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Abstract: Transport properties of dense quark matter are discussed in the strong magnetic field,
B. B dependence as well as density dependence of the Hall conductivity is discussed, based on
the microscopic Kubo formula. We took into account the possibility of the inhomogeneous chiral
phase at moderate densities, where anomalous Hall effect is intrinsic and resembles the one in Weyl
semimetals in condensed matter physics. Some theoretical aspects inherent in anomalous Hall effect
are also discussed.
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1. Introduction

Observations of compact stars have provided us with information about highly dense
matter in their cores since their first discovery in 1967. Nowadays, many papers have
appeared about the possible presence of quarks and its implications on observations of
neutron-star mergers, high-mass stars about 2M� or magnetars [1,2]. Magnetars bear a
huge magnetic field of O(1015G) in their surface and exhibit unique thermal evolution [3],
while the origin of the magnetic field and the surface temperature have not been fully
understood yet. Their persistent surface temperature is very high, compared to ordinary
pulsars at the same age, and resides well above the standard cooling curve [4]. In order
to resolve the issue, we must take into account the thermal conduction as well as the
heating mechanism in the presence of a strong magnetic field. One of the authors (T.T.)
has suggested a possibility of spontaneous magnetization of quark matter inside cores as a
microscopic origin of huge magnetic fields, based on the energetic scale of QCD [5]. Herein,
we examine the transport properties of quark matter under a large magnetic field, which
provides, we expect, a first step to understanding thermal evolution of magnetars with
quark core.

Because the transport properties are important for thermal evolution of ordinary
pulsars, there have been many works [6]. However, the microscopic treatment of thermal
conductivity may include many subtle points, such as relativistic effects, quantum mechan-
ical effects (including the Shubnikov–De Haas effect due to discretized Landau levels) in
the magnetic field. Herein, we re-examine these points for relativistic fermions, such as
quarks or electrons. For example, electrons become relativistic in the inner crust of neutron
stars, and we must use the Dirac equation to describe them. It should be interesting to see
such Dirac electrons become important in modern condensed matter physics [7,8], where
some topological materials have been also discussed. If such topological materials develop
in the inner crust, we must carefully discuss the transport properties of electrons there.

The basic framework is the same for conducting electrons and quarks to discuss the
transport phenomena; we briefly summarize it for electrons for simplicity. For the electric
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current j and the energy current jE, phenomenological-transport equations should read for
charge-carrying electrons:

j = L11

[
E− T

e
∇
( µ

T

)]
+ L12

[
T∇
(

1
T

)
−∇φg

]
, (1)

jE = L21

[
E− T

e
∇
( µ

T

)]
+ L22

[
T∇
(

1
T

)
−∇φg

]
, (2)

with the electric field, E = −∇φ. φg is the fictitious “gravitational” potential introduced by
Luttinger [9], with which one can apply the linear-response theory for thermal conductivity.
The conductivity tensor σ and the thermal conductivity κ are constructed by combining
the matrix elements Lab (second rank tensors) as

σ = L11, (3)

κ = T−1
(

L22 − L−1
21 L11L−1

12

)
. (4)

The matrices Lab are related to each other, and we confirm that the Wiedemann–Franz
law holds at low temperature,

κ = LTσ, (5)

with the Lorentz number, L = 1
3 (πkB/e)2. Thus, we need information about the conductiv-

ity σ at vanishing temperature (T = 0) to obtain thermal conductivity κ at low temperature.
In general, σ or κ has off-diagonal components, corresponding to the Hall effect.

The evaluation of the transport coefficients Lab can be done by the Boltzmann equation
or the Kubo formula in a microscopic way. Here, we use the Kubo formula within the
linear-response theory [10]. It is to be noted that quark matter contains flavor and color
degrees of freedom, and we must carefully sum up their contributions.

