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Abstract: Gravity is perturbatively renormalizable for the physical states which can be conveniently
defined via foliation-based quantization. In recent sequels, one-loop analysis was explicitly carried
out for Einstein-scalar and Einstein-Maxwell systems. Various germane issues and all-loop renor-
malizability have been addressed. In the present work we make further progress by carrying out
several additional tasks. Firstly, we present an alternative 4D-covariant derivation of the physical
state condition by examining gauge choice-independence of a scattering amplitude. To this end, a
careful dichotomy between the ordinary, and large gauge symmetries is required and appropriate
gauge-fixing of the ordinary symmetry must be performed. Secondly, vacuum energy is analyzed
in a finite-temperature setup. A variant optimal perturbation theory is implemented to two-loop.
The renormalized mass determined by the optimal perturbation theory turns out to be on the order
of the temperature, allowing one to avoid the cosmological constant problem. The third task that
we take up is examination of the possibility of asymptotic freedom in finite-temperature quantum
electrodynamics. In spite of the debates in the literature, the idea remains reasonable.

Keywords: quantum gravity; finite temperature; physical state condition; cosmological constant
problem; QED asymptotic freedom

1. Introduction

Although quantum gravitational effects (reviews of various approaches to quantiza-
tion of a matter-gravity system can be found, e.g., in [1–5]) are often set aside, it has become
increasingly clear through a series of recent works [6–19] that they are crucial for solving
some of the outstanding problems in theoretical and astro-theoretical physics. For instance,
they have proven to be indispensable for precisely formulating (and potentially solving)
the black hole information paradox [6–8,20]. (The quantum-gravitational account of the
black hole information put forth in [6,8] is that the system information evolves unitarily,
where a non-perturbative bounce solution (see, e.g., [21–24] for earlier bounce solutions
and their roles in black hole information) plays an important role in entanglement among
the system components.) Quantized gravity ought also to be an optimal arena for a system-
atic formulation (and resolution) of the cosmological constant problem (see, e.g., [25–27]
for reviews of the problem), since the resolution would require renormalization of the
vacuum energy. A systematic analysis of vacuum energy has recently been conducted in a
quantized gravity setup with finite-temperature [9]. In the present work we provide a brief
review of some of these developments, and press on.

For quantization, there are many aspects of the analysis with which one must be
concerned. These include boundary conditions [3,7,28,29], identification of the physi-
cal states [30–32], removal of the trace mode of the fluctuation metric [33,34], technical
but crucial issues surrounding the background field method (BFM) [35–40], and gauge
choice-(in)dependence [40–48]. For all of these it is crucial to carefully analyze the gauge
symmetries, including large gauge transformations (LGTs) [49,50]. The presence of large
gauge symmetry makes the subject complicated but, at the same time, rich. For one thing it
clearly demonstrates the necessity of Hilbert space extension by including non-Dirichlet
boundary conditions. Our previous works recognizing the importance of the non-Dirichlet
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boundary conditions include [51–53]. They were subsequently analyzed in [7,40]. Deriva-
tion of the physical states and some pertinent analyses can be found in the early sequels
of [32,37]. The pathology associated with the trace mode [54,55] was reviewed in [34,38,39]
and its removal by gauging away was presented in [38–40,52]. A refined application of the
BFM [38–40] is vital for computing the one-particle-irreducible (1PI) action. Our approach
also sheds light on the subtle and difficult issue of gauge choice (in)dependence of the 1PI
action [40].

In the foliation-based quantization (FBQ) [34,56,57] it is the Lagrangian counterpart of
the Hamiltonian constraint that leads to the physical state condition (PSC). More specifically,
the lapse field equation of the Lagrangian Arnowitt-Deser-Misner (ADM) formalism was
imposed as the physical state constraint in the previous sequels. In the present work
the condition is alternatively derived from the gauge choice-independence of scattering
amplitudes, after examining the gauge invariance issue of the boundary terms. The
derivation of the PSC in this manner has two advantages over the previous. Firstly,
the setup is manifestly 4D-covariant (other than splitting the gauge parameter εµ into
εµ = (εi, ε3)) because we do not, for the main task, resort to the ADM formalism. Secondly,
the whole procedure is entirely within more established practice of quantum field theory:
previously, the physical state condition was derived with hindsight of Dirac’s method of
quantizing a constrained system. Here, the condition is derived based on the conceptually
more rudimentary requirement of gauge choice-independence of a scattering amplitude.

As an application of our quantization approach, we have recently tackled [9] the
cosmological constant (CC) problem. Here we extend the one-loop analysis therein to two-
loop. The CC problem was originally formulated in [58] with a generic system that contains
a massive field whose contribution to the vacuum energy vastly exceeds the observed
value of the CC. A good example is a loop contribution of the Standard Model (SM) Higgs
field. The vacuum energy is defined as a minimum of the effective potential. In vacuum
energy computation both the ultraviolet (UV) and infrared (IR) structures play roles. To
some extent the UV and IR contributions to the vacuum energy are intertwined. Given
that renormalization procedure is involved, the relevance of the UV structure is evident.
The relevance of the infrared structure is subtler. As demonstrated in Casimir energy
analysis (see, e.g., the account in [59]), it is necessary to pay close attention to the infrared
structure for proper evaluation of vacuum energy. (In the Casimir case this is often done by
employing an infrared regulator of a finite-size box in momentum cutoff regularization.)
We believe that the lesson learned from the Casimir case should be valid more generally:
the vacuum energy of a system should be determined essentially by the low-energy sector
of the theory, thus a meticulous description of the structure is desirable. Once temperature
enters one deals with three different scales: the renormalized mass, the artificial energy
scale introduced in dimensional regularization, and the temperature scale. As reviewed
in [9], convergence of perturbation theory dictates that these scales be on the same orders
of magnitudes as one another. We show that there exists an optimal perturbation theory
(OPT) [60] procedure that quantitatively enforces this qualitative requirement.

In another line of research we examine the issue of quantum electrodynamics (QED)
asymptotic freedom [61] in a finite-temperature setup. Unlike our initial impression, it
is likely that one must undertake the whole renormalization procedure, including other
coupling constants, in order to properly investigate the potential asymptotic freedom at
zero- or finite- temperature. This complication notwithstanding, QED asymptotic freedom
remains a reasonable possibility.

The rest of the paper is organized as follows.
In Section 2 we examine the ordinary and large gauge symmetries, gauge-fixing, and

residual gauge invariance. We note that the sector with a Dirichlet boundary condition
should merely account for a ‘ground state’ in the tower of the Hilbert space of the states
arising from all possible boundary conditions. Non-Dirichlet boundary conditions are
clearly motivated by large gauge transformations (LGTs). We discuss where the large
gauge symmetry stands in the whole procedure of determining the PSC. We show that
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independence of the S-matrix under the residual symmetry leads to the physical state
condition. Where useful, we use analogies with string theory. For instance, the ADM
Lagrangian approach is analogous to lightcone string quantization, whereas the present co-
variant quantization is analogous, to some extent, to old covariant quantization. Section 3 is
devoted to finite-temperature vacuum energy analysis. In Section 3.1 we start by reviewing
the zero-temperature CC problem. In Section 3.2, we extend it to a finite-temperature setup.
With the quantized metric contribution understood in [9], we focus on flat space analysis
of a real Higgs-type scalar system in a flat background. We recap two-loop effective po-
tential computation in the refined background field method. In addition to the standard
resummation, a non-perturbative technique of the so-called optimal perturbation theory
was introduced in the literature for improved convergence. The way of implementing
OPT is not unique. Our goal is to show that there exists a variant OPT procedure that
allows one to avoid the CC problem. In Section 4, we take an Einstein-scalar system in the
finite-temperature framework of quantized gravity to examine the possibility of asymptotic
freedom of QED proposed in [61]. In spite of the debates in the literature, we conclude that
QED asymptotic freedom remains a reasonable possibility. In Section 5 we conclude with a
summary, implications of our results, and future directions. A glossary of some terms are
given in Appendix A.

2. Gauge Symmetries, Fixing, and PSC

A crucial initial step in covariant gravity quantization involves handling of the con-
straints. Since a gravity system is a gauge system, its quantization can be dealt with, in part,
by Dirac’s method (see, e.g., [62] for a review), according to which second-class constraints
can be formulated by Dirac brackets. The brackets are supplanted by the corresponding
commutators at the quantum level. The core difficulty in quantization lies in first-class
constraints. As explicitly demonstrated in recent works [10,34,38–40], a first-class constraint
can be taken care of by fixing the gauge symmetry that it generates [62]. More specifically,
the following was done [34] in the Lagrangian ADM setup: with the lapse function and shift
vector non-dynamical, their field equations were imposed as constraints upon gauge-fixing
the lapse function and shift vector. This was in addition to bulk gauge-fixing (e.g., by
the de Donder gauge). It was essentially the lapse field equation-the counter-part of the
Hamiltonian constraint in the ADM Hamiltonian formalism (see [63] for a critical review
of the Hamiltonian formalism of general relativity) that led to reduction of the physical
states. Although the ADM setup provides a convenient arena for and elucidates certain
aspects of the quantization, one loses manifest 4D covariance. As we show in Section 2.2,
however, there is an alternative method of obtaining the physical state condition while
maintaining the 4D covariance-which is almost always useful-in the intermediate steps:
the condition is derived from gauge choice independence of scattering amplitudes, after
examining the gauge-invariance issue of the boundary terms. (This is another case of
the observation made in [52]: consideration of boundary physics leads to the same result
obtained by considering bulk physics.)

