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Abstract: We discuss constraints on soft CP-violating couplings of axion-like particles with
photon and fermions by using data on electric dipole moments of standard model particles.
In particular, for the axion-like particle (ALP) leptophilic scenario, we derive bounds on CP-odd
ALP-photon-photon coupling from data of the ACME collaboration on electron EDM. We also discuss
prospects of the storage ring experiment to constrain the ALP–photon–photon coupling from data
on proton EDM for the simplified hadrophilic interactions of ALP. The resulting constraints from
experimental bounds on the muon and neutron EDMs are weak. We set constraint on the CP-odd
ALP coupling with electron and derive bounds on combinations of coupling constants, which involve
soft CP-violating terms.
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1. Introduction

Since resolving strong CP violation problem using the Peccei–Quinn (PQ) mechanism [1,2],
the axion-like particles (ALPs) proposed by Weinberg and Wilczek [3,4] play an important role in
hadron phenomenology and searching for new physics (NP) beyond standard model (SM) [5,6].
In this vein, the important step was formulation of the effective Lagrangian approach with an explicit
manifestation of the invisible axion [7]. In particular, Lagrangian involving couplings of axion with
SM gauge fields and fermions has been proposed. It was shown that the couplings of axion with
SM gauge fields (G = g, W, B) are generated using the anomalous coupling of the ALP to GG̃ gauge
field currents, where G and G̃ are generic strength of gauge field and its dual. In particular, the part
describing the coupling of ALPs with photons and fermions ψ = e, µ, p reads [7,8]

L ⊃ 1
2
(∂µa)2 − m2

a
2

a2 +
gaγγ

4
a Fµν F̃µν + ∑

ψ=e,µ,p
agaψψ ψ̄ iγ5 ψ , (1)

where gaγγ = caγγ/Λ and gaψψ = cψψ m f /Λ are the couplings of ALP with photons and fermions,
Λ is the NP scale, which is much larger than the electroweak scale ΛEW: Λ� ΛEW. One should stress
that the coupling of axion with SM fermions is suppressed by 1/Λ. Such coupling can be generated
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from the coupling of axion to the scalar fields (dimension-5 operator) after the spontaneous breaking
of electroweak symmetry [9]. We demonstrate the inducing of that coupling in Appendix A.

In addition to this CP-even coupling, let us consider the CP-odd coupling of ALP with photons

LCP\
aγγ ⊃

ḡaγγ

4
a Fµν Fµν , (2)

where ḡaγγ has dimension of GeV−1. Such coupling was recently discussed in [10]. On the other hand,
ALP is accompanied by a scalar field, dilaton φ, in extra dimension theories. In particular, these degrees
of freedom play an important role in phenomenology of black holes and hadrons [11–14]. Coupling of
the dilaton with photons has a similar structure as the CP-odd one for the axion: L ⊃ gφγγ

4 φ FµνFµν.
Note, analogous couplings with two photons, in case of light scalar mesons f0(600) and a0/ f0(980),
have been studied in [15–17]. The coupling of the dilaton with fermions has Yukawa type, which is
manifestly CP-invariant: L ⊃ ḡφψψ φ ψ̄ ψ. Note, the dilaton plays the role of the Nambu–Goldstone-like
boson responsible for the spontaneous breaking of conformal/scale invariance [18]. Its mass is expected
below the typical conformal symmetry breaking scale mφ . 1/gφγγ.

Constraints on φγγ coupling from collider experiments are widely discussed in the
literature [19–27] for the mass range 1 GeV . mφ . 1 TeV. In addition, the authors of [28] provided
a detailed analysis of light dilaton scenarios (1 keV . mφ . 10 GeV) and estimated the bounds on
radion–photon–photon coupling gφγγ from Supernova SN1987a, cosmology, horizontal branch stars,
and beam-dump experiments. The latter analysis reveals an unconstrained window below gφγγ . 10−5

GeV−1 for the regarding mass range. However, we note that emerging a CP violating coupling in the
dilaton model L ⊃ gφψψ φ ψ̄ iγ5 ψ will require a proper recasting of the relevant bounds. That task
however is beyond the scope of present paper. Instead, we study the CP-violating scenario (2) for
light sub-GeV pseudo-scalar particle and analyze in detail its implication for EDM physics of charged
leptons and nucleons. In addition, for the certain ALP mass range, we also set the limits on soft the
CP-violating coupling of ALP with electron:

LCP\
aee ⊃ ḡaeeaēe . (3)

In our previous paper [29], we discussed the NP phenomenology of hidden scalar, pseudoscalar,
vector, and axial-vector particles coupled to nucleons and leptons, which could give contributions
to different puzzles in particle physics (like proton charge radius, (g − 2)µ, 8Be-4He anomaly,
electric dipole moments (EDMs) of SM particles).

