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1. Introduction

Beta decays in atomic nuclei have long been a source of fundamental discoveries in
physics [1–3], and precise measurements of beta decays continue to be a promising path to
search for physics beyond the Standard Model (BSM) [4–7]. A major challenge in the search
for a signal of new physics is understanding the Standard Model “background”, especially
the effects of low-energy quantum chromodynamics which manifest as nuclear structure.
The situation is aggravated by the fact that nuclei which are preferred experimentally are
often difficult to treat theoretically in a framework that allows quantified uncertainties.

Nevertheless, progress has been made over the past few decades so that the inter-
nucleon interaction can be systematically constructed within an effective field theory
framework [8–10]. Simultaneously, advances in many-body theory and computational
resources have enabled ab initio treatment of the medium-mass nuclei which are often
relevant for BSM searches [11–17]. Of course, more work remains to be done, both on the
effective field theory side [18–20] and on understanding how approximation schemes in ab
initio calculations impact the observables in question.

In this paper, I will focus on one particular many-body method—the valence-space
in-medium similarity renormalization group (VS-IMSRG)—and consider two topics in
allowed beta decay, the quenching in Gamow–Teller decays and correction factors for
superallowed 0+ → 0+ Fermi decays.

2. IMSRG Formalism

There are several review articles detailing both the free-space SRG [21,22] and the
in-medium SRG [15,23–26], and so here I will review only what is needed for our present
purposes.

2.1. Similarity Renormalization Group

The basic idea of the SRG is to perform a unitary transformation U on the Hamiltonian
H (and all other operators) in such a way that the resulting nuclear wave function is simpler.
This is achieved by performing a sequence of infinitessimal unitary transformations, labeled
by a flow parameter s, so that

H(s) = U(s)H(0)U†(s) (1)

with U(0) = 1. The way in which U changes with s is specified by the action of an operator
η, called the generator:

dU(s)
ds

= η(s)U(s). (2)
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We are free to choose η however we like—it can depend on s—as long as it is anti-
hermitian, i.e., η†(s) = −η(s). Combining (1) and (2) we obtain a flow equation for the
Hamiltonian in terms of a commutator with the generator

dH
ds

= [η(s), H(s)]. (3)

The flow equation for any other operator O is obtained by replacing H → O on both
sides of (3) [27–30].

It remains to specify η(s). In the free-space SRG, we choose

ηSRG(s) = [T, V(s)] (4)

where T is the kinetic energy and V(s) is the potential so H(s) = T + V(s). This gen-
erator drives V(s) towards a band-diagonal form in momentum space, with a width
λSRG ≡ s−1/4.

When the SRG flow Equation (3) is formulated in Fock-space (i.e., in terms of creation
and annihilation operators), many-body forces are inevitably induced, and these must be
truncated in order to make the calculation tractable. For this reason, the “free-space” SRG
evolution is typically performed out to λSRG & 2 fm−1.

2.2. In-Medium SRG

The truncation of many-body forces is rendered less severe if all operators are normal-
ordered with respect to a reference state |Φ〉, which should be a reasonable first approxima-
tion of the exact wave function |Ψ〉. This approach is called the in-medium SRG (IMSRG).
If we choose the generator to suppress the parts of H which lead to excitations out of
the reference |Φ〉, then for s→ ∞ |Φ〉 becomes an eigenstate of H(s) with an eigenvalue
corresponding to the energy of the exact wave function |Ψ〉, up to approximation errors
in solving (3). In all calculations presented here, I neglect three-body operators after the
initial normal-ordering step, resulting in the IMSRG(2) approximation.