We restrict our discussion to an asymptotically flat spacetime to prevent the analysis
from getting too abstract, although the formalism may well be potent enough to cover
more generic spacetimes. Furthermore, many interesting geometries are classified as
an asymptotically flat spacetime. The advantage of considering an asymptotically flat
spacetime is that it allows one to introduce a radial coordinate and, as we will discuss, one
can do things more covariantly without resorting to the ADM formalism. We still split the
gauge parameter εµ into

εµ = (εi, ε(3)) (1)

with xµ=3 ≡ r, the radial direction, and ultimately focus on ε(3).
In Section 2.1 we start by reviewing the central idea behind the FBQ approach. We

review aspects of the ‘small’ (i.e., ordinary) and large gauge transformations. Although the
asymptotic symmetry should in general be larger than the large gauge symmetry, we use
the latter to be specific. The discussion will remain valid even if one takes the asymptotic
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symmetry. Some key ideas were explained in detail in the previous review [10]; here the
focus is on the latest developments. The ‘small’ gauge transformation is redundancy of the
degrees of freedom whereas the large represents part of the moduli (a collection of inequiv-
alent vacua) of the theory [49,50]. The reason for contrasting the large gauge symmetry
with the ordinary gauge symmetry is to bring out precisely which symmetry is responsible
for the PSC: it is part of-viz., residual symmetry of-the ordinary gauge symmetry whose
handling in the manner described below leads to the PSC. With the preliminary discus-
sions in Section 2.1, we derive in Section 2.2 the physical state condition (14) by requiring
gauge-choice independence of a scattering amplitude under the residual symmetry.

2.1. Review of Gauge Symmetry and Its Fixing

The central idea on which the FBQ hinges is renormalizability of the physical sector
associated with a 3D hypersurface in an asymptotic region. How does the reduction to the
3D hypersurface come about? As is well known in gravitational (as well as non-gravitational
gauge) theories, covariant gauges do not entirely exhaust the gauge freedom, but instead
leave measure-zero (i.e., 3D) residual gauge redundancy. The key observation that led to
the new approach to gravity quantization [34] was that suitable and complete gauge-fixing
of 4D diffeomorphism and its residual symmetry leads to reduced support of the physical
spectrum. More specifically, gauge-fixing of the 3D residual symmetry reduces the support of
the physical states onto a holographic screen, a 3D hypersurface at an asymptotic location.

Although 4D diffeomorphism is something well-established, there are several fine
but nonetheless crucial issues that one must carefully discern. This is partially due to the
fact that the two types of gauge transformations, the ordinary (or ‘small’) and the large,
are ‘tangled’. It takes some care to disentangle the two, a required step to determine the
physical states in the present approach. Also, the observer-dependent effects are tied with
the gauge transformations and resulting foliations [53,64]. Let us note that there are two
kinds of residual symmetry, both of which correspond to each type of the gauge symmetry:
the first is the residual symmetry of ordinary diffeomorphism. The residual symmetry of
the second kind is associated with the large gauge symmetry. (For convenience we are
viewing, at the moment, the large symmetry as the residual symmetry of the small and
large symmetries combined.) It will be lucrative to invoke analogies with string theory: the
large gauge symmetry is an analogue of modular group whereas the residual symmetry is
analogous to conformal Killing group.

As for the ordinary gauge symmetry, it will be useful to briefly remind us of the
derivation of the PSC in the Lagrangian ADM setup before getting to the quantitative
details of the 4D-covariant derivation. The residual symmetry associated with εi is used to
gauge-fix the shift vector, as analyzed in the earlier sequels. With this, one can focus on the
gauge parameter of the form

εµ = (0, 0, 0, ε(3)(t, r, θ, φ)) (2)

with a property
ε(3) ≡ εµ=3(t, r, θ, φ)→ 0 as r → ∞. (3)

The residual symmetry of ordinary gauge symmetry that leads to the physical state
condition is one associated with ε(3). One first fixes the lapse by using the residual 3D
symmetry generated by ε(3). (For a simpler background, such as a Schwarzschild back-
ground, the lapse function need not be fixed-it is determined while solving the shift vector
constraint. In general, one should use the symmetry to fix the lapse.) The lapse equation of
motion is a first-class constraint and generates, in the Dirac formulation, a translation along
the ‘time-’, i.e., r-direction. Thus an r-translation is part of the gauge redundancy (but not
part of the moduli). The lapse equation of motion as a constraint reduces the support of
the physical states to a hypersurface at the asymptotic region of r = ∞.

It is also useful to distinguish the above residual symmetry from the conformal-
type symmetry contained in the diffeomorphism. The latter takes a special form and is
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associated with the trace part of the fluctuation metric. This can be seen by recasting the
diffeomorphism transformation with a parameter ξµ, δgµν = ∇µξν +∇νξµ, into the form

δgµν =
1
2
(∇κξκ)gµν + (Lg)µν (4)

where (Lg)µν denotes the traceless part of the Lie derivative

(Lg)µν ≡ ∇µξν +∇νξµ −
1
2
(∇κξκ)gµν. (5)

The first term in (4) takes the form of a conformal transformation. This symmetry
must be removed by gauge-fixing of the trace piece of the fluctuation metric [52].

Remarks on the large gauge symmetry are in order. As previously mentioned, a
Dirichlet boundary condition should cover merely the measure-zero subset of possible
boundary terms and conditions. Recall that the Dirichlet boundary condition has a special
status in that it is imposed when defining the canonical momenta. (Once the momenta are
defined, one may consider other types of boundary conditions.) Since an LGT will not,
generally speaking, preserve the boundary conditions (because, for one thing, it will not
preserve the momenta), different boundary conditions should be viewed as different sectors
of the theory. For this reason the large gauge symmetry is analogous to global symmetry
or moduli. For us an LGT will be an asymptotically non-vanishing 3D transformation in
the (t, θ, φ) space. (It is also the degrees of freedom associated with the reduced action: the
large gauge symmetry must be non-perturbative degrees of freedom of the reduced action
obtained in [7].) Now consider the 4D action with boundary terms. An LGT mixes the time
and spatial coordinates and will not, in general, leave the content of the original boundary
condition invariant. In addition, due to the mixing of the coordinates, observer-dependent
effects will enter [53,64].

Another not unrelated key ingredient in deriving the PSC is careful treatment of the
boundary dynamics, including boundary terms with the corresponding boundary condi-
tions. The boundary terms are important not only on their own, but also for identifying
the physical states. Although Dirichlet boundary conditions are widely used in gravity (as
well as other field theories), it has been shown that the Hilbert space must be extended so
as to include non-Dirichlet sectors. The point is that exclusive imposition of a Dirichlet
boundary condition cannot be justified since an ordinary gauge transformation does not
preserve them (more precisely, the content of the boundary condition, though the form
of the boundary term should be invariant). What is missed by restricting to the Dirichlet
boundary condition is the entire boundary dynamics. The sector with the Dirichlet bound-
ary condition should only account for a ‘ground state’ of the tower of the Hilbert space of
states coming from all possible boundary conditions. For this reason, the physical state
condition should be derived in the setup of an extended Hilbert space.

2.2. Alternative Derivation of PSC

With the preliminary in Section 2.1, we are ready to derive the PSC from gauge choice-
independence of a scattering amplitude. As pointed out before, the Lagrangian ADM
method is analogous to string theory lightcone quantization in that one maximally exploits
gauge-fixing. In old covariant quantization, on the other hand, the physical states are
realized through imposition of appropriate constraints. Here, we do something similar
in spirit: we impose the ‘lapse constraint’ without explicitly fixing the ‘lapse’. (Quotation
marks since the analysis is conducted in the 4D-covariant frame work.) This may be
regarded as a ‘cohomological’ way of obtaining the physical states. The physical states
must be invariant under r-translation, which is part of the residual symmetry. In general, a
bulk state cannot satisfy this condition, and one must turn to a state that has support on an
asymptotic boundary. The weaker form of the physical state condition (14) can be derived
by carefully examining the Dirichlet and Neumann boundary conditions, as we now do.
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Let us start with an Einstein-Hilbert (EH) action with a York-Gibbons-Hawking (YGH)
boundary term:

SEH+YGH = SEH + SYGH (6)

SEH ≡
∫

d4x
√
−g R , SYGH ≡ 2

∫
∂V

d3x
√
|γ| εK. (7)

where γµν denotes the induced metric on the boundary ∂V ; ε takes ε = −1 for the usual
foliation with the genuine time coordinate xµ=0 = t, whereas it takes ε = 1 for the r-
foliation. Let us first quickly remind us of the standard procedure of obtaining the equation
of motion with the Dirichlet boundary condition. Variation of the Einstein-Hilbert action
consists of bulk terms and a boundary term. The former leads to the equation of motion;
the latter comes from∫

V

√
g gµνδRµν =

∫
V

√
g ∇µ

[
∇νδgµν − gρσ∇µδgρσ

]
=

∫
∂V

√
g nµ

[
∇νδgµν − gρσ∇µδgρσ

]
=

∫
∂V

√
g nµgνκ

[
∇κδgµν −∇µδgνκ

]
(8)

where δ denotes an arbitrary variation (as opposed to the symmetry variation, δε, below).
By employing the standard splitting gνκ = εnνnκ + γνκ , nµ being the unit normal to ∂V ,
and noting the (anti)symmetry in (µ, k), one gets

=
∫

∂V

√
g nµγνκ

[
∇κδgµν −∇µδgνκ

]
. (9)

The second term inside the parentheses is canceled against δSGHY; requiring vanishing
of the first term is the Dirichlet boundary condition.

As for the ‘cohomological’ determination of the physical states, one must consider
a symmetry variation instead, and establish invariance of the action under the residual
symmetry of the ordinary gauge symmetry. Then the physical states will be ones invariant
under r-translation. It would be ideal to consider the most general boundary terms if such
terms were known. This not being the case, we are content to demonstrate invariance (this
is not without a subtlety; see the comments at the end) for the Dirichlet and Neumann
sectors. For the Dirichlet case, the exact same steps above apply when considering a
symmetry variation instead of an arbitrary variation. One just needs to use the gauge
parameter εµ such that εµ → 0 as xµ=3 ≡ r → ∞, in order for the metric variation δεgµν to
preserve the Dirichlet boundary condition. As for the Neumann case we consider the action
of SEH alone without SYGH [65]. We show that the action with the Neumann boundary
condition is invariant so far as one imposes the traceless condition. The second term inside
the square parenthesis in (8) vanishes due to the traceless condition:∫

∂V

√
g nµgνκ(−)∇µδgνκ = 0. (10)

As for the first term, note that

∇νδεgµν = gνν′∇ν′δεgµν = gνν′∇ν′Lεgµν = gνν′
(
[∇ν′ , Lε]gµν +Lε∇ν′gµν

)
(11)

where L denotes a Lie derivative. The second term in the far right-hand side of (11)
vanishes; the first term vanishes as well since [∇ν′ , Lε] =

∂εκ

∂xν′∇κ [56,57,66] acting on the
metric vanishes.