For quarks, we see an interesting possibility of the anomalous Hall effect (AHE) [11,12]
at moderately high densities. Recently possible appearance of the inhomogeneous chiral
phase (iCP) has been suggested to show up in some region of the QCD phase diagram in
the temperature (T)-baryon-number chemical potential (µ) plane (see Figure 1). Therefore,
if quark matter is realized in the core region of compact stars, there may be iCP developed.
The physical properties of the iCP phase in various situations, including those in the
presence of magnetic field, have been extensively studied [13–18]. The dual chiral density
wave (DCDW) is one type of iCP, which is a kind of density wave and specified by the
scalar and pseudoscalar condensates with spatial modulation [13],
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Figure 1. Schematic picture of the QCD phase diagram in the (𝑇, 𝜇)-plane. Inhomogeneous chiral 
phase (iCP) may appear near the chiral transition, and spontaneously symmetry broken (SSB) 
phase, chiral-restored phase, and iCP meet at the triple point called the Lifshitz point. 

Figure 1. Schematic picture of the QCD phase diagram in the (T, µ)-plane. Inhomogeneous chiral
phase (iCP) may appear near the chiral transition, and spontaneously symmetry broken (SSB) phase,
chiral-restored phase, and iCP meet at the triple point called the Lifshitz point.

〈
ψψ
〉
= ∆ cos(q·r), (6)
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〈
ψiγ5τ3ψ

〉
= ∆ sin(q·r). (7)

The order parameters are the amplitude ∆ and the wave vector q. We shall see
the DCDW phase shares similar physical properties with Weyl semimetals (WSM) in
condensed-matter physics [19].

2. Brief Review of AHE in the DCDW Phase
2.1. Dual Chiral Density Wave

AHE and its implication to axion electrodynamics have been discussed with a focus on
its relation to the DCDW phase [20,21]. For flavor symmetric u, d quark matter, the single-
particle energy of quarks can be easily obtained in the DCDW phase, when the Nambu–
Jona-Lasinio (NJL) model is used as an effective model of QCD at low-energy scales,

LNJL = ψ
(
iγµ∂µ −m

)
ψ + G[(ψψ)

2
+ (ψiγ5τψ)

2
]. (8)

Using the ansatz (1) for the chiral condensates, the effective Lagrangian reads

LMF = ψ

(
iγµ∂µ −

1 + γ5τ3

2
M(z)− 1− γ5τ3

2
M∗(z)

)
ψ− |M(z)|2

4G
, (9)

M(z) = −2G∆eiqz
(
≡ Meiqz

)
, (10)

in the chiral limit, mc = 0, under the mean-field approximation [13]. One may rewrite it in
a simple form,

LMF = ψW

(
iγµ∂µ −M− 1

2
γ5τ3γµqµ

)
ψW − G∆2 (11)

with M = −2G∆ and the space-like vector qµ = (0, q) by the use of the Weinberg trans-
formation, ψW ≡ exp[iγ5τ3/2x(r)]ψ = exp[iγ5τ3q·r/2]ψ. We can see that the amplitude
of DCDW provides the dynamical mass for the newly defined quarks (quasiparticles) de-
scribed by ψW , while the wave vector induces the axial-vector mean-field applied to them.

The single-particle energy can be easily extracted,

Eε=±1, s=±1(p) = ε

√
E2

p +
q2

4
+ s
√
(p·q)2 + M2q2 (12)

with Ep =
√

p2 + M2 for each flavor, where ε and s denote the particle–antiparticle and
spin degrees of freedom, respectively. Accordingly, this form suggests anisotropy of
the Fermi sea in the momentum space: it deforms about the direction of q in the axial-
symmetric manner.

In Figure 2, we plotted the energy surface in the momentum space. One can see that
there is a gap between negative and positive energies in the case with q/2 < M (Figure 2a),
while in the opposite case with q/2 > M, there are two Weyl points p = (0, 0,±K0), with

K0 =
√
(q/2)2 −M2 where the gap vanishes, as seen in Figure 2b. The thermodynamic

potential can be derived by the single-particle energies, and the parameters (q, M) are
determined by the minimization of the thermodynamic potential: it has been shown that
the relation q/2 > M holds in the DCDW phase [13].



Particles 2021, 4 66

Particles 2021, 4 FOR PEER REVIEW  4 
 

 

are determined by the minimization of the thermodynamic potential: it has been shown 
that the relation 𝑞/2 > 𝑀 holds in the DCDW phase [13]. 