One possible choice for the generator which achieves the desired suppression was
proposed by White [31]

〈a|ηWh|b〉 ≡ 〈a|H
od|b〉

Ea − Eb
(5)

where the “off-diagonal” part of the Hamiltonian, denoted Hod, is any part of H which
connects |Φ〉 to a different state. The states |a〉 and |b〉 are elements of the basis used to
express the operators, and the denominator Ea − Eb is the energy difference between the
basis states. (The denominators are typically defined with Epstein–Nesbet or Møller–Plesset
partitioning. In this work, I use Epstein–Nesbet denominators, and a modification of (5)—
also suggested by White—called the arctangent generator (see Ref. [26] for more details).)

As a further generalization, we may define a valence space (e.g., the sd-shell above
an 16O core), and define Hod as any part of H which connects a valence configuration
to a non-valence configuration (specifically, we partition all single-particle states into
core, valence, and excluded orbits. A “valence configuration” is one with all core orbits
occupied and all excluded orbits unoccupied). The Hamiltonian is then driven to a block-
diagonal form and we may diagonalize in the (typically much smaller) sub-space of valence
configurations. Such a diagonalization directly corresponds to a standard large-scale shell
model calculation with an effective interaction defined by H(∞). This approach is referred
to as the valence-space IMSRG (VS-IMSRG), and it is used for all calculations presented.

Generally, the states we wish to target in a valence space approach are not well-
described by a single closed-shell configuration, and the choice of |Φ〉 becomes less clear.
In this work I use the ensemble normal-ordering (ENO) approach [32], which amounts to
taking fractional occupation numbers such that the reference has spherical symmetry and
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the correct number of particles on average. In addition, I use the Magnus formulation of
the IMSRG [33], in which we write

U(s) ≡ eΩ(s) (6)

where Ω = −Ω† is the Magnus operator. Equations (6) and (2) may be combined to obtain
a flow equation for Ω(s) in terms of η(s), and operators (including the Hamiltonian), are
transformed as

O(s) = eΩ(s)O(0)e−Ω(s)

= O(0) + [Ω(s),O(0)] + 1
2!
[
Ω(s), [Ω(s),O(0)]

]
+ . . .

(7)

In (7), each commutator is truncated at the normal-ordered two-body level, and the
series is computed iteratively until the size of a term falls below a numerical threshold.

2.3. Aspects Relevant to Beta Decay

Two additional details of the calculation are relevant for β decays. The first is the
choice of single-particle basis in which we express the operators at s = 0. In this work I use
a Hartree–Fock basis with Coulomb and isospin-breaking strong forces included, so that
for a given set of single-particle quantum numbers {n, `, j}, the proton and neutron radial
wave functions are not identical. The second is the choice of reference. Because we wish to
compute the initial state, with N neutrons and Z protons, consistently with the final state
with N ± 1 neutrons and Z∓ 1 protons, there is some ambiguity about which reference
|Φ〉 should be used. If we retain all induced many-body terms during the SRG evolution,
the choice of reference is irrelevant. However, the accuracy of the IMSRG(2) approximation
depends on the choice of reference. The two natural choices for β decay are to use the N, Z
of the initial state or the final state. I will discuss this in more detail in Section 4.

2.4. Comparison with Other Ab Initio Methods

Besides the VS-IMSRG, there are a number of ab initio methods available which can
be used to treat beta decay, and it is worth briefly outlining them for context. For a more
detailed account of ab initio many-body methods for nuclei, the reader is referred to [15].
Quantum Monte Carlo [11] and no-core shell model [34] approaches have well-understood
approximation errors and can often yield quasi-exact solutions. The price is that the
computational cost of these methods scales exponentially with the number of particles, and
so are generally limited to the p-shell, with A . 16.

Polynomially-scaling methods, like coupled cluster (CC) [12], self-consistent Green’s
function [35], IMSRG [23], and many-body perturbation theory (MBPT) [36], can access
heavier nuclei at the cost of approximation errors that, while systematically improvable,
are more difficult to assess. With the exception of quantum Monte Carlo (which requires a
local potential), all of these methods can use the same input Hamiltonian and operators,
enabling benchmark comparisons to better understand many-body errors [37,38].