Let us pause and recapitulate. With the YGH boundary term added, one gets invari-
ance, δεSEH+YGH = 0, once one imposes the Dirichlet boundary condition γνκ∇κδεgµν = 0.
It has also been shown that with the Neumann boundary condition, namely, without the
YGH boundary term, one gets δεSEH = 0 as far as one imposes the traceless condition. The
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point is that if one does not remove the traceless mode, one can nevertheless achieve the
invariance of the action including the boundary terms by imposing the Dirichlet boundary
condition. What we have just shown above is that once one imposes the traceless condition,
the gauge variation of SEH vanishes without the use or presence of the YGH term. (One can
alternatively proceed with the boundary expression in terms of K, the trace of the second
fundamental form. The invariance just established implies δεK = 0. This means that the
Dirichlet or Neumann is preserved by a gauge transformation.)

Let us now employ the 3+1 splitting of εµ in the 4D approach and focus on ε(3). Denote
by Q the transformation generated by the ‘time’ translation: δε is promoted, at the quantum
level, to the corresponding charge operator, Qε. Let us briefly pause and translate things
into the ADM Lagrangian perspective. Qε(3) is nothing but the lapse function constraint
(with gauge parameter ε(3) included). The connection between Qε(3) and the lapse field
equation is that the lapse function may be gauge-fixed by the symmetry generated by Qε(3) .
This means that in the Lagrangian ADM formalism Qε(3) is the lapse field equation.

Finally, the invariance that we have established amounts, at the quantum level, to

[Qε(3) , SEH+YGH ] = 0 (12)

for the Dirichlet case, and
[Qε(3) , SEH ] = 0 (13)

for the Neumann case. Therefore the physical content of the theory is determined by the
physical state condition in analogy with a cohomological case:

Qε(3) |physical state >= 0. (14)

To end this section, we comment on the aforementioned subtlety in establishing the
invariance of the action with the boundary terms. The subtlety is present in any boundary
condition; we illustrate it with the Dirichlet boundary condition by taking the first term
of (9). Although the first term does not vanish in the transformed coordinate system with
the Dirichlet boundary condition that is natural in the new coordinates, one sets this aside and
achieves the invariance up to this point. The ‘deficit’ is subsequently addressed through
the channel of the observer-dependent effects [7,53,64].

3. Vacuum Energy in Finite Temperature

When the characteristic scale of the theory under consideration, say, the electroweak
scale, is much higher than the ‘room’ temperature or the temperature of cosmic microwave
background (CMB), it is standard practice to employ zero-temperature field theory. Al-
though employing zero-temperature field theory may seem innocuous, our analysis in-
dicates otherwise: finite-temperature effects reveal, when properly taken into account,
how to carry out perturbation theory in a ‘natural’ manner. (Interestingly, the role of
thermodynamics in determining vacuum energy has recently been explored in [67,68], the
works that I became aware after completion of [9].) In this section we extend the analysis
in [9] to two-loop and show that finite-temperature effects are the key to avoiding the CC
fine-tuning problem. We analyze the CC problem by taking an Einstein-scalar system with
a Higgs-type potential. Dimensional regularization, which has a well-known advantage in
dealing with a gauge system, is employed.

With temperature present one deals with three different scales: the renormalized mass,
the artificial energy scale introduced by dimensional regularization, and the temperature
scale itself. A potential danger in disregarding (in spite of a low temperature) the finite-
temperature effects and turning to zero-temperature theory is hinted at by well-known
patterns in perturbation series: logarithms of ratios of these scales appear in the series. As
lucidly reviewed in [9], convergence of perturbation theory makes it necessary for these
scales to be on the same order of magnitude as one another; it is not at all clear whether
taking zero-temperature field theory with a large renormalized scalar mass would yield
results that are consistent with ones obtained by taking a low temperature limit of the
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system at finite temperature. What we convey below is that although the two approaches
should be compatible, there is a (bigger) price to pay for the zero-temperature approach: a
posteriori, the unnaturalness of the approach manifests as the CC problem.

Regardless of justification for applying zero-temperature field theory to a low but
nonzero temperature system, it would be valuable to have techniques that can cover
physics from near Planck temperature to the CMB temperature. An obstruction to such a
full-range description is finite-temperature infrared problems. The most serious among
those is the ‘Linde problem’ [69] at QCD-scale temperature. Resummation and various
non-perturbative techniques were introduced to deal with the problem (see, e.g., [70,71]).
The focus of the present work is low temperature, the temperature of CMB. In particular,
we explore reformulation of the CC problem-which was originally formulated in the zero-
temperature setup-as a zero-temperature limit of a finite-temperature setup. In the main
body we show that the finite-temperature effects are in fact crucial-they allow one to avoid
the CC fine-tuning problem once the convergence property of the perturbation series is
improved through a variant of optimal perturbation theory (OPT).

The analysis in the present work has the following components: UV divergence re-
moval in finite temperature, OPT-improved resummation and renormalization, and the
house keeping setup of quantized gravity. Ultraviolet renormalization at finite tempera-
ture is guaranteed if the zero-temperature renormalizability is established, and plays an
important role-similar to that in Casimir energy computation-through renormalization
conditions. In the finite-temperature literature, resummation was introduced long ago to
mitigate the temperature-induced divergences in the infrared regime. The convergence
properties can be further improved with a touch of non-perturbative techniques, OPT. The
OPT that we implement in this work is a relatively minor, but nonetheless crucial, variation
of the widely used kind. It is these OPT-organized finite-temperature effects that ultimately
turn out to be central to the proposed resolution of the CC problem.

We show in the main body that the optimized renormalized mass turns out to be
essentially the temperature. We believe that this allows one to identify (and solve) the
cosmological constant problem at its root. With the renormalized mass determined, the
following task still remains: the zero-temperature theory has been quite successful for
other purposes, and there, the renormalized mass is taken quite close to the pole mass
value. In the SM case, the renormalized Higgs mass is taken to be close to the physical
value, 125 GeV, within a few percent. If one now wants to take the renormalized mass to
be around the CMB temperature, which is much smaller than the pole mass, one must
maintain that the perturbation theory with the corresponding mass preserves the success of
the SM. As analyzed in [9] renormalization invariance of physical quantities-which implies
a certain additional resummation identified therein-can be invoked to confirm that.

In Section 3.1 we review the refined BFM computation of the effective potential and CC
problem. We do this for zero-temperature as in the original work of [58]. In Section 3.2 we
formulate the problem in the finite-temperature context. Our analysis borrows [9] a high-
temperature expansion of the effective potential, in spite of the fact that the temperature
considered is that of CMB. In the effective potential analysis one encounters a novelty: the
potential becomes complex, indicating instability of the vacuum [9].

3.1. Review of CC Problem

In this subsection we present a brief and streamlined review of zero-temperature
computation of the effective potential in the refined BFM [10,37,39,40], thereby setting
the stage for the two-loop analysis in Section 3.2. We give an account of the CC problem
in dimensional regularization, which is also employed in the two-loop analysis. (Recall
that momentum cutoff regularization was employed in the original observation of the CC
problem in [58].) Several different non-perturbative techniques were put forth to deal with
the infrared divergence problem; we adopt a version of OPT in which the renormalized
mass itself plays the role of a variational parameter.
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The CC problem was originally established by considering quantized matter fields
in a flat spacetime at zero temperature. It will be useful to review the CC problem in the
same setup (but with dimensional regularization), prior to finite-temperature treatment.
Ultimately, the entire two-loop analysis will have to be founded on a setup of quantum
gravity: renormalization of CC would not have a rationale were it not for quantized gravity.
Happily, the analysis can be carried over to the quantized gravity setup-where the CC
comes to have its proper meaning-without any major difficulty [9].

The refined-as opposed to the conventional-BFM is employed for two reasons: firstly, it
makes it clear that, for the vacuum energy, what one needs is an onshell value of the offshell
potential; this should solve the quantum-corrected offshell potential for its minimum.
Employing the refined BFM avoids, as we elaborate below, possible confusion on the
onshell vs. offshell issue. Secondly, whereas employing the refined BFM is a matter of
convenience for the matter sector, this is not the case for the graviton sector. For the
graviton sector, it is necessary to employ the refined BFM to ensure covariance of the
effective action [37,38].

