits are shown with full value and standard error in the tables below. The T-statistic and
P-value are shown to check the quality of the fit. First we present indications for a vanishing thickness
of vortices in the continuum limit, then we discuss their color structure.

Figure 10. The data of vortex thickness (left), planar S2-homogeneity (middle) and longitudinal
S2-homogeneity (right) are shown in dependence of the lattice spacing a. The homogeneities are
distinguished for vortex interior, vortex edge, vortex outside and the average over the whole volume
of the lattice (vacuum). All three diagrams indicate a vanishing vortex thickness. From the data in the
middle and the right diagram we conclude that the vortex is inhomogeneous in longitudinal direction,
but homogeneous in planar directions.

In the left part of Figure 10 and in Table 2 the dominance of the quadratic term with factor
cA = 3.4(2) over the linear factor kA = 0.25(5) fm and the small non-physical negative value
of Acontinuum = −0.009(3) fm2 for the piercing area indicate a vanishing vortex thickness in the
continuum, remember Figure 4. This is also strengthened by the fact, that within errors we find
equal continuum extrapolations of S2-homogeneities for the vacua and outside and offline the vortex,
see green and black line corresponding to Outside AND Offline and Vacuum in the middle and
right of Figure 10. In the continuum limit the planar homogeneity (middle) of the vacuum of
hCS2 = 0.639(2) is compatible to the planar homogeneity outside the vortex hCS2 = 0.640(2); see

Figure 10. The data of vortex thickness (left), planar S2-homogeneity (middle) and longitudinal
S2-homogeneity (right) are shown in dependence of the lattice spacing a. The homogeneities are
distinguished for vortex interior, vortex edge, vortex outside and the average over the whole volume
of the lattice (vacuum). All three diagrams indicate a vanishing vortex thickness. From the data in the
middle and the right diagram we conclude that the vortex is inhomogeneous in longitudinal direction, but
homogeneous in planar directions.

In the left part of Figure 10 and in Table 2 the dominance of the quadratic term with factor cA =

3.4(2) over the linear factor kA = 0.25(5) fm and the small non-physical negative value of Acontinuum =

−0.009(3) fm2 for the piercing area indicate a vanishing vortex thickness in the continuum, remember
Figure 4. This is also strengthened by the fact, that within errors we find equal continuum extrapolations of
S2-homogeneities for the vacua and outside and offline the vortex, see green and black line corresponding
to Outside AND Offline and Vacuum in the middle and right of Figure 10. In the continuum limit the
planar homogeneity (middle) of the vacuum of hCS2 = 0.639(2) is compatible to the planar homogeneity
outside the vortex hCS2 = 0.640(2); see Table 3. The longitudinal homogeneity (right) of the vacuum
of hCS2 = 0.672(1) is compatible to the longitudinal homogeneity offline the vortex hCS2 = 0.672(1); see
Table 4. Furthermore, the factors kh of the linear terms are compatible for the whole vacuum (planar kh =

0.097(27), longitudinal kh = 0.00(2)) and outside/offline the vortex (planar kh = 0.065(27), longitudinal
kh = 0.00(2)).

Table 2. The parameters of fitting Alattice(a) = Acontinuum + kA ∗ a + cA ∗ a2 to the measured vortex
piercing area on the lattice. The dominance of the quadratic factor cA over the linear factor kA and the near
to zero value of Acontinuum indicate a vanishing vortex thickness in the continuum.

Piercing Area Estimate Standard Error t-Statistic P-Value

Acontinuum/fm2 −0.00855142 0.00281233 −3.04069 0.0188287
kA/fm 0.248823 0.0489884 5.07922 0.00143227

cA 3.3713 0.174175 19.3559 2.44947 × 10−7

Within errors the quadratic factors for the vacuum (planar ch = −0.08(8) and longitudinal ch =

−0.01(8)) are identical to those outside/offline the vortex (planar ch = −0.09(9) and longitudinal ch =

0.00(8)). This is compatible to the assumption, that the two volumina, that is, whole vacuum and
outside/offline the vortex, coincide.
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Table 3. The parameters of fitting hS2 = hCS2 + kh ∗ a
fm + ch ∗ a2

fm2 +O(a3) to the planar color homogeneity
of the vacuum and the vortex outside. The three parameters are identical within errors for the vacuum and
the vortex outside. The positive sign of kh indicates the absence of long range fluctuations of the n-vector.