In the present paper, we derive new limits on the couplings of ALPs with SM fermions using data
on fermion EDMs. In particular, we consider the contribution of diagrams to fermion EDMs generated
by the CP-even coupling of ALP with fermions and CP-odd coupling of ALP with photons. In this vein,
we do not require a universality of the coupling of ALP with leptons and quarks, which means that
the limits on quark couplings with ALP are not necessarily applicable to corresponding couplings in
lepton sector. We note that constraints on a combination of CP-violating couplings from EDM physics
are widely discussed in the literature. In particular, in [30,31], authors derived constraints on scalar
and pseudoscalar coupling constant combinations |gaee ḡaee| and |gaee ḡapp| from atomic and molecular
EDM experiments for the relatively wide range masses of ALP 10−6 eV . ma . 106 eV. In [32–35]
authors discuss constraints on CP-violating effective interactions ēeN̄N from data on EDM of atoms
and molecules.

The paper is structured as follows. In Section 2, we discuss the constraints on CP-even ALP-lepton
couplings for the mass range of interest from 1 MeV to 1 GeV for leptophilic scenario of ALP interaction.
We also obtain the limits on ALP-photon-photon couplings using data on electron and muon EDM.
The expected bounds on ALP couplings from proton EDM are derived in Section 3 for the hadrophilic
scenario of ALP interaction. In Section 4, we discuss bounds on CP-odd couplings associated with
aγZ0 and aee interaction. Combined bounds on products of ALP couplings are discussed in Section 5.
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2. Constraints for Leptophilic Scenario

Let us consider Lagrangian describing the CP-odd coupling of ALP with SM photons and CP-even
leptophilic interaction

L ⊃
ḡaγγ

4
aFµνFµν + ∑

l=e,µ
igall a l̄γ5l . (4)

These operators induce a finite contribution to the EDM of lepton. In the left panel of Figure 1,
we show the contribution of 1-loop diagram to the operator of fermion EDM. It must be pointed
out that CP-even couplings L ⊃ gaγγ

4 aFµν F̃µν do not generate lepton EDM operators at the one-loop
level. In [29], authors showed that the ALP Lagrangian (4) induces the lepton EDM, which has the
following form

|dl/e| = 1
16π2 ḡaγγ gall J (ma/ml) , (5)

where function J (ma/ml) for ma/ml � 1 can be approximated as

J (ma/ml) '
m2

l
3m2

a
log

m2
a

m2
l

, (6)

and for light ALP, ma/ml � 1, it is given by

J (ma/ml) '
1
2

. (7)

Now, let us discuss existing constraints on CP-even ALP-fermion coupling L ⊃ igallal̄γ5l for the
mass range of interest 1 MeV . ma . 1 GeV. In particular, we refer to the analysis of [8] on leptophilic
coupling of ALP

L ⊃ ∑
l=e,µ,τ

cll
2Λ

(∂µa) l̄ γµγ5 l (8)

It is appropriate to rewrite coupling gall in Equation (4) through the Yukawa-like term as follows
gall = cllml/Λ. Indeed, Equation (8) on lepton mass shell implies that

L ⊃ ∑
l=e,µ

cll
Λ

ml l̄ iγ5 l . (9)

An author of [8] provided current limits on cll/Λ from beam-dump experiments [36] and BaBar
facility [37] as well as from astro-particle physics and cosmological observations [38], assuming lepton
universality of couplings, cee ' cµµ ' cττ . In particular, in our estimate, we use a benchmark
conservative value cee/Λ ' 10−1 GeV−1 from coupling loop hole in the ALP mass range 1 MeV .
ma . 200 MeV. Finally, this implies gaee ' 5× 10−5 for electron-ALP coupling. In addition, for the
muon-ALP interaction, we take gaµµ = 10−3 as an unconstrained benchmark coupling in the mass
range 200 MeV . ma . 1 GeV; it corresponds to cµµ/Λ = 10−2 GeV−1.