Consider the following renormalized scalar action in a flat background at zero tem-
perature:

S(ζ) = −
∫

d4x
[

1
2

∂µζ∂µζ +
1
4

λ̃
(

ζ2 +
ν2

λ̃

)2
]

(15)

where we have defined
λ̃ ≡ 1

6
λ. (16)

Note we have adopted the complete-square form of the potential, instead of the more
usual V = 1

2 ν2ζ2 + 1
4 λ̃ζ4. As addressed in more detail in [9], whether one should use

the complete-square form or the more usual form is not part of the CC problem; it is an
independent problem whose answer must ultimately be given by experiment. Our goal of
establishing the absence of the fine-tuning-problem can be more handily achieved with the
complete-square form. With it, the classical potential vanishes onshell-namely, once one
sets ζ to

ζ2
0 = −ν2

λ̃
. (17)

Compare the conventional and refined BFMs. In the former one shifts the field
according to

ζ → ζ + ζ0; (18)

which yields

S(ζ + ζ0) = −
∫

d4x
1
4

λ̃
(

ζ2
0 +

ν2

λ̃

)2

−
∫

d4x
[1

2
∂µζ∂µζ +

1
2

ν2ζ2
]
−
∫

d4x λ̃
(3

2
ζ2

0ζ2 + ζ0ζ3 +
1
4

ζ4
)

(19)

where the ζ-linear term has been omitted as usual. The effective potential is obtained by
integrating out ζ running on the loops with ζ0s sitting as external legs in a 1PI diagram. In
the refined BFM, on the other hand, the shift is taken to be

ζ → ζ + ζ̃, ζ̃ ≡ ζc + ξ. (20)

ζc denotes a classical solution of the original action; ξ is the background field. (This
is the case in the so-called second-layer perturbation. In the first-layer perturbation ζ̃ is
taken as the background field [40].) In the conventional BFM, ζ0 is taken to be a constant
(as demonstrated in (18)) when one is interested in the effective potential and its vacuum
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solution. In the refined BFM, a solution ζc will of course be a function of the coordinates in
general. With the shift in (20) one gets

S(ζ + ζ̃) = −
∫

d4x
[1

2
∂µ ζ̃∂µ ζ̃ +

1
4

λ̃
(

ζ̃2 +
ν2

λ̃

)2]
−
∫

d4x
[1

2
∂µζ∂µζ +

1
2

ν2ζ2
]
−
∫

d4x λ̃
(3

2
ζ̃2ζ2 + ζ̃ζ3 +

1
4

ζ4
)

. (21)

If one is interested in the effective potential as opposed to the effective action, the
conventional BFM becomes equivalent to the refined upon identifying ζ0 = ζ̃; which BFM
to employ is a matter of convenience in this sense. However, things are much subtler in
the gravity sector: it is only the refined BFM that yields the correct results. In dimensional
regularization, one introduces a scale parameter µ:

S(ζ + ζ̃) = −
∫

d4x
[1

2
∂µ ζ̃∂µ ζ̃ +

1
4

λ̃µ2ε
(

ζ̃2 +
ν2

λ̃µ2ε

)2]
−
∫

d4x
[1

2
∂µζ∂µζ +

1
2

ν2ζ2
]
−
∫

d4x λ̃µ2ε
(3

2
ζ̃2ζ2 + ζ̃ζ3 +

1
4

ζ4
)

. (22)

The effective action can be computed by organizing the diagrams in order of increasing
number of external ζ̃-fields. Since we are interested in the potential part of the effective
action, for which one can treat ζ̃ as constant, it is more efficacious to collect the terms
quadratic in ζ and treat them as part of the kinetic term:

exp
(

iΓ1-loop(ζ̃)
)
=
∫

dζ exp
[
− i

∫
d4x

(1
2

∂µζ∂µζ +
1
2

M2(ν, ζ̃)ζ2
)]

(23)

where
M2(ν, ζ̃) ≡ ν2 + 3λ̃ζ̃2. (24)

Note that for the one-loop effective potential, only the kinetic terms contribute, as
indicated above. One gets

V1-loop = − i
2(2π)4

∫
d4 p ln

i
π

[
p2 + M2(ν, ζ̃)

]
. (25)

Combining the tree and one-loop results yields

V(ζ̃) =
1
4

λ̃
(

ζ̃2 +
ν2

λ̃

)2
− i

2(2π)4

∫
d4 p ln

[ i
π
(p2 + M2(ν, ζ̃))

]
. (26)

In dimensional regularization:

V1-loop = − 1
32π2

( 1
2ε

+ · · ·
)

M4(ν, ζ̃). (27)

The 1
ε term must be subtracted out by a CC counter-term. To see the CC problem, it is

sufficient to consider the leading order: the minimum of the one-loop corrected potential
occurs at

ζ̃m =

√
−ν2

λ̃
+O(h̄). (28)

The CC, i.e., the value of the potential evaluated at ζ̃m above, is on the order of

∼ M4
∣∣∣
ζ̃=ζ̃m

∼ ν4. (29)

In Standard Model, the renormalized mass in the modified minimal subtraction (MS)
scheme is determined at the end by requiring the pole of the Green’s function to take the
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physical value, or 125 GeV in the case of the Higgs field. The renormalized mass turns out
to be quite close to the pole masses, usually within a few percent. Upon substituting the
physical value of ν, i.e., the value of ν corresponding to the physical value of the Higgs
mass, the result above leads to a CC value enormously bigger than that of the observed.
This is the CC problem: a highly fine-tuned renormalization procedure is required to bring
the theoretical one-loop value down to the much smaller observed value.

As reviewed above, the CC fine-tuning problem is quite generically present as long as
the renormalized mass (its fourth power, to be precise) is much larger than the observed
value of the CC. One is then naturally led to the question of whether or not there exists a
rationale by which one can employ a renormalized mass of the Higgs field that is far smaller
than 125 GeV and carry out the renormalization program. We point out two (relatively)
well-known facts as a positive indicator toward such a program. One is flexibility in
renormalization schemes, also known as renormalization conditions or subtraction schemes.
After UV regularization one must subtract out the infinite part and fix the finite part of
the vacuum energy. In MS scheme one removes essentially only 1

ε part. This fixes the
finite part; at this point the renormalized mass is yet to be determined. It is determined
by matching the pole value of the 2-point function with the physical value of the field,
125 GeV for the Higgs field. In the proposed new scheme it is the value of the renormalized
mass, instead of the finite part, that is first fixed (to be on the order of the temperature).
Subsequent matching with the physical mass then determines the finite part. The other
sign is one associated with the presence of temperature. Once temperature enters, the
zero-temperature setup becomes unsuited (which seems to manifest as the CC fine-tuning
eventually). An indication of this comes from energy scalings in finite-temperature loop
analysis. Recall that in zero temperature a loop analysis typically yields logarithmic factors
such as ln m

µ , where m is the renormalized mass of the field and µ the renormalization scale.
For the benefit of convergence, it is necessary to choose µ ∼ m. By the same token it will be
necessary to take µ ∼ m ∼ T once the temperature enters. In the present work this scaling
is quantitatively achieved in the course of improving the perturbative analysis by optimal
perturbation theory (OPT) after standard thermal resummation, we show that there exists
an OPT procedure that enforces the scaling.

3.2. Finite-T Analysis and Resolution of CC Problem

For CC renormalization all of the fields, including the metric, must be quantized
and their contributions to the CC counted. For the pure graviton sector, the structure of
n-loop contributions with n ≥ 2 have been analyzed in [9]. In this section we focus on the
matter sector and conduct two-loop analysis of thermal effects by taking a gravity-Higgs
system in a flat background. Consideration of a flat non-dynamical metric background is
for simplicity, for one thing. Naively, the contributions of massive matter fields to the CC
are expected to be larger than those of the gravitons. The variant OPT unravels, however,
that the ultimate determining factor of the CC in the present scheme is the temperature.

We consider a slightly modified version of the widely-adopted OPT. In the widely-
used version (see, e.g., [72]), an artificial mass term is added and subsequently subtracted
out. This is one way of ensuring that the artificial mass term would not have any effect on
the full closed-form results. Although the mass term would not affect the full closed results,
it, serving as a variational parameter, does improve finite-order analysis: in the present
implementation of OPT, the renormalized mass itself will serve as the OPT parameter to be
determined by principle of minimal sensitivity (PMS) [60]. As known in the context of the
variational principle in quantum mechanics, there is no unique scheme for implementing
the principle. For instance, the more variational parameters one introduces, the more
accurate the approximation generally becomes. Our OPT is one that has an advantage of
achieving avoidance of the CC problem. What is important for the CC problem is that such
OPT exists.

Below, we first discuss several issues including justification and benefits of considering
a flat spacetime. We then carry out two-loop analysis in a flat spacetime. We review
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computation of the potential with the standard resummation by carefully keeping track of
the relevant structures. Our OPT is then implemented, and optimized renormalized mass
is determined. One encounters the novelty mentioned in the introduction to this section
in that the potential becomes complex. (Strictly speaking, the potential itself remains real
even at two-loop. However, the vev of the scalar field becomes complex. It is expected that
the complexity of the potential will become manifest at three-loop.)

Taking both finite-temperature (see, e.g., [73–75] for reviews) and metric-loop effects
into account requires intensive effort. To be entirely realistic, one would also have to
consider an FRLW-type time-dependent background. Needless to say, doing all these at
the same time should be a daunting task (in addition, there is a potential complication
caused by the fact that our Universe was not always in equilibrium. It would be ideal if
one could apply non-equilibrium thermodynamic QFT to the problem. However, it is not
clear whether non-equilibrium thermodynamic QFT has been sufficiently developed for
such a purpose. As a workaround, one may perform the present analysis for an epoch
that was either in equilibrium (since our Universe has been mostly in equilibrium) or will
be close to it (e.g., a future time when the Universe gets close to equilibrium heat death)):
one would first need to realize the FRLW background as a solution of the Einstein-scalar
system. Although this may be possible in a certain series approximation, a closed analytic
form of the solution would be desirable for ensuing analysis. Furthermore, the propagators
in such a background would be highly involved even without the presence of temperature.
One would be hampered by these technical complexities early on in the undertaking.

Fortunately, however, the crux of the CC resolution can be captured by considering a
scalar system in a flat spacetime [39,40]. A flat-spacetime analysis is in fact more than a toy
model. This is especially so for UV divergences, since they come from high-energy virtual
particles. In other words, since the UV divergences originate locally from a short-distance,
they are insensitive to the global geometry. Similarly, a finite-temperature theory can
employ the same UV regularization as the zero-temperature theory. As for the things
that depend on the infrared structure, the prime example of which is vacuum energy,
one must in principle consider the actual background. As we show below the energy
scale is correlated with the temperature. Ideally, one should thus use the actual curved
background when the temperature becomes low. The difference between using the actual
curved background and a flat one instead lies in finite parts. The finite parts can (and must)
be adjusted by the renormalization conditions anyway.