Planar Vacuum Estimate Standard Error t-Statistic P-Value

hCS2 0.639146 0.00173019 369.407 2.81298 × 10−16

kh 0.0972656 0.0270039 3.60191 0.00871761
ch −0.0783918 0.0851997 −0.920096 0.38813

Planar Outside Estimate Standard Error t-Statistic P-Value

hCS2 0.640275 0.00178975 357.745 3.52117 × 10−16

kh 0.0652618 0.0276802 2.3577 0.0505116
ch −0.0886687 0.0868844 −1.02054 0.341442

In Table 3 the two positive signs of the kh and the two small values of the ch outside the vortex and
for the vacuum indicate that there are no long range fluctuations (remember Figure 7) of the color vector,
although the high P-values demand caution with this interpretation.

Table 4. The parameters of fitting hS2 = hCS2 + kh ∗ a
fm + ch ∗ a2

fm2 + O(a3) to the longitudinal color
homogeneity of the vacuum and offline the vortex. The three parameters are identical within errors for the
vacuum and offline. kh vanishes within errors, the negative sign would indicate the absence of long range
fluctuations of the color vector.

Longitudinal Vacuum Estimate Standard Error t-Statistic P-Value

hCS2 0.672431 0.00149354 450.226 7.04231 × 10−17

kh −0.00447137 0.0244568 −0.182827 0.860116
ch −0.00892278 0.0789767 −0.11298 0.913218

Longitudinal Offline Estimate Standard Error t-Statistic P-Value

hCS2 0.672338 0.00149817 448.773 7.20344 × 10−17

kh −0.00806252 0.0245051 −0.329013 0.75177
ch −0.000394962 0.0790972 −0.00499337 0.996155

The high planar S2-homogeneity of hCS2 = 0.755(3) within the vortex, compared to the vacuum value
of 0.639(2) (see Tables 3 and 5) are also in favour of a vanishing vortex thickness; as a singular vortex can
not have planar structure, a high planar S2-homogeneity inside the vortex cross section is expected.

Table 5. The parameters of fitting hS2 = hCS2 + kh ∗ a
fm + ch ∗ a2

fm2 +O(a3) to the planar color homogeneity
of the vortex interior. hCS2 inside the vortex is clearly higher, than on the vortex edge, outside or in the
whole vacuum (compare to Table 3).

Planar Interior Estimate Standard Error t-Statistic P-Value

hCS2 0.754742 0.00271182 278.316 2.04121 × 10−15

kh 0.108942 0.0378669 2.87697 0.0237542
ch −0.155359 0.112538 −1.38049 0.209904

The positive value of kh = 0.12(4) inside this piercing area indicates that the planar homogeneity of
the vortex is disturbed only by short range fluctuations (remember Figure 8) of the color vector, which is
again in favor of a non existing planar color structure, hence vanishing thickness of the vortex.
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On the vortex edge the planar S2-homogeneity with a value of hCS2 = 0.589(2) is below the vacuum;
compare Table 6 to Table 3.

Table 6. The parameters of fitting hS2 = hCS2 + kh ∗ a
fm + ch ∗ a2

fm2 +O(a3) to the vortex edge. hCS2 on
the vortex edge is lower than the vacuum value, compare to Table 3. The positive value of kh and the
non-vanishing value of ch indicate a strong fluctuation of the color vector in short range when trespassing
the vortex surface.

Planar Edge Estimate Standard Error t-Statistic P-Value

hCS2 0.589117 0.00249172 236.43 6.39273 × 10−15

kh 0.21375 0.0354255 6.03378 0.00052433
ch −0.290042 0.106036 −2.73532 0.0291143

The positive value of kh = 0.21(4) and the non-vanishing value of ch = −0.3(1) at the vortex edge
indicate a big difference of the color vector inside and outside of the non-trivial center regions.