We note that ACME collaboration [39] sets a severe constraint on electron EDM at 90% CL, |de/e| <
1.1× 10−29 cm, or equivalently,

|de/e| . 5.5× 10−16 GeV−1. (10)

Therefore, for gaee ' 5 × 10−5, it follows from Equations (5), (7), and (10) that ḡaγγ .
3.3 × 10−9 GeV−1 for ma . me. Moreover, for ma � me, one has the following allowed limit on
ALP–photon–photon coupling

ḡaγγ . 5× 10−9 GeV−1 × m2
a

m2
e
× 1

log(m2
a/m2

e )
. (11)
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We note that existing the limit on muon EDM, |dµ/e| < 1.5 × 10−19 cm, provides relatively
weak bound

ḡaγγ . 3.6 GeV−1 × m2
a

m2
µ
× 1

log(m2
a/m2

µ)
. (12)

for the benchmark coupling gaµµ ' 10−3 and ALP masses in the range 200 MeV . ma . 1 GeV. In the
right panel of Figure 1, we show ALP parameter space constrained by the experiments which are
sensitive to EDMs of leptons.

γ

ψ

a

γ

ψ

ψ

Figure 1. (Left): fermion EDM operator associated with CP-odd coupling of photon with
axion-like particle (ALP) and CP-even interaction of ALP with standard model (SM) fermions ψ,
see, e.g., Equation (1). (Right): Limits on ḡaγγ − ma from various experiments. Blue region shows
the parameter space of ALP at 90% CL constrained by ACME, that corresponds to the electron EDM
limits |de/e| < 1.1× 10−29 cm and gaee ' 5.0× 10−5 (cee/Λ ' 10−1 GeV−1). Green region represents
the current constraints on ḡaγγ from muon EDM, |dµ/e| . 1.5× 10−19 cm, and benchmark coupling
gaµµ ' 10−3(cµµ/Λ ' 10−2). Red solid lines are expected bounds on ḡaγγ for planned sensitivity of
SRE to the proton EDM at the level of |dp/e| < 10−29 cm.

However, one remark should be added. For concreteness in our study, we consider non-universal
ALP coupling with leptons and quarks, cll 6= cqq, which means that limits on cqq/Λ coming from
meson decays [36,40] are not directly applicable to cll/Λ bounds. We address hadrophilic constraints
in Section 3.

3. Constraints for Hadrophilic Scenario

In this section, we discuss the constraints on the CP-even ALP-photon-photon couplings for the
following simplified hadrophilic scenario

L ⊃
ḡaγγ

4
aFµνFµν + ∑

h=p,n
igahh a h̄γ5h . (13)

Let us consider first the prospects of the storage ring experiment (SRE) (see, e.g., [41]) to probe
ALP scenario with coupling to proton L ⊃ igapp a p̄γ5 p. In particular, in our analysis, we consider
the following typical bound on ALP–proton–proton coupling gapp . 10−10 − 10−9 for the mass range
of interest 1 MeV . ma . 1 GeV. In addition, the limit on gapp is expected to be reasonable due to
ruled out limits on light pseudoscalar universal coupling with quarks [40] at the level of gaqq . 10−8.
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The storage ring experiment is expected to be sensitive to the proton EDM at the order of |dp/e| . 10−29

cm. This implies the following conservative bound on ALP-photon-photon interaction

ḡaγγ . 1.6× (10−4 − 10−3)GeV−1. (14)

The relevant expected limits for SRE are shown in the right panel of Figure 1. The current limit on
neutron electric charge, ḡγnn < (−2± 8)× 10−22e and its coupling to ALP at the level of gann . 10−10

do not induce experimentally favored constraints on ḡaγγ at one-loop level.