Here some resemblance with WSM is worth mentioning [19]. The effective Lagran-
gian (3) is of the same form as in WSM, by replacing 𝑞/2 by the strength of spin-splitting 𝑏 and the dynamical mass 𝑀 by the spin–orbit coupling strength 𝑚. The relation, 𝑏 >𝑚 holds in WSM. The important difference is that the values of (𝑞, 𝑀) are dynamically 
determined as a consequence of chiral symmetry breaking in the DCDW phase, while the 
parameters (𝑏, 𝑚) can be controlled with the experimental setup for WSM. Positive-en-
ergy states correspond to the conduction band, while the negative-energy states corre-
spond to the valence band. Because some positive energy states are filled in the DCDW 
phase, one might call it a “Weyl metallic state” [22]. Therefore, we discuss, hereafter, the 
transport properties of dense quark matter, referring to WSM as a guiding principle. 

 
(a) (b) 

Figure 2. Energy surfaces for different regions of the parameters: Left panel (a) is for the case 𝑀 >𝑞/2, while right panel (b) is for the case 𝑀 < 𝑞/2. 

2.2. Anomalous Hall Effect 
One of the interesting transport properties in WSM may be the anomalous Hall effect 

(AHE) [19]: the Hall current flows even in the absence of magnetic field in response to the 
external electric field. Accordingly, we shall see AHE in the DCDW phase. We can derive 
the anomalous Hall conductivity by way of the Kubo formula, considering a linear re-
sponse to a tiny electric field [20]. It is given by the integral of the Berry curvature in the 
momentum space 𝐛(𝐩), 𝜎 = 𝑒 𝑑 𝑝(2𝜋) 𝑏 (𝐩)𝑓(𝐸𝐩) (13)

with 𝑓(𝐸 ) being the Fermi–Dirac distribution function. The Berry curvature is defined 
in terms of the eigenfunctions 𝑢𝐩 as 𝐛(𝐩) = −𝑖∇𝐩 × 𝑢𝐩 ∇𝐩 𝑢𝐩  (14)

and it reads 𝑏 , (𝐩) = −12𝐸 , 𝑠𝐸 + 𝑞2  (15)

with 𝐸 = 𝑝 + 𝑀 . It is interesting to see that the Berry curvature looks like the mag-
netic field from the Dirac monopole located at each Weyl point in the momentum space. 
The contribution from the negative-energy sea apparently diverges and needs a relevant 
regularization [23]. We see that it is appropriate to use the proper-time method or the 
heat-kernel method. Applying the proper-time regularization, we find 𝜎Dirac = lim→ 𝑒2Γ 32 𝑑 𝑝(2𝜋) 𝑠𝐸 + 𝑞2 𝑑𝜏𝜏 𝑒±  (16)

zp p⊥

p⊥

zp

Figure 2. Energy surfaces for different regions of the parameters: Left panel (a) is for the case
M > q/2, while right panel (b) is for the case M < q/2.

Here some resemblance with WSM is worth mentioning [19]. The effective Lagrangian (3)
is of the same form as in WSM, by replacing q/2 by the strength of spin-splitting b and the
dynamical mass M by the spin–orbit coupling strength m. The relation, b > m holds in
WSM. The important difference is that the values of (q, M) are dynamically determined as a
consequence of chiral symmetry breaking in the DCDW phase, while the parameters (b, m)
can be controlled with the experimental setup for WSM. Positive-energy states correspond
to the conduction band, while the negative-energy states correspond to the valence band.
Because some positive energy states are filled in the DCDW phase, one might call it a “Weyl
metallic state” [22]. Therefore, we discuss, hereafter, the transport properties of dense
quark matter, referring to WSM as a guiding principle.

2.2. Anomalous Hall Effect

One of the interesting transport properties in WSM may be the anomalous Hall effect
(AHE) [19]: the Hall current flows even in the absence of magnetic field in response to
the external electric field. Accordingly, we shall see AHE in the DCDW phase. We can
derive the anomalous Hall conductivity by way of the Kubo formula, considering a linear
response to a tiny electric field [20]. It is given by the integral of the Berry curvature in the
momentum space b(p),

σxy = e2
∫ d3 p

(2π)3 bz(p) f
(
Ep
)