The longitudinal measurement depicted on the right side of Figure 10 shows that the color vector
fluctuates strongly along the vortex surface. Comparing Table 7 to Table 4, the longitudinal S2-homogeneity
of hCS2 = 0.664(4) along the vortex is below the vacuum value of 0.672(1). This hints at a non-trivial,
longitudinal color structure of the vortex surface. The positive value of kh = 0.03(5) along the vortex line
(online) indicates long range fluctuations of the color vector, but to exclude a negative value more data has
to be collected. Furthermore, the value of ch = −0.1(1) along the vortex requires more statistics. A fit up
to quadratic order might not be the optimum for the color homogeneity along the vortex, possible is also a
linear raise with increasing lattice spacing until saturation is reached. As of that, the error of hCS2 along
the vortex might be underestimated by the fit. Of interest is further, that the longitudinal S2-homogeneity
leaving, that is, one plaquette being pierced by the vortex and one not, with a value of hCS2 = 0.674(2) is
slightly above the homogeneity of the surrounding vacuum, compare Table 8 to Table 4.

Table 7. The parameters of fitting hS2 = hCS2 + kh ∗ a
fm + ch ∗ a2

fm2 + O(a3) to the longitudinal color
homogeneity online the vortex. Comparing the value for hS2 along the vortex with the value of the vacuum
in Table 4, the color vector fluctuates strongly along the vortex.

Longitudinal Online Estimate Standard Error t-Statistic P-Value

hCS2 0.663525 0.00397127 167.081 7.26006 × 10−14

kh 0.0322137 0.0492818 0.653662 0.534205
ch −0.077377 0.136902 −0.565202 0.589584

Table 8. The parameters of fitting hS2 = hCS2 + kh ∗ a
fm + ch ∗ a2

fm2 + O(a3) to the longitudinal color
homogeneity leaving the vortex.

Longitudinal Leaving Estimate Standard Error t-Statistic P-Value

hCS2 0.67404 0.00201668 334.233 5.66693 × 10−16

kh −0.013139 0.0300097 −0.437827 0.674703
ch −0.0023116 0.0923786 −0.0250231 0.980735

The longitudinal S2-homogeneity online is calculated solely on P-plaquettes, but the thick vortex
spans over several plaquettes. We know that this measurement oversees neighboring plaquettes that
belong to the thick vortex.
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4. Discussion

We have presented strong evidence for a vanishing thickness of SU(2) center vortices in the continuum
limit and indications for a longitudinal color structure of the vortex surface: along the vortex and when
trespassing the vortex surface the fluctuations of the color vectors are stronger than in the surrounding
vacuum. Our data favor a model of surface like vortices of thickness vanishing in the continuum limit
with non-trivial color structure reflected by the behavior of the longitudinal S2-homogeneity hS2 along
the flux lines building up the surface. Fluctuations of the color vector~n covering the whole S2 along the
vortex surface could further lead to a topological charge [17–19]. When projecting the S2 color vectors to a
given axis defined by an abelian subgroup, we get positive and negative regions separated by world lines
of magnetic monopoles.

The vanishing vortex thickness in the continuum limit hints at infinitely thin strings populating
the vacuum. The corresponding action diverges and has to be canceled by an entropic contribution [10].
The longitudinal color structure relates center vortices to abelian monopoles. For them, corresponding
divergences have been reported in ref. [20]. The question arises if the vanishing thickness of the vortex in
the continuum limit influences the representation dependence of the string tension.

To reduce the errors of our data concerning the color structure of vortices, we will collect more data.
This might allow to quantify the spatial extent of the color fluctuations along the vortex surface. In the
errors indicated in all tables and figures, we haven also taken into account the error of the literature
value of the lattice spacing a as given in Table 2. This puts an lower limit of 0.0014 to the errors of the
S2-homogeneities. Our results concern the longitudinal S2-homogeneity with respect to P-plaquettes.
By further taking into account the plaquettes building up non-trivial center regions, an increase in the
statistics by a factor of the size of non-trivial center regions could be achieved for vortex concerning data.

Our studies show that the S2-homogeneity is useful for analyzing the color structure of the vacuum
and pave the way for further work. It would be interesting to generalize our procedures to SU(3). As this
group has two non-trivial center elements, the algorithms for detecting non-trivial center regions need
to be modified to enlarge regions with respect to the two non-trivial center elements. Running the
enlargement algorithms for the two different non-trivial center elements separately allows overlaps. This
could be prevented by modifying the criteria for enlargement. The gauge fixing procedure based on
simulated annealing can be implemented for SU(3) without modifications. It may be problematic that our
implementation is quite memory-intensive, requiring contiguous memory. As a generalization to SU(3)
would further increases the memory requirements it might be favorable to look for a memory-optimized
implementation of our algorithms.
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