Perhaps the most significant difference between the VS-IMSRG approach and the
other polynomially-scaling methods is that the latter methods are generally constructed to
target a single (ground) state of a given nucleus, and other states are expressed in terms
of particle-hole excitations out of that state (notable exceptions being the shell model
couple- cluster approach [39], which decouples a valence space in a similar manner to the
VS-IMSRG, and the in-medium generator coordinate method [40] in which initial and final
states are expressed by superpositions of shapes). This can in principle lead to trouble
for transitions between states which are not, to a good approximation, related by a few
particle-hole excitations. In contrast, the VS-IMSRG, by virtue of an exact diagonalization
in the valence space, can describe two states which are related by many-particle-many-hole
excitations—so long as those excitations live in the valence space.

It bears emphasis that all the above methods are systematically improvable and, given
the same input Hamiltonian, should all converge to the same answer as their respective
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truncations are relaxed. Which truncation scheme converges most rapidly will in general
depend on the state and observable in question. Consequently, until the truncation errors
of polynomial-scaling methods are more quantitatively understood, benchmarks and
cross-checks between methods are essential for making robust predictions.

3. Gamow–Teller Decays

In a Gamow–Teller decay, the leptons carry one unit of angular momentum and leave
the parity of the nucleus unchanged. The relevant nuclear transition operator is obtained
from the space-like part of the hadronic axial-vector current. The leading term in the
non-relativistic reduction is gAστ, where gA ≈ 1.27 is the axial coupling constant, and σ
and τ are the spin and isospin Pauli matrices.

Historically, when the leading operator was combined with shell model wave func-
tions, a systematic “quenching” of the decay strength was observed, i.e., experimental
matrix elements were smaller than the predicted ones, with a similar effect (tt should be
noted that the quenching in M1 observables is less clear experimentally, see e.g., Ref. [41].
Two body currents have been shown to improve agreement with experiment in quantum
Monte Carlo calculations of p-shell nuclei [42], but these currents have not yet been stud-
ied in ab initio calculations of heavier systems) in isovector M1 observables [43–48]. It
was quickly surmised that the source of the discrepancy should be some combination of
inadequate wave functions (missing correlations) and an inadequate transition operator
(missing currents), that neither of these obviously dominated and that the two effects were
not independent [44,49,50]. It was also suggested that pions ought to have something to
do with the renormalization of the axial current in the nuclear medium [51].

These physics arguments survive in the modern EFT point of view, which organizes
the nuclear interaction and coupling to external fields in powers of a ratio of scales. The
distinction between short and long-distance physics is made by a cutoff, and the arbitrari-
ness of the cutoff is reflected in the requirement that observables be independent of its
value. The relationship between pions and the axial current arises as a consequence of
broken chiral symmetry [52]. Importantly, chiral EFT enables a systematic and consistent
construction of three-nucleon forces and two-body currents [53–56].

The result in the limit that the momentum carried by the leptons vanishes, up to order
Q0 (leading order is Q−3) is [53,57,58]

~J = ~J1b +~J2b;cont +~J2b;1π (8)

where
~J±1b = gA~στ± (9)

~J±2b;cont =
1
2

cD

Λχ f 2
π
(~σ1τ±1 +~σ2τ±2 ) (10)

~J2b;1π = − gA

f 2
π

~σ2 ·~q2

k2
2 + M2

π

[
i~p1

2m
τ±× + 2c3τ±2

~k2 + (c4 +
1

4m
)τ±× (~σ1 ×~k2)