(13)

with f
(
Ep
)

being the Fermi–Dirac distribution function. The Berry curvature is defined in
terms of the eigenfunctions up as

b(p) = −i∇p ×
〈
up
∣∣∇p

∣∣up
〉

(14)

and it reads
bs,z(p) =

−1
2E3

ε=+1,s

(
sE0 +

q
2

)
(15)

with E0 =
√

pz2 + M2. It is interesting to see that the Berry curvature looks like the
magnetic field from the Dirac monopole located at each Weyl point in the momentum
space. The contribution from the negative-energy sea apparently diverges and needs a
relevant regularization [23]. We see that it is appropriate to use the proper-time method or
the heat-kernel method. Applying the proper-time regularization, we find

σDirac
xy = lim

Λ→∞
e2

2Γ( 3
2 )

∑
s=±1

∫ d3 p
(2π)3

(
sE0 +

q
2
) ∫ ∞

Λ−2 dττ−
1
2 e−τ(sE0+

q
2 )

2

= e2

4π2 ∑
s=±1

∫ ∞
0 dpzsign

(
sE0 +

q
2
)

− e2

4π
5
2

lim
Λ→∞

∑
s=±1

∫ ∞
0 dpzsign

(
sE0 +

q
2
) ∫ Λ−2

0 dττ−
1
2 e−τ(sE0+

q
2 )

2
.

(16)
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The second term is evaluated to give −e2q/(2π)2, while the first term gives different
values, depending on the values of the wave vector: for q/2 < M it vanishes, while it gives

e2

2π
×
∫ K0

−K0

dpz

2π
=

e2K0

2π2 , (17)

for q/2 > M. It is interesting to note that the quantity e2/2π is a topological number
and nothing else but the Hall conductivity for 2D quantum Hall systems with the Chern
number ν = 1. Therefore, we may regard the DCDW phase as a stack of 2D quantum Hall
systems to the 3rd direction [24]. The anomalous Hall conductivity reads

σDirac
xy =

e2

4π2

(
−q + 2K0θ

(
K2

0

))
, (18)

where K2
0 ≡

( q
2
)2 −M2. We can immediately see that σDirac

xy → 0 as M→ 0 , because in
this limit K0 → q/2. It is reasonable for σxy to be vanishing for M = 0, implying no AHE
for the normal phase. We shall see that the origin of the first term comes from axial anomaly.
On the other hand, the anomalous Hall conductivity in WSM is given only by the second
term without the anomaly term: σWSM

xy = e2K0/
(
2π2) for b > m, while it is vanishing for

b < m. In fact, Goswami and Tewari have shown the bulk-boundary correspondence by
explicitly constructing the surface states: the surface states exist only for b > m, and the
system is an insulator for b < m [25].

2.3. Fermi Sea Contribution

Let us now have a quick look at the Fermi sea contributions. For cases (a) µ <
q
2 −M, (b) q

2 −M < µ < q
2 + M, (c) q

2 + M < µ, we find [21]

(
σFermi

xy

)
DCDW

=
e2

(2π)2


(µ+

q
2 )

2

2µ sin θ+ −
(µ− q

2 )
2

2µ sin θ− − M2

4µ ln (1+sin θ+)(1−sin θ−)
(1−sin θ+)(1+sin θ−)

− 2K0, (a) or (c)

(µ+
q
2 )

2

2µ sin θ+ − M2

4µ ln (1+sin θ+)
(1−sin θ+)

− 2K0, (b)
(19)

where sin θ± =
√

1−M2/
(
µ± q

2
)2. σFermi

xy measured in the unit of σDirac
xy is plotted as a

function of µ in Figure 3. It is interesting to note that
(

σFermi
xy

)
DCDW

→ 0 as M→ 0 for an
arbitrary density; this means that there is no AHE in the chiral restored phase, irrespective
of the value of wave number q.
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3. Hall Conductivity in the Presence of Magnetic Field
3.1. Anomalous Hall Conductivity

Let us now discuss how the situation changes when the system is immersed in an
external magnetic field [26]. Using Equation (3), the effective Hamiltonian for quasiparticles
in the DCDW phase is given as ψ†

W HMFψW + G∆2, where

HMF = α·(p−QA) + βM + q·α γ5τ3/2 (20)

with Q = diag(eu, ed) (eu = 2e/3, ed = −e/3). Because it has been shown that q ‖ B is
the most favorable configuration [27], we set magnetic field along the z-axis without loss
of generality.