We now come to the heart of Section 3. Since we will be interested in temperature
much lower than the electroweak (EW) scale, an obvious question is whether or not there
would be any room for finite-temperature effects. The answer is affirmative, as we show.
We conduct the standard resummation followed by variant OPT implementation. The
one-loop observation in [9] that the CC problem is avoided is extended to two-loop.

The finite-temperature propagator associated with the action (15) is

< ζ(x1)ζ(x2) >= T ∑
n

e−iωn(τ1−τ2)
∫ d3k

(2π)3
eik·(x1−x2)

i(ω2
n + k2 + M2)

(30)

where ωn ≡ 2πTn (n = 0, 1, 2 . . .) and M2 ≡ ν2 before resummation. (See Equation (33)
for comparison.) At one-loop, renormalization of mass and coupling is necessary. Renor-
malization of the constant part of the potential, ν4

4λ̃
, is also needed. By introducing the

renormalization constants, Z0, Z1, Z2, the bare action may be written as

SB(ζ) = −
∫

d4x
[1

2
∂µζ∂µζ +

1
2

Z1ν2ζ2
]
−
∫

d4x
Z2λ̃

4
ζ4 −

∫
d4x

Z0ν4

4λ̃
. (31)

Precise forms of the two-loop parts of the renormalization constant Z’s are not needed
for the goal. By the same token it is not necessary to keep tract of the wave-function
renormalization constant Z3: since we employ MS scheme (initially), Z3 is determined by
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offsetting the divergences remaining after being partially canceled by the other Z-constants’
contributions.

The starting point of the OPT-improved thermal resummation can be taken to be the
following renormalized action

S(ζ) = −
∫

d4x
1
2

∂µζ∂µζ −
∫

d4x
(1

2
M2ζ2 +

λ

4!
ζ4
)
−
∫

d4x
3ν4

2λ
(32)

where
M2(T) ≡ ν2 +

λ

24
T2. (33)

A word of caution: we take the expression M2(T) ≡ ν2 + λ
24 T2 only for the purpose of

computing the loop contributions: later when we sum up the classical and loop contributions
(see Equation (41)), we use M2 ≡ ν2 for the classical action so that the classical action is
nothing but Equation (15). (One may consider using the expression M2(T) ≡ ν2 + λ

24 T2 for
the classical action even when summing up the classical and loop contributions. This would
be finite renormalization of the mass term. The qualitative conclusion on the CC problem
remains unchanged. Here we follow the standard resummation and use Equation (15) for
the classical action.) In the refined BFM one shifts the field according to (20):

ζ → ζ + ζ̃, ζ̃ ≡ ζc + ξ. (34)

With this shift one gets

S(ζ + ζ̃) = −
∫

d4x
(1

2
∂µ ζ̃∂µ ζ̃ +

1
2

M2ζ̃2 +
1

24
λµ2ε ζ̃4

)
−
∫

d4x
3ν4

2λµ2ε

−
∫

d4x
[1

2
∂µζ∂µζ +

1
2

M2(ν, ζ̃)ζ2
]
−
∫

d4x
λ

6
µ2ε
(3

2
ζ̃2ζ2 + ζ̃ζ3 +

1
4

ζ4
)

. (35)

The one-loop effective potential is fairly standard and can be found in textbooks.
Combined with the classical part it is given by

Vclassical+one-loop(ζ̃) =
3ν4

2λ
− π2T4

90
− M̃4

32π2 ln
µ̄eγE

4πT
+

1
24

M̃2T2

+
1
2

M2ζ̃2 − 1
12π

M̃3T +
1
4!

λζ̃4 +O
( M̃6

T2

)
. (36)

At two-loop, things become significantly more involved. For the field-dependent
part of the potential one can borrow the result obtained in [76,77]. For our purpose it is
also necessary to keep track of the field-independent terms, especially the temperature-
dependent terms. Let us enumerate and categorize the two-loop-relevant diagrams. The
first kind of the two-loop-relevant diagrams are those with two actual loops; they are given
in Figure 1a,b. The second kind are the diagrams involving one-loop counter vertices,
Figure 1c–e.

ζζ
ζ

ζ

ζ

ζ0 ζ0

ζ

ζ0

ζ0
ζ ζ

(a) (b) (c) (d) (e)

Figure 1. finite-temperature two-loop diagrams.

We illustrate the computation by taking the diagram in Figure 1a. For Figure 1a,
including the pure temperature-dependent terms, one gets
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µ2εV(a) =
1

24
λµ4ε

∫
d4x < ζ4 >

=
λ

1152
T4 − λ

192π
T3M̃− λ

768π2

(1
ε
+ iε + 2 ln

µ̄

T
− 2cB − 6

)
T2M̃2

+
λ

4
M̃3T
(4π)3

(1
ε
+ 2 ln

µ̄

T
− 2cB

)
+

λ

8
M̃4

(4π)4

(1
ε
+ 2 ln

µ̄

T
− 2cB

)2
+O(λ5/2T4) (37)

where
M̃2(T, ζ̃) = ν2 +

λ

24
T2 +

λ

2
ζ̃2. (38)

and
iε ≡ ln

µ̄

T2 − 4 ln 3 + cH , cH ≡ 5.3025, cB ≡ ln 4π − γE. (39)

The result presented in [77] is that it includes only the first line (without the first term
since only the field-dependent terms were kept track of). The second line is not important
for our purposes either: when analyzing the minima of the potential below, appropriate
h̄-scaling of the fields will be introduced, and given that h̄-scaling, the terms in the second
line are sub-leaking. The rest of the diagrams are as follows.

µ2εV(b) =
µ2ελ2ζ̃2T2

48(4π)2

(
− 1

ε
− iε − ln

µ̄2

T2 − 2 ln
T2

M̃2 − 2 + cH

)
+ · · ·

µ2εV(c) =
1

32(4π)2 λ2µ2εT2ζ̃2
(1

ε
+ iε

)
+ · · ·

µ2εV(d) =
1

48(4π)2 M2λT2
(1

ε
+ iε

)
+ · · ·

µ2εV(e) = − λ

48
T2
[T2

12
− M̃T

4π
− M̃2

16π2

(1
ε
+ 2 ln

µ̄

T
− 2cB

)
+ · · ·

]
. (40)

Figure 1c comes from the counter-term that removes the divergence in (27). Again,
there are M-dependent terms omitted here: given the h̄-scaling, they are sub-leading.
Combining the classical, one-loop, and all of the two-loop diagrams one can show after
some algebra that

Vcl + V1loop + µ2ε
(

V(a) + V(b) + V(c) + V(d) + V(e)

)
=

3ν4

2λ
− π2T4

90
− λ

1152
T4 +

iε
48(4π)2 M2λT2 +

1
24

M̃2T2 +
1
2

M2ζ̃2 +
1

24
λζ̃4

+
1

(4π)2
1

48
λ2
[1

2
iε − ln

µ̄2

T2 − 2 ln
T2

M̃2 − 2 + cH

]
ζ̃2T2

− 1
64π2

(
ln

µ̄2

T2 − 2cB

)
M̃4 − 1

12π
M̃3T − λ

48(4π)2

(
iε − 6

)
T2M̃2 (41)

where M2, M̃2 are given in (33) and (38), respectively. Above, the 1
ε terms have been

removed by renormalization. Before implementing our OPT, we first find the minimum
location and value of the potential. Instead of dealing directly with the ζ̃ field, it is more
convenient to treat M̃ as the variable, from which the corresponding value of ζ̃ can be easily
read off. To better reveal the structure, we introduce the following rescalings (since the

upper limit of the imaginary time integration is taken as
∫ h̄

T , the temperature itself comes
with an inverse power of h̄. We keep this h̄ implicit. (Equivalently one can introduce T̃
such that T = h̄T̃, and use T̃ instead.) This simply means that the loop corrections remain
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small even with finite temperature, and the strength of the correction terms is determined
by their overall h̄ powers ):

M2 ≡ H2M2 = h̄M2

M̃2 ≡ H2M̃2 = h̄M̃2 (42)

where
h̄ ≡ H2 (43)

and display the H-dependence. For the terms that have explicit ζ̃-dependence, we also
make the following substitution

ζ̃2 =
2
λ
(M̃2 −M2). (44)

This is of course to cast the potential into an expression having M̃ as the variable.
Once the potential is rewritten in terms of the rescaled variables, it becomes clear why
the previous omission of the higher-M, M̃ terms is justified to the given order (which is
two-loop). With these arrangements one can take the following form of the potential as the
starting point of the analysis:

Vtot =
3ν4

2L
+ H2

(
−M

2ν2

L
+
M̃2ν2

L
− 1

90
π2T4

)
(45)

+H4
(
M4

6L
− M

2M̃2

3L
+
M̃4

6L
+
M̃2T2

24
− LT4

1152

)
− H5M̃3T

12π
+O(H6).

The solution of ∂Vtot
∂M̃ = 0 gives the following minimum location in terms of M̃2:

M̃2 = −3ν2

H2 −
LT2

8
+M2 +

3
√

3LT
√
−ν2

8π

+
H2

128π2ν2

(
9L2ν2T2 +

√
3π
(

LT2 − 8M2
)

LT
√
−ν2

)
+ · · · . (46)

Substituting this into Vtot above yields the onshell potential. The PMS condition
∂Vtot(ν)

∂� = 0 admits (the other branches of the solutions have undesirable features. For
instance, in those branches the small M̃-expansion is not justified)

ν = 0 (47)

which implies

M2 =
1
24

LT2 (48)

This translates into

ζ̃2 = −T2

4
H2 + i

√
3L

8π
T2H3 + · · · (49)

which then leads to the following value of the optimized potential:

Vtot = −π2

90
h̄T4 +

19L
1152

h̄2T4 +O
(

h̄
5
2

)
. (50)

This result confirms at two-loop the resolution of the CC problem proposed in the
one-loop analysis in [9].
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4. On Potential QED Asymptotic Freedom

In this section we discuss the possibility mentioned in [40] in regards to potential
asymptotic freedom of finite-temperature QED. We consider an Einstein-Maxwell system
and revisit the issue by taking finite-temperature effects into account. Full analysis of
the issue will require work solely dedicated to this endeavor. Postponing such full-scale
investigation to future work, here we outline the analysis necessary to get to the bottom of
the problem. It turns out that to properly investigate QED asymptotic freedom at zero or
finite temperature, one must undertake the whole renormalization procedure of the theory,
not just renormalization of the CC. As for the case of CC renormalization, the finite part
after divergence subtraction will be important. The conclusion that we draw based on the
analysis below is that QED asymptotic freedom remains a reasonable possibility.