4. Constraints on ALP Coupling with Z0-Boson and Electron

It is worth mentioning that one can also consider dimension-5 operator of ALP coupling with
photon and Z0-boson

L ⊃
ḡaγZ

2
aFµνZµν, (15)

which provides a finite contribution to fermion EDM in association with CP-even, L ⊃ igaψψaψ̄γ5ψ,
and CP-odd, L ⊃ ḡaψψaψ̄ψ, ALP interaction with fermions. In the left panel of Figure 2, corresponding
1-loop diagrams are labeled by (3), (4), (5), and (6). However, these diagrams generate sub-leading
contributions to the EDM of fermions due to suppression factor ∼ 1/m2

Z, which is associated with
Z0-boson internal line. Therefore, CP-odd interaction (15) does not induce viable constraint on ḡaγZ
from the EDM of fermions.

γ

ψ ψ

ψ ψ

a

(1)

γ

ψ ψ

ψ ψ

a

(2)

γ

ψ ψ

ψ

Z0 a

(3)

γ

ψ ψ

ψ

Z0 a

(4)

γ

ψ ψ

ψ

a Z0

(5)

γ

ψ ψ

ψ

aZ0

(6)

10-6 0.001 1
10-14

10-10

10-6

10-2

ma,GeV

G
e
V
-

1

|gaγγ gaμμ|, |dμ/e|<1.5*10-19cm

|gaγγgapp|, |dp/e|<1.7*10-25cm

|gaγγgaee|, |de/e|<1.1*10-29cm

Figure 2. (Left): diagrams describing contribution of new particles to fermion EDMs. Black boxes
and dots represent CP-odd and CP-even vertices, respectively. In particular, in diagrams (1) and (2)
black boxes correspond to ḡaψψaψ̄ψ vertices, black rounds denote igaψψaψ̄γ5ψ vertices. In diagrams
(3–6), black box (the aγZ vertex) corresponds to the interaction (15). (Right): limits on |ḡaγγgaψψ| −ma

ruled out at 90% CL by experiments which are sensitive to measurements of EDM of SM fermions.
We address to [42,43] for experimental constraints on muon and proton EDM respectively (for recent
review see, e.g., [44]).

In our previous paper [29], we derived constraints on the product of the couplings ḡaee and gaee

from EDM bounds of the electron. Corresponding 1-loop diagrams, which induce electron EDM,
are labeled by (1) and (2) in the left panel of Figure 2. However, it is instructive to obtain limits on
CP-odd coupling ḡaee for certain values of benchmark coupling gaee and ALP mass ma. Indeed, one has
the following estimate for the electron EDM [45]

|de/e| = ḡaeegaee

8π2me
I(ma/me), (16)
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where I(ma/me) can be approximated as

I(ma/me) =


2m2

ψ

m2
a

log
(

ma
me

)
, ma/me � 1,

1, ma/me � 1.
(17)

Therefore, for gaee = 5× 10−5 and the ALP mass range 1 MeV . ma . 200, the MeV one has the
following conservative limits on ḡaee at 90% CL

ḡaee .

 2.1× 10−13
(

ma
me

)2
log−1

(
ma
me

)
, me � ma,

4.3× 10−13, ma � me.
(18)

It is worth mentioning that the limit ḡaee . 4.3 · 10−13 for ma & 20 MeV is better than the bound
on ḡaee from non-resonant production of new scalars in horizontal branch star core during helium
burning (for detail, see, e.g., [46] and corresponding left panel in Figure 5).

5. Bounds on Combination of Couplings

In this section, for completeness, we summarize current reasonable constraints on a combination
of couplings, which are ruled out by the EDM of SM fermions. In the right panel of Figure 2, we show
limits associated with muon, proton, and electron EDM. In particular, for relatively light ALP, ma � mψ,
one has the following scaling of the limit

ḡaγγgaψψ . 1.6× 1016 GeV−1 ×
∣∣∣∣dψ/e

cm

∣∣∣∣ . (19)

In addition, for heavy ALP, ma � mψ one has

ḡaγγgaψψ . 2.4 · 1016 GeV−1 m2
a

m2
ψ

log−1

(
m2

a

m2
ψ

) ∣∣∣∣dψ/e
cm

∣∣∣∣ (20)

One can see from Figure 2 that most stringent constraints follow from the electron EDM bound,
ḡaγγgaψψ . 10−13 GeV−1, as expected for ma . 1 GeV. On the other hand, the limit on ḡaγγgaψψ is ruled
out from proton EDM for ma & 1 GeV at the level of ḡaγγgaψψ . 10−8 GeV−1. Finally, the combination
of couplings associated with muon is feebly constrained due to the weak bounds on the muon EDM.