The effective Hamiltonian can be easily diagonalized, and resulting eigenvalues are

E f
n,s,ε(pz) = ε

√(
s
√

M2 + p2
z −

q
2

)2
+ 2
∣∣∣e f

∣∣∣Bn, n = 1, 2, 3, . . . ,

En=0,ε(pz) = ε
√

M2 + p2
z −

q
2 ,

(21)

for each flavor f , where ε = ±1 denotes the particle–antiparticle states, and s = ±1
specifies the spin degree of freedom. Note that there is no spin degree of freedom for the
lowest Landau level (LLL): dimensional reduction occurs for LLL, and the eigenspinor is
represented by two components. The energy spectra are depicted in Figure 4 for two cases.
Note that, the external magnetic field makes the DCDW phase extend to lower densities,
and both cases are realized in the presence of the magnetic field [27,28], in contrast to the
previous situation discussed in Section 3.

Particles 2021, 4 FOR PEER REVIEW  7 
 

 

  
(a) (b) 
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glected. We do not discuss 𝜎  here and mainly focus on the quantum contribution 𝜎 , 
where we should see some topological effect. 

Writing the baryon number operator in the normal ordering form, 𝑁 =𝑑 𝑥 𝜓 (𝑥), 𝜓 (𝑥)  (𝑓 = 𝑢 or 𝑑), we find 𝑁(𝐸) = 𝑁 (𝐸) + 𝑁  by counting the 
number of the eigenstates below energy E. The quasiparticle density of states can be writ-
ten as 

𝐷 (𝜆) = 𝑁 𝑒 𝐵(2𝜋) 𝑑𝑝 𝛿 𝜆 − 𝐸 , (𝑝 ) + 𝛿 𝜆 − 𝐸 , , (𝑝 )∞

±
∞

∞± , (24)

in the DCDW phase, and thereby 𝑁 (𝐸) reads 

Figure 4. Energy spectra in the presence of magnetic field. Left panel (a) is for the case of M >
q
2 , while right panel (b) is for

the case of M <
q
2 . Lowest Landau level (LLL) for each case is denoted by the bold lines.

The conductivity tensor σ consists of two kinds of the matrix elements, the diagonal
ones σxx = σyy, σzz and the off-diagonal one σxy. The latter one implies the Hall effect and
becomes important for small impurities in the presence of magnetic field, compared to the
longitudinal conductivity σxx = σyy. Next, we consider the Hall conductivity.

The Kubo formula gives the Hall conductivity σxy at T = 0 in the presence of a
magnetic field [29]. Streda has further divided σxy into the following two terms [30],

σxy = σI
xy + σII

xy , (22)

where the first term σI
xy vanishes when the chemical potential is located between the energy

gap where the density of states is vanishing. This situation occurs for topological insulators,
and also in the nearly clean 2D quantum Hall system in a strong magnetic field. On
the other hand, in the case of finite density of states at the Fermi energy, the dissipative
effects are no longer to be ignored. In this case, σI

xy depends on the details of matter. In
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fact, we can see the classical Drude–Zener relation σI
xy = −ωc τσxx, by using arbitrary

energy-dependent self-energy [30], where ωc is the cyclotron frequency and τ the life-time.
Note that σI

xy remains finite even in the dissipation-less limit, τ → ∞. On the other hand,
the second non-dissipative term has no classical analogy, which can be expressed by the
use of the number of states under the energy E, N f (E), for each flavor to represent the
quantum effect,

σII
xy = − σII

yx = ∑
f

e f
∂N f

∂B

∣∣∣∣∣
E=µ

. (23)

It may be worth noting that for quantized Hall effect in 2D Hall systems, σI
xy = 0,

σII
xy = −e2N/(2π) with N being the integer called the Landau-level filling factor, that is,

the number of Landau levels below the Fermi energy [30]. Noting N =
(
neLxLy

)
/d with

ne being the electron density and d = eB
2π} LxLy being the single Landau-level degeneracy

factor, we see the formula reduces to σII
xy = −ene/B. Because ne = eB

2π} N, the formula

σII
xy = −e ∂ne

∂B is actually satisfied. On the other hand, in 3D Dirac materials with b = 0,
it has been shown that σxy = −ene/B [7], provided that the effect of impurities can be
neglected. We do not discuss σI

xy here and mainly focus on the quantum contribution σII
xy,

where we should see some topological effect.
Writing the baryon number operator in the normal ordering form, N̂ f =