Inspired by the work of [78] which studies the quantum gravitational effects on a Yang-
Mills gauge coupling constant, QED asymptotic freedom was put forth in [61] wherein an
additional term to the beta function was obtained. Let us quote Equation (12) of [61] for
convenience:

β(E, e) =
e3

12π2 −
κ2

32π2

(
E2 +

3
2

Λ
)

e. (51)

The additional term, − κ2

32π2 E2e, where E denotes the characteristic energy scale, has
the same form as the second term in the parentheses. This then led the author to propose
potential asymptotic freedom in QED. The proposal of [61] as well as that of [78] was
debated in [79,80]. In particular, it was suggested in [79] that such an additional term will
be absent in de Donder gauge. As observed in those works the analysis must entail careful
sorting-out of the tricky issue of gauge choice-(in)dependence of the effective action. This
suggests the possibility that the potential gauge choice-dependence may be responsible for
the different outcomes. It was noted in [40] that finite-temperature effects should not be
subject to such a gauge choice issue, and may lead to a term analogous to the one obtained
in [61]. This must be so at least qualitatively: the fact that the presence of temperature
makes contributions that appear inside the parentheses in (51) should be independent of
the gauge choice.

The system considered in [78] was a non-Abelian gauge theory coupled to gravity.
A non-Abelian case has more diagrams than an Abelian case: for instance the graph in
Figure 1 of [78]-which is present due to cubic gauge coupling-does not arise in an Einstein-
Maxwell case. Once one considers finite temperature and resummation, there are diagrams
that additionally contribute to the beta function both in the Abelian and non-Abelian cases.
These diagrams are of the type shown in Figure 2a. The explicit expression for the vertex
represented by a cross in Figure 2a can be found by examining the matter part of the
Einstein-Maxwell action,

Smatter = −
1
4

∫ √
−ĝ F̂2

µν. (52)

By introducing the fluctuation fields, (hµν, aµ), and background fields, (g̃µν, Ãµ),

ĝµν ≡ hµν + g̃µν , Âµ ≡ aµ + Ãµ (53)

and expanding the matter action, one gets

Smatter =
∫
−1

4
√
−g̃
[

g̃µν g̃ρσ − g̃µνhρσ − g̃ρσhµν +
1
2

g̃µν g̃ρσh + g̃µνhρκhσ
κ + g̃ρσhµκhν

κ

−1
2

g̃µνhhρσ − 1
2

g̃ρσhhµν + hµνhρσ +
1
8

g̃µν g̃ρσ(h2 − 2hκ1κ2 hκ1κ2)
](

fµρ fνσ+2 fµρ F̃νσ + F̃µρ F̃νσ

)
(54)
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where fµν, F̃µν denote the field strenth assocaited with aρ, Ãρ, respectively. The aforemen-
tioned vertex-which we call VF̃F̃-is given by the term containing F̃µρ F̃νσ above:

VF̃F̃ ≡ −
1
4
√
−g̃
[

g̃µν g̃ρσ − g̃µνhρσ − g̃ρσhµν +
1
2

g̃µν g̃ρσh + g̃µνhρκhσ
κ + g̃ρσhµκhν

κ

−1
2

g̃µνhhρσ − 1
2

g̃ρσhhµν + hµνhρσ +
1
8

g̃µν g̃ρσ(h2 − 2hκ1κ2 hκ1κ2)
]

F̃µρ F̃νσ. (55)

For renormalization of the gauge coupling, we consider VF̃F̃ as an interaction vertex.
(This is technically simpler than including VF̃F̃ as part of the graviton kinetic term.) At zero
temperature the diagram vanishes in dimensional regularization when the Λ-CC term is
either absent or not treated as a formal graviton mass term. This is not the case in the finite-
temperature case. One should also consider Figure 2b-which contributes to the CC. In other
words the diagram in Figure 2b generates a CC term whose contribution to the graviton
mass term must be taken into account when conducting the standard resummation.

Figure 2. Diagrams relevant for (a) gauge coupling (b) cosmological constant; the curly lines
represent gravitons.

Carrying out explicit evaluation of the diagrams and renormalization procedure will
be very technically involved. For instance, computations of the diagrams in Figure 2 will
require the terms in quartic order of the metric fluctuation hµν in the expanded Einstein-
Hilbert action; this is quite lengthy. (It is given, e.g., in Equation (A.6) of [81].) It is still
possible to make some observations on the outcome, which connects us to the conclusion
drawn in the beginning. The contribution of Figure 2b to the CC will contain several types
of terms, some of which will depend on the temperature. (Due to this, QED asymptotic
freedom will occur conditionally, depending on the temperature.) Those terms will in turn
contribute to the right-hand side of the beta-function calculation. As for the relative signs
of those terms, we expect both signs to be present, which is different from the status of the
E2 term in (51). The renormalization conditions will also matter since it will determine the
finite parts. All of these seem to suggest that a systematic procedure of the renormalization,
including the Newton’s constant, would be necessary. One would also presumably need
experimentally-derived inputs. In spite of these complications, the possibility of the QED
asymptotic freedom seems reasonable.

Lastly, recall that we have considered the presence of temperature for the reason stated
before: finite-temperature effects should not be subject to the gauge choice-dependence
issue. However, even if one considers the zero-temperature case, one would get vari-
ous contributions, including the finite part, to the right-hand side of the beta-function
calculation. This should conditionally imply QED asymptotic freedom.

5. Conclusions

It has recently turned out that quantization of gravity-which itself has been among
the most evasive problems-holds the key to some other longstanding problems in theoreti-
cal physics. In this work we have carried out three exercises in the course of furthering
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progress. As established in the recent sequels, one of the essential ingredients for the
FBQ is reduction of the support of the physical states. Whereas the PSC was derived in
the ADM formalism in the earlier works, in the present work we have derived it in the
4D-covariant framework. Applying the quantized gravity setup to another longstanding
CC problem, we have explored the finite-temperature effects in that context. Obviously, the
crucial question is whether or not, in the case of a low temperature, the finite-temperature
effects can be dismissed as unimportant and/or irrelevant. A qualitative scaling argument
suggests that they should be crucial. It is shown that there exists a quantitative rationale-a
variant OPT-that confirms the essential role of the finite-temperature effects in avoiding the
CC fine-tuning. In another direction we have reexamined the possibility of QED asymptotic
freedom put forth in [61]. We conclude that the QED asymptotic freedom remains a reason-
able possibility, and to settle the matter it is necessary to conduct the entire renormalization
procedure by paying close attention to the finite parts after divergence subtractions.

In the body it was seen that the low energy sector is important for vacuum energy.
Another qualitative way of seeing this is to examine the partition function in the canonical
formalism,

Z = ∑
n

< n|e−
H
T |n > . (56)

A schematic notation is used above: the sum represents a combination of discrete sum
and continuous momentum integration. Since the ultraviolet structure is determined by
the momenta going to infinity, the structure will not be sensitive to the finite temperature.
What is also clear from the expression is that the low energy states, i.e., states or virtual
particles having energy ∼ T or lower, should be important. Put differently, the presence of
the nonzero temperature changes the infrared structure of the theory.

Let us comment on an intriguing implication of the present vacuum energy analysis.
Although temperature enters the analysis in a rather ‘mechanical’ way, the fact that the
CC is accounted for by a finite-temperature effect seems to reflect something profound
about the nature of the spacetime. As well understood in cosmology, temperature is not
just an indicator of the average kinetic energy of the particles (in the non-relativistic limit).
It is also closely tied with expansion of the Universe. The present analysis reveals that
it additionally serves as a measure of vacuum energy. Part of the vacuum energy comes
from matter loops, and the vacuum energy in turn causes the expansion of the Universe.
This inter-correlation of matter, vacuum energy, temperature, and expansion should be a
manifestation of what may perhaps be described as the ‘organic’ nature of the spacetime.

There are several future directions:
One of the more urgent problems to better understand is in regard to boundary terms

and conditions, regardless of the fact that much effort has been invested. For instance, the
Neumann boundary condition that we have focused on results by not adding the YGH
term [65]. Will there be more general types of the Neumann boundary conditions? More
narrowly, one considers a gauge parameter εµ with the property εµ → 0 as x3 → ∞ in
the Dirichlet boundary condition; will this restriction have to be lifted in the Neumann
boundary condition? If so, how can such a transformation be distinguished from an LGT?
Presumably such a restriction should be kept in the Neumann boundary condition as well.
For one thing, lifting the restriction would interfere with partial integrations. This status
of matter means that the boundary conditions are determined solely by added boundary
terms. Further investigation is desirable for a more thorough understanding of boundary
terms and conditions in general.

Consideration of finite-temperature effects is a crucial component in describing the
thermal history of our Universe. Since the Universe was at higher temperatures in previous
eras, it will be a meaningful endeavor to explore whether one could come up with a
streamlining description covering the entire temperature range, say, from the electroweak
era to the present. (The present results seem to signal toward an affirmative answer.) One
must ultimately deal with the finite-temperature infrared problem. It will also be of great
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interest to examine whether or not the variant OPT could shed some new light on the
possibility of first-order and second-order phase transitions.
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Appendix A. Glossary of Some Terms

FBQ (foliation-based quantization): It is an approach of quantizing gravity, proposed
in [34]. It has ingredients of both canonical quantization and covariant quantization. One of
the key features is that appropriate and complete gauge-fixing leads to the physical sector
of the theory, which has support on a hypersurface located in an asymptotic boundary.