]
+ (1↔ 2) (11)

where ~pi,~p′ i are the incoming and outgoing momenta of the ith nucleon, ~ki = ~p′ i − ~pi,
τ× = τ1× τ2, and fπ is the pion decay constant. The low-energy constants c3, c4 and cD also
enter into the NN and 3N forces, and so are not additional free parameters. (The constant
cD is dimensionless and expected to be O(1), while ci (i = 3, 4) have mass dimension
−1. The dimensionless quantities ĉi ≡ mNci are expected to be O(1).) Equations (9)–(11)
correspond to diagrams (a), (b), and (c) in Figure 1, respectively. There are also corrections
to the one-body operator of order p2

i /m2
N . Depending on how the nucleon mass is counted,

these corrections will enter at different orders. In the counting of e.g., Park et al. [53],
these corrections are also Q0, while in the counting used by other authors [37,56,58],
including the calculations in this paper, these corrections are Q1. It is also worth noting
that, because terms of order Q−2 vanish, some authors label Q−1 terms as next-to-leading-
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order (NLO) [56], while others call this next-to-next-to-leading-order (NNLO) [53]. To
avoid confusion, I shall explicitly refer to powers of Q.

×

(a)

×

(b)

× π

(c)

Figure 1. Diagrams for (a) leading-order Gamow–Teller decay στ, (b) short-range two-body current,
and (c) long-range two-body current.

In Refs. [57,58], these currents were normal ordered with respect to uniform nuclear
matter to obtain an in-medium quenching factor for the one-body operator. In Ref. [59],
the full two-body current was constructed, consistently (in [59], the relationship between
the two-body currents and three-body force contained an erroneous factor of −1/4 [55])
with the NN + 3N force, and the normal-ordered one-body operator (with respect to a
Hartree–Fock reference) was used to compute Gamow–Teller decays of 14C, 22O, and 24O
with the coupled-cluster method. (I also note that while the decay of 14C is interesting
due to the anomalously long half-life [60,61], the small matrix element makes it difficult
to draw conclusions regarding systematic quenching effects.) The effect of the residual
normal-ordered two-body part of the operator was estimated and found to be small. In all
three of these cases, a quenching of about the right size was obtained. In Ref. [62], axial
currents up to Q1 were used in quantum Monte Carlo calculations of A = 6–10 nuclei, where
it was found that correlations beyond the shell model accounted for most of the quenching,
with subleading currents playing a minor role. In Ref. [37], the full two-body current up to
Q0 was constructed consistently with the NN + 3N force, consistently SRG evolved, and
evaluated, with the normal-ordered two-body operator fully included, in a range of nuclei
in the p, sd, and p f shells, as well as 100Sn, using no-core shell model, coupled cluster, or VS-
IMSRG to solve the many-body problem. Here, I will provide some additional calculations
not presented in [37], and some further discussion. Specifically, I use an interaction for
which no VS-IMSRG results were presented in [37] (though the conclusions drawn are the
same), and I select additional transitions with large matrix elements to better emphasize
the quenching “signal” over valence-space configuration-mixing “noise”.

The experimental Gamow–Teller matrix elements are obtained from the f t values by

f t =
K[

fV
fA

B(F) + B(GT)
]

G2
V

(12)

with K ≡ (2π3h̄7 ln 2)/(m5
e c4), and K/G2

V ≈ 6140 s. The Gamow–Teller matrix element is
defined as

M(GT) ≡ [(2Ji + 1)B(GT)]1/2. (13)

Note different definitions have been used in the literature, e.g., one may divide the
right hand side by gA, as was done in [37]. The definition (13) leaves the experimental
value independent of the adopted form of the current, or the adopted value of gA. The
theoretical matrix element is given by MGT = 〈Ψ f ‖~J‖Ψi〉, with the current ~J as defined
in (8), with or without the two-body part.

I consider Gamow–Teller transitions in nuclei in the p, sd, and p f shells, with exper-
imental data taken from Refs. [46–48]. I have selected transitions with large transition
matrix elements, with the goal of reducing sensitivity to fine-tuned cancellations. I also
consider the decay of 100Sn, which was treated with equations-of-motion coupled cluster
in [37], and for which the experimental picture is still somewhat conflicted [63–66]. I adopt
the average value presented in [66]. In the VS-IMSRG calculation of 100Sn, I use valence
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space consisting of the 0 f5, 1p3, 1p