1
2

∫
d3x[ψ†

f (x), ψ f (x)]
( f = u or d), we find N(E) = Nnorm(E) + Nanom by counting the number of the eigenstates
below energy E. The quasiparticle density of states can be written as

D f
DCDW(λ) = Nc

∣∣∣e f

∣∣∣B
(2π)2 ∑

ε=±1

∫ ∞

−∞
dpz

(
δ(λ− En=0,ε(pz)) + ∑

s=±1

∞

∑
n=1

δ(λ− E f
n,s,ε(pz))

)
, (24)

in the DCDW phase, and thereby Nnorm(E) reads

Nnorm(E) = ∑
f

N f
norm(E) = ∑

f

∫ E

0
D f

DCDW(λ)dλ. (25)

Therefore, the contribution to the conductivity from the Fermi sea can be written as

σFermi
xy = ∑

f
e f

∂N f
norm(E)
∂B

∣∣∣∣∣
E=µ

. (26)

The second one is the anomalous quark number and can be written as

Nanom = −1
2

∫ ∞

−∞
sign(λ)Trδ(λ− H)dλ. (27)

We can see that it originates from the spectral asymmetry and is closely related to a topo-
logical quantity, the η invariant introduced by Atiyah–Patodi-Singer [31], Nanom = − 1

2 ∑ f η
f
H.

The expression (18) is not well defined as it is and must be properly regularized to ex-
tract the physical result. Using the gauge-invariant regularization, we can evaluate the
η invariant [32],

η
f
H = Nc

∣∣∣e f

∣∣∣Bq

2π2 − θ
( q

2
> M

) ∣∣∣e f

∣∣∣B
π2 Nc

√( q
2

)2
−M2. (28)

We can see from the first term that the η invariant is related to axial anomaly. The
second term correctly cancels the anomalous contribution from the first term in the
limit M→ 0 .
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3.2. Axial Anomaly

Introducing chemical potential µ as a fictitious gauge field Bµ = (µ, 0) coupling with
quark number, the mean-field Lagrangian should be generalized from Equation (2) to be

LMF = ψ

(
iγµDµ −

1 + γ5τ3

2
M(z)− 1− γ5τ3

2
M∗(z)

)
ψ− |M(z)|2

4G
, (29)

where the covariant derivative is now given by Dµ = ∂µ − i(QAµ + Bµ). Then, we
find an anomaly term in the action after the Weinberg transformation [33,34], ψW ≡
exp[iγ5τ3/2x(r)]ψ = exp[iγ5τ3q·r/2]ψ,

Sano = 1
16π2

∫
d4xx(r)(e2FF̃− 6eGF̃)

= 1
8π2

∫
d4x∂µx(r)(e2 Aν F̃µν − 6eBν F̃µν),

(30)

with Gµν = ∂µBν− ∂νBµ. The first term represents the standard axial anomaly and vanishes
in the absence of electric field, while the second term produces

µnanom ≡ −3µ
eB·∇x(r)

4π2 . (31)

We can see an anomalous quark number appear. Such an anomalous quark number
becomes the same as the one given by the first term of the η invariant (19). Note that
this result has been explicitly verified by evaluating the η invariant by using the adiabatic
expansion for the quark propagator a la Goldstone and Wilczek [35].

Accordingly, the anomalous Hall conductivity can be given as

σanom
xy = − 1

2 ∑
f

e f
∂η

f
H

∂B

= − e2q
4π2 +

e2

2π2 K0θ
(
K2

0
)

=

 − e2q
4π2 , M > q

2 ,

− e2q
4π2 +

e2

2π2 K0, M < q
2 ,

(32)

for Nc = 3. Thus, we confirm that σanom
xy coincides with Equation (9). Note that AHE has

been also discussed for WSM in the magnetic field [36]: they obtained a different result,

σanom
xy =

e2

2π2

√
b2 −m2, (33)

in accordance with the bulk-boundary correspondence. The difference between Equations (22)
and (23) comes from the regularization. Technically, they did not used a gauge-invariant
regularization, while Equation (22) is obtained by the gauge-invariant one.

3.3. Fermi Sea Contribution

Let us finally have a look at the Fermi sea contribution σFermi
xy given in Equation (17).