PSC (physical state condition): Just as one finds two polarization components after
fixing the gauge symmetry of Maxwell’s theory, one can fix the diffeomorphism symmetry
of gravity and obtain the physical spectrum of the theory. The procedure is more involved
due to the large amount of the gauge degrees of freedom. At a more technical level, the
difficulty of the procedure is attributed to the fact that first-class constraints are involved.
The PCS was initially obtained in Arnowitt-Deser-Misner formalism. When solving the
first class constraint, the commutation relation between Lie and covariant derivatives [66]
plays a crucial role.

BFM (background field method): The background field method is a convenient way of
computing the 1PI effective action by splitting the fields into fluctuations and backgrounds,
followed by integrating out the fluctuations. The refined version employed in the present
work (and its sequels) is based on Equation (16.1.17) of [82], wherein it was called the
external field method. When applied to a metric field, care must be exercised in dealing
with the trace piece of the fluctuation. More pedagogical technical details of the present
method were given in [37,38]. More thorough applications and some subtleties of the
method can be found in [40].

OPT (optimal perturbation theory): Optimal perturbation theory has its origin in
the variational principle in quantum mechanics. Not surprisingly, some of the early
applications were in the context of quantum mechanics, such as an anharmonic oscillator.
In the work of [60], the notion was applied to renormalization condition of quantum field
theory. The resulting perturbation theory was named OPT.

PMS (principle of minimal sensitivity): The values of the variational parameters in
quantum mechanics are determined in such a way as to minimize the energy of the wave
function. By invoking renormalization group invariance of physical quantities, it was put
forth in [60] that an optimal renormalization condition must be one that is stable under its
variation. The variational principle in this specific context of the renormalization conditions
was dubbed the principle of minimal sensitivity.

References
1. Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982.
2. Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L. Effective Action in Quantum Gravity; IOP Publishing: Bristol, UK, 1992.
3. Esposito, G.; Kamenshchik, A.Y.; Pollifrone, G. Euclidean Quantumgravity on Manifolds with Boundary; Springer Science: Berlin,

Germany, 1997.
4. Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007; p. 819.
5. Parker, L.E.; Toms, D.J. Quantum Field Theory in Curved Spacetime; Cambridge University Press: Cambridge, UK, 2009.
6. Park, I.Y. Foliation-based quantization and black hole information. Class. Quant. Grav. 2017, 34, 245005. [CrossRef]
7. Park, I.Y. Boundary dynamics in gravitational theories. J. High Energy Phys. 2019, 7, 128. [CrossRef]
8. Park, I.Y. Black hole evolution in a quantum-gravitational framework. Prog. Theor. Exp. Phys. 2021, 2021, 063B03. [CrossRef]
9. Park, I.Y. Cosmological constant as a finite temperature effect. arXiv 2021, arXiv:2101.02297.
10. Park, I. Foliation-Based Approach to Quantum Gravity and Applications to Astrophysics. Universe 2019, 5, 71.

doi:10.3390/universe5030071. [CrossRef]

http://doi.org/10.1088/1361-6382/aa9602
http://dx.doi.org/10.1007/JHEP07(2019)128
http://dx.doi.org/10.1093/ptep/ptab045
http://dx.doi.org/10.3390/universe5030071


Particles 2021, 4 487

11. Park, I.Y. Quantum-corrected Geometry of Horizon Vicinity. Fortsch. Phys. 2017, 65, 1700038. [CrossRef]
12. Nurmagambetov, A.J.; Park, I.Y. Quantum-induced trans-Planckian energy near horizon. J. High Energy Phys. 2018, 5, 167.

[CrossRef]
13. Nurmagambetov, A.J.; Park, I.Y. Quantum-gravitational trans-Planckian energy of a time-dependent black hole. Symmetry 2018,

11, 1303. [CrossRef]
14. Nurmagambetov, A.J.; Park, I.Y. On Firewalls in quantum-corrected General Relativity. J. Phys. Conf. Ser. 2019, 1390, 01209.

[CrossRef]
15. Nurmagambetov, A.J.; Park, I.Y. Quantum-gravitational trans-Planckian radiation by a rotating black hole. arXiv 2020,

arXiv:2007.06070.
16. Kawai, H.; Yokokura, Y. A Model of Black Hole Evaporation and 4D Weyl Anomaly. Universe 2017, 3, 51. [CrossRef]
17. Kawai, H.; Yokokura, Y. Black Hole as a Quantum Field Configuration. Universe 2020, 6, 77. [CrossRef]
18. Ho, P.M.; Yokokura, Y. Firewall from Effective Field Theory. Universe 2021, 7, 241. [CrossRef]
19. Ho, P.M. From uneventful Horizon to firewall in D-dimensional effective theory. Int. J. Mod. Phys. A 2021, 36, 2150145. [CrossRef]
20. Park, I.Y. On the pattern of black hole information release. Int. J. Mod. Phys. A 2014, 29, 1450047. [CrossRef]
21. Christodoulou, M.; Rovelli, C.; Speziale, S.; Vilensky, I. Planck star tunneling time: An astrophysically relevant observable from

background-free quantum gravity. Phys. Rev. D 2016, 94, 084035. [CrossRef]
22. Bianchi, E.; Christodoulou, M.; D’Ambrosio, F.; Haggard, H.M.; Rovelli, C. White Holes as Remnants: A Surprising Scenario for

the End of a Black Hole. Class. Quant. Grav. 2018, 35, 225003. [CrossRef]
23. Achour, J.B.; Uzan, J.P. Bouncing compact objects. Part II: Effective theory of a pulsating Planck star. Phys. Rev. D 2020, 102,

124041. [CrossRef]
24. Achour, J.B.; Brahma, S.; Mukohyama, S.; Uzan, J.P. Towards consistent black-to-white hole bounces from matter collapse. J.

Cosmol. Astropart. Phys. 2020, 9, 020. [CrossRef]
25. Padmanabhan, T. Cosmological constant: The Weight of the vacuum. Phys. Rept. 2003, 380, 235–320. [CrossRef]
26. Martin, J. Everything You Always Wanted to Know about the Cosmological Constant Problem (But Were Afraid to Ask). Comptes

Rendus Phys. 2012, 13, 566–665. [CrossRef]
27. Peracaula, J.S. Cosmological constant and vacuum energy: old and new ideas. J. Phys. Conf. Ser. 2013, 453, 012015. [CrossRef]
28. Regge, T.; Teitelboim, C. Role of Surface Integrals in the Hamiltonian Formulation of General Relativity. Ann. Phys. 1974, 88, 286.

[CrossRef]
29. Park, M.I. Symmetry algebras in Chern-Simons theories with boundary: Canonical approach. Nucl. Phys. B 1999, 544, 377–402.

[CrossRef]
30. Higuchi, A. Quantum linearization instabilities of de Sitter space-time. 1. Class. Quant. Grav. 1991, 8, 1961–1981. [CrossRef]
31. Gay-Balmaz, F.; Ratiu, T.S. A new Lagrangian dynamic reduction in field theory. Ann. Inst. Fourier 2010, 16, 1125–1160. [CrossRef]
32. Park, I.Y. Reduction of gravity-matter and dS gravity to hypersurface. Int. J. Geom. Meth. Mod. Phys. 2017, 14, 1750092. [CrossRef]
33. Ortin, T. Gravity and Strings; Cambridge University Press: Cambridge, UK, 2004.
34. Park, I.Y. Hypersurface foliation approach to renormalization of ADM formulation of gravity. Eur. Phys. J. C 2015, 75, 459.

[CrossRef]
35. Kallosh, R.E.; Tarasov, O.V.; Tyutin, I.V. One Loop Finiteness Of Quantum Gravity Off Mass Shell. Nucl. Phys. B 1978, 137, 145.

[CrossRef]
36. Antoniadis, I.; Iliopoulos, J.; Tomaras, T.N. One loop effective action around de Sitter space. Nucl. Phys. B 1996, 462, 437–452.

[CrossRef]
37. Park, I.Y. Lagrangian constraints and renormalization of 4D gravity. J. High Energy Phys. 2015, 4, 053. [CrossRef]
38. Park, I.Y. Four-Dimensional Covariance of Feynman Diagrams in Einstein Gravity. Theor. Math. Phys. 2018, 195, 745–763.

[CrossRef]
39. Park, I.Y. One-loop renormalization of a gravity-scalar system. Eur. Phys. J. C 2017, 77, 337. [CrossRef]
40. Park, I.Y. Revisit of renormalization of Einstein-Maxwell theory at one-loop. Prog. Theor. Exp. Phys. 2021, 2021, 013B03. [CrossRef]
41. Vilkovisky, G.A. The Unique Effective Action in Quantum Field Theory. Nucl. Phys. B 1984, 234, 125. [CrossRef]
42. Fradkin, E.S.; Tseytlin, A.A. On the New Definition of Off-shell Effective Action. Nucl. Phys. B 1984, 234, 509. [CrossRef]
43. Odintsov, S.D.; Shevchenko, I.N. Gauge invariant and gauge fixing independent effective action in one loop quantum gravity.