To conclude this section, we discuss known results on limits for the couplings from EDM bounds.
In particular, we note that in [30], authors derived similar constraints on scalar and pseudoscalar
coupling constant combinations |gp

e gs
N | . 10−16 from 199 Hg EDM experiments for the typical masses

ma . 106 eV. These couplings are associated with the following Lagrangian L ⊃ igp
e aēγ5e + gs

N aN̄N.
This combination connected with the exchange of an axion between the atomic electrons and the
nucleus. Moreover, one can translate these couplings to our notations as follows, gp

e ≡ gaee and
gs

N ≡ ḡapp. In addition, authors of [31] provided constraints on |gp
e gs

e| . 10−19 from atomic and
molecular EDM experiment for ma . 106 eV. In our notation, these couplings are gs

e ≡ ḡaee and
gp

e ≡ gaee. The relevant combination of the coupling constant corresponds to diagrams (1) and (2) in
the left panel of Figure 2. In [32–35], authors provided constraints on CP-violating contact interactions
ēeN̄N from data on EDM of atoms and molecules.

6. Conclusions

In the present paper, we derive constraints on soft CP-violating couplings of ALP from
experimental data on the EDM bounds of SM fermions. In particular, we derive 90% CL limit on CP-odd
ALP coupling with photons, by taking into account EDM limits for leptons. This analysis is based on
the simplified phenomenological scenario of leptophilic ALPs in the mass range 1 MeV . ma . 1 GeV.
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We also obtain expected limits on CP-odd aγγ coupling for the SRE experiment on proton EDM,
which is associated with hadrophilic ALP interactions. We calculate bounds on soft CP-violating ALP
coupling with electron.
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Appendix A. Generation of Coupling of ALPs with SM Fermions

In this section, we discuss a generation of the axion-Z0 coupling. One could propose different
scenarios of emergence of the axion-Z0 coupling, e.g., it can be induced by the coupling of scalar
field with axion (the similar coupling of higher dimensions has been discussed in [9]). In particular,
following ideas of [9], one can consider the coupling of Higgs φ- scalar fields with axion in the form
induced by dimension-5 operator

Laφ =
G(5)

Zh
Λ

∂µa (φ†iDµφ) log(φ†φ/v2) , (A1)

where Dµ is the covariant derivative including mixing of electroweak gauge fields and v = 246 GeV
is the Higgs vacuum condensate. After the realization of spontaneous breaking of electroweak
symmetry and expressing the combination of B and W3 fields through Z0 and A one gets [using
GaZ0 = G(5)

Zh log(1/2)]:

LaZ0 = − e
sin(2θW)

GaZ0 v2

Λ
∂µa Z0

µ . (A2)

By analogy with dark photon, we can introduce the coupling of axion with SM fermions
starting form mixing of axion and Z0 boson parameterizing mixing parameter ε̄ = εv2/Λ,
where ε = eGaZ0 / sin(2θW):

Lmix = −ε
v2

Λ
∂µaZ0

µ , (A3)

Then, we shift the Z0 field as

Z0 → Z0 + ε
v2

Λ
∂µa
M2

Z
. (A4)

It is clear that the kinetic term of the Z0 field is unchanged after the shift (A4), while the kinetic
term of the axion will obtain a very small correction which can be eaten by the axion field redefinition:

a→ a ·
[
1− ε2v4/(Λ2M2

Z)
]−1/2

(A5)
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which results in a negligible shift of the axion mass. Like in the case of dark photon, the shift (A4)
generates the couplings of the axion with SM fermions due to the shift in the coupling Z0ψ̄ψ:

LZ0ψ̄ψ → LZ0ψ̄ψ + Laψ̄ψ , (A6)

where

LZ0ψ̄ψ =
1
2

Z0
µ ψ̄ [cψ

Vγµ − cψ
Aγµγ5]ψ, Laψ̄ψ = ∂µa ∑

ψ

gψ

2Λ
ψ̄ γµγ5ψ , (A7)

here, gψ is the coupling defined in consistency with the original paper [7]

gψ = −cψ
A

εv2

M2
Z

. (A8)
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