Generally, we must take into account many Landau levels, depending on chemical potential
µ and the strength of the magnetic field B [22]. We can derive an analytic formula in the
limit of strong magnetic field. This is performed by restricting the level summation in
the density of state to the contribution from the LLL (quantum limit regime). In this
approximation we have

σII,Fermi,LLL
xy = e2

2π2

(
pFθ
(

p2
F
)
− K0θ

(
K2

0
))

=


e2 pF
2π2 θ

(
p2

F
)
, M > q

2 ,
e2 pF
2π2 θ

(
p2

F
)
− e2

2π2 K0, M < q
2 ,

(34)
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where p2
F ≡

(
µ + q

2
)2 −M2. We note that when the system approaches the homogeneous

limits q = 0, σII,Fermi,LLL
xy → e2 pF

2π2 . The Fermi momentum pF =
√

µ2 −M2 is now propor-
tional to the fermion density since the system is dimensionally reduced to 1D. In fact, the
fermion density in this limit can be easily evaluated as,

nF = ∑
f

n f
F = Nc

eB
2π2 pF,

n f
F = Nc

∣∣∣e f

∣∣∣B
2π2 pF

 (35)

where only spin-down u-quarks and spin-up d-quarks in the LLL contribute to the density.

Then, we have the standard relation σII,Fermi,LLL
xy = enF

3B

(
= ∑ f

e f n f
F

B

)
. We can say that in this

limit, the 1/B scaling of the Hall conductivity totally comes from quantum (non-dissipative)
contribution σII,Fermi

xy . It should be interesting to see that the dissipative part σI,Fermi
xy has

nothing to do with the Hall conductivity in this limit. This result can never be inferred from
the classical relation, σI

xy = −ωc τσxx, which has been used for the electron conductivity
for thermal evolution of neutron stars with strong magnetic fields [6]. Incidentally, the
dominance of σII,Fermi

xy over σI,Fermi
xy holds in the limit, q→ 0 , as in Dirac material: a direct

evaluation of σI,Fermi
xy can be easily done to give a null result in the high-field limit.

On the other hand, in the case of weak magnetic field, we may derive the approximated
expression by replacing the summation over Landau levels by the continuous integration.
In general, we can expand σFermi

xy as

σII, Fermi
xy =

a−1(M, q, µ)

B
+ a0(M, q, µ) + a1(M, q, µ)B + O

(
B2
)

. (36)

Setting a continuous function D̃(x) = Nc
8π2

∫ µ
0 dλ

∫ ∞
−∞ dpz ∑ f ,ε, s e f δ

(
λ− E f

n,s,ε(pz)|2|e f |Bn→x

)
,

we find the integral expression for a−1(M, q, µ), which turns out to vanish after the integra-
tion by parts:

a−1(M, q, µ) =
∫ ∞

0
D̃(x)dx +

∫ ∞

0
xD̃′(x)dx = 0. (37)

The first nontrivial term a0(M, q, µ) should coincide with a0(M, q, µ) =
(

σFermi
xy

)
DCDW

in Equation (10). We see that Fermi sea contribution to the non-dissipative conductivity
vanishes (σII, Fermi

xy → 0 ) as B→ 0 . It was shown in [7] for Dirac material ( q→ 0), the
relation σxy = −ene/B holds, irrespective of the value of B. Then, we may conclude that, in
the weak field limit, the 1/B scaling of the Hall conductivity should come totally from the
dissipative part σI,Fermi

xy . It is worth mentioning that, such 1/B scaling itself is natural when
the system has freely moving charge carriers, as is also inferred from the Drude–Zener
model [37]. This is a consequence of the fact that active fermions in conduction bands
move so that, in the equilibrium state, they do no longer feel the applied electric field Ey,
which disappears in the comoving frame by the Lorentz transformation. To be specific,
let us consider the system with a magnetic field pointing to z-direction B and an electric
field pointing to y direction E. Then switching to the frame moving to the x direction with
velocity v, we have E′ = γ(E + v× B) and B′ = γ(B− v× E), where γ is the usual gamma
factor, γ =