Fortsch. Phys. 1993, 41, 719.
44. Falls, K. Renormalization of Newton’s constant. Phys. Rev. D 2015, 92, 124057. [CrossRef]
45. Falls, K. Critical Scaling in Quantum Gravity from the Renormalisation Group. Available online: https://arxiv.org/abs/1503.062

33 (accessed on 13 October 2021).
46. Huggins, S.R.; Kunstatter, G.; Leivo, H.P.; Toms, D.J. The Vilkovisky-de Witt Effective Action for Quantum Gravity. Nucl. Phys. B

1988, 301, 627. [CrossRef]
47. Toms, D.J. Quantum gravity and charge renormalization. Phys. Rev. D 2007, 76, 045015. [CrossRef]
48. Modesto, L.; Rachwal, L.; Shapiro, I.L. Renormalization group in super-renormalizable quantum gravity. Eur. Phys. J. C 2018, 78,

555. [CrossRef]
49. Harvey, J.A. Magnetic Monopoles, Duality and Supersymmetry. Available online: https://arxiv.org/abs/hep-th/9603086

(accessed on 13 October 2021).

http://dx.doi.org/10.1002/prop.201700038
http://dx.doi.org/10.1007/JHEP05(2018)167
http://dx.doi.org/10.3390/sym11101303
http://dx.doi.org/10.1088/1742-6596/1390/1/012091
http://dx.doi.org/10.3390/universe3020051
http://dx.doi.org/10.3390/universe6060077
http://dx.doi.org/10.3390/universe7070241
http://dx.doi.org/10.1142/S0217751X21501451
http://dx.doi.org/10.1142/S0217751X1450047X
http://dx.doi.org/10.1103/PhysRevD.94.084035
http://dx.doi.org/10.1088/1361-6382/aae550
http://dx.doi.org/10.1103/PhysRevD.102.124041
http://dx.doi.org/10.1088/1475-7516/2020/09/020
http://dx.doi.org/10.1016/S0370-1573(03)00120-0
http://dx.doi.org/10.1016/j.crhy.2012.04.008
http://dx.doi.org/10.1088/1742-6596/453/1/012015
http://dx.doi.org/10.1016/0003-4916(74)90404-7
http://dx.doi.org/10.1016/S0550-3213(99)00031-0
http://dx.doi.org/10.1088/0264-9381/8/11/009
http://dx.doi.org/10.5802/aif.2549
http://dx.doi.org/10.1142/S021988781750092X
http://dx.doi.org/10.1140/epjc/s10052-015-3660-x
http://dx.doi.org/10.1016/0550-3213(78)90055-X
http://dx.doi.org/10.1016/0550-3213(95)00633-8
http://dx.doi.org/10.1007/JHEP04(2015)053
http://dx.doi.org/10.1134/S0040577918050094
http://dx.doi.org/10.1140/epjc/s10052-017-4896-4
http://dx.doi.org/10.1093/ptep/ptaa167
http://dx.doi.org/10.1016/0550-3213(84)90228-1
http://dx.doi.org/10.1016/0550-3213(84)90075-0
http://dx.doi.org/10.1103/PhysRevD.92.124057
https://arxiv.org/abs/1503.06233
https://arxiv.org/abs/1503.06233
http://dx.doi.org/10.1016/0550-3213(88)90280-5
http://dx.doi.org/10.1103/PhysRevD.76.045015
http://dx.doi.org/10.1140/epjc/s10052-018-6035-2
https://arxiv.org/abs/hep-th/9603086


Particles 2021, 4 488

50. Di Vecchia, P. Duality in N = 2, N = 4 Supersymmetric Gauge Theories. Available online: https://arxiv.org/abs/hep-th/9803026
(accessed on 13 October 2021).

51. Park, I.Y. Dimensional reduction to hypersurface of foliation. Fortsch. Phys. 2014, 62, 966–974. [CrossRef]
52. Park, I. Holographic quantization of gravity in a black hole background. J. Math. Phys. 2016, 57, 022305. [CrossRef]
53. James, F.; Park, I.Y. Quantum Gravitational Effects on the Boundary. Theor. Math. Phys. 2018, 195, 607–627.

doi:10.1134/S0040577918040128. [CrossRef]
54. Gibbons, G.W.; Hawking, S.W.; Perry, M.J. Path Integrals and the Indefiniteness of the Gravitational Action. Nucl. Phys. B 1978,

138, 141. [CrossRef]
55. Mazur, P.O.; Mottola, E. The Gravitational Measure, Solution of the Conformal Factor Problem and Stability of the Ground State

of Quantum Gravity. Nucl. Phys. B 1990, 341, 187. [CrossRef]
56. Park, I.Y. Mathematical foundation of foliation-based quantization. Adv. Theor. Math. Phys. 2018, 22, 247–260.

doi:10.4310/ATMP.2018.v22.n1.a6. [CrossRef]
57. Park, I.Y. Foliation, jet bundle and quantization of Einstein gravity. Front. Phys. 2016, 4, 25. [CrossRef]
58. Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [CrossRef]
59. Schwartz, M.D. Quantum Field Theory and the Standard Model; Cambridge University Press: Cambridge, UK, 2014.
60. Stevenson, P.M. Optimized Perturbation Theory. Phys. Rev. D 1981, 23, 2916. [CrossRef]
61. Toms, D.J. Quantum gravitational contributions to quantum electrodynamics. Nature 2010, 468, 56–59. [CrossRef] [PubMed]
62. Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1995; Volume I.
63. Kiriushcheva, N.; Kuzmin, S.V. The Hamiltonian formulation of General Relativity: Myths and reality. Central Eur. J. Phys. 2011,

9, 576–615. doi:10.2478/s11534-010-0072-2 [CrossRef]
64. Freidel, L.; Perez, A.; Pranzetti, D. Loop gravity string. Phys. Rev. D 2017, 95, 106002. [CrossRef]
65. Krishnan, C.; Kumar, K.V.P.; Raju, A. An alternative path integral for quantum gravity. J. High Energy Phys. 2016, 10, 043.

[CrossRef]
66. Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Interscience Publisher: Hoboken, NJ, USA, 1963; Volume I.
67. Ryskin, G. The emergence of cosmic repulsion. Astropart. Phys. 2015, 62, 258–268. [CrossRef]
68. Ryskin, G. Vanishing vacuum energy. Astropart. Phys. 2020, 115, 102387. [CrossRef]
69. Linde, A.D. Infrared Problem in Thermodynamics of the Yang-Mills Gas. Phys. Lett. B 1980, 96, 289–292. [CrossRef]
70. Karsch, F.; Patkos, A.; Petreczky, P. Screened perturbation theory. Phys. Lett. B 1997, 401, 69–73. [CrossRef]
71. Andersen, J.O.; Strickland, M. Mass expansions of screened perturbation theory. Phys. Rev. D 2001, 64, 105012. [CrossRef]
72. Chiku, S.; Hatsuda, T. Optimized perturbation theory at finite temperature. Phys. Rev. D 1998, 58, 076001. [CrossRef]
73. Kapusta, J.I.; Gale, C. Finite-Temperature Field Theory: Principles and Applications; Cambridge University Press: Cambridge, UK,

2006.
74. Le Bellac, M. Thermal Field Theory; Cambridge University Press: Cambridge, England, 2000.
75. Laine, M.; Vuorinen, A. Basics of Thermal Field Theory. Lect. Notes Phys. 2016, 925, 1-281. [CrossRef]
76. Parwani, R.R. Resummation in a hot scalar field theory. Phys. Rev. D 1992, 45, 4695. [CrossRef] [PubMed]
77. Arnold, P.B.; Espinosa, O. The Effective potential and first order phase transitions: Beyond leading-order. Phys. Rev. D 1993, 47,

3546. [CrossRef]
78. Robinson, S.P.; Wilczek, F. Gravitational correction to running of gauge couplings. Phys. Rev. Lett. 2006, 96, 231601. [CrossRef]
79. Pietrykowski, A.R. Gauge dependence of gravitational correction to running of gauge couplings. Phys. Rev. Lett. 2007, 98, 061801.

[CrossRef]
80. Ellis, J.; Mavromatos, N. Does gravity correct gauge couplings? Nature 2011, 479, E5–E6. [CrossRef] [PubMed]
81. Goroff, M.H.; Sagnotti, A. The Ultraviolet Behavior of Einstein Gravity. Nucl. Phys. B 1986, 266, 709–736. [CrossRef]
82. Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1995; Volume II.

https://arxiv.org/abs/hep-th/9803026
http://dx.doi.org/10.1002/prop.201400068
http://dx.doi.org/10.1063/1.4942101
http://dx.doi.org/10.1134/S0040577918040128
http://dx.doi.org/10.1016/0550-3213(78)90161-X
http://dx.doi.org/10.1016/0550-3213(90)90268-I
http://dx.doi.org/10.4310/ATMP.2018.v22.n1.a6
http://dx.doi.org/10.3389/fphy.2016.00025
http://dx.doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.1103/PhysRevD.23.2916
http://dx.doi.org/10.1038/nature09506
http://www.ncbi.nlm.nih.gov/pubmed/21048760
http://dx.doi.org/10.2478/s11534-010-0072-2
http://dx.doi.org/10.1103/PhysRevD.95.106002
http://dx.doi.org/10.1007/JHEP10(2016)043
http://dx.doi.org/10.1016/j.astropartphys.2014.10.003
http://dx.doi.org/10.1016/j.astropartphys.2019.102387
http://dx.doi.org/10.1016/0370-2693(80)90769-8
http://dx.doi.org/10.1016/S0370-2693(97)00392-4
http://dx.doi.org/10.1103/PhysRevD.64.105012
http://dx.doi.org/10.1103/PhysRevD.58.076001
http://dx.doi.org/10.1007/978-3-319-31933-9
http://dx.doi.org/10.1103/PhysRevD.45.4695
http://www.ncbi.nlm.nih.gov/pubmed/10014381
http://dx.doi.org/10.1103/PhysRevD.47.3546
http://dx.doi.org/10.1103/PhysRevLett.96.231601
http://dx.doi.org/10.1103/PhysRevLett.98.061801
http://dx.doi.org/10.1038/nature10619
http://www.ncbi.nlm.nih.gov/pubmed/22113695
http://dx.doi.org/10.1016/0550-3213(86)90193-8

	Introduction
	Gauge Symmetries, Fixing, and PSC
	Review of Gauge Symmetry and Its Fixing
	Alternative Derivation of PSC

	Vacuum Energy in Finite Temperature
	Review of CC Problem
	Finite-T Analysis and Resolution of CC Problem

	On Potential QED Asymptotic Freedom
	Conclusions
	Glossary of Some Terms
	References