√
1− v2. As a consequence, when E + v× B = 0, electric charges do not feel

the electric field and thus are no longer accelerated. This situation is achieved when v is
parallel to the direction of E× B, and the magnitude is with |v| = vx = Ey/Bz. The electric

current in this equilibrium situation (in the original frame) is jx = ∑i

(
Qini
Bz

)
Ey with Qi

and ni as the electric charge and number density of carrier particle i, respectively. In the
weak field limit, ∑i Qini =

enF
6 ∝ ep3

F while in the high field limit ∑i Qini =
enF

3 ∝ (eB)pF.
We anticipate that the 1/B scaling of the Hall conductivity in the weak magnetic field
comes from dissipative conductivity as σI, Fermi

xy → enF
6B . Although we are not still able to
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find a general expression for a1(M, q, µ), in the limit of M→ 0 , we could find the formula
a1(0, q, µ) = 7e3

27πµ , using the quark propagator expanded in power of magnetic field [34].

4. Concluding Remarks

We have discussed the transport properties of dense QCD matter in the magnetic
field, based on the Kubo formula. In particular, we have paid attention to the quantum
Hall effect by fully taking into account the Landau quantization. If there developed a new
phase in the core of compact stars (an interesting phenomenon) the anomalous Hall effect
is to be activated, aside from the usual Hall effect. The phase of dual chiral density wave
may appear in the moderate density region of quark matter, where the energy spectrum
of quarks resembles the one of electrons in Weyl semimetal in condensed-matter physics;
the effective Hamiltonian exhibits the same structure as each other. Therefore, one may
expect that some transport properties of quark matter in compact stars can be explored in
the terrestrial experiments.

We have also paid some attention to the matter contribution to the quantum Hall
conductivity. We derived an analytic formula for the non-dissipative part of the Hall
conductivity. Based on this formula, we have examined its B dependence in the limit,
q→ 0 . We have seen that the expected standard behavior of the Hall conductivity for
conducting media, σFermi

xy ∝ en/B, that comes from non-dissipative part in the high field
limit; when the magnetic field is very strong, the B dependence of the Hall conductivity
mostly comes from the LLL contribution and other higher Landau-levels decoupling. On
the other hand, it should come totally from dissipative part in the opposite limit, where
almost all the Landau levels contribute to the conductivity. Thus, the classical Drude–Zener
formula becomes meaningless in the high field limit. One may expect a similar situation
even in the phase of a dual chiral density wave.

Theoretically, we have found some geometric or topological effects. In particular, we
have seen that the energy spectrum exhibits asymmetry with respect to the null line, and
such spectral asymmetry plays an important role through the η invariant in the presence
of the magnetic field. The η invariant is the topological one and leads to the anomalous
particle number, and the anomalous Hall conductivity is proportional to it by way of the
Streda formula. Consequently, we have shown that the anomalous Hall conductivity is
independent of the magnetic field to give the same form as the one in the absence of the
magnetic field as it should be.

We have put a special emphasis on a similarity between the DCDW phase and WSM,
but there is a subtle difference between them; the expression of the anomalous Hall
conductivity is different between them. We have seen that this difference may be originated
from axial anomaly, but further discussions are needed to clarify it by way of the bulk-
boundary correspondence, for example.

The magnetic-field dependence of the thermal Hall conductivity is phenomenolog-
ically important to understand thermal evolution of compact stars: an anisotropy of the
thermal transport parallel and perpendicular to the magnetic field becomes important
there. We have seen that the anomalous Hall effect should be dominant over the usual Hall
effect in the strong magnetic field. We have also shown that the quantum contribution σII

xy

becomes essential, compared to the classical analog σI
xy in the high field limit. These results

suggest careful discussions of thermal evolutions of compact stars as a future work.
The purpose of our studies is to figure out the local properties of matter in compact

stars by way of microscopic physic and to present physical inputs for basic equations to
understand compact-star phenomena. For a global description of the properties of matter
inside compact stars, one further needs to take into account the effects of general relativity
and magnetohydrodynamics (MHD) [38]. For example, the anomalous Hall effect may
affect MHD through the modifications of the Maxwell equations.

Our framework is fully relativistic and should be applicable even for magnetars,
where the strength of the magnetic field exceeds the one of relativistic magnetic field of
4.414× 1013 G [39]. Herein, we have qualitatively discussed some features of the transport
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phenomena, but further studies are needed for astrophysical applications of our results.
Preparation of numerical tables of conductivity as functions of density, temperature, and
magnetic field is left for a future work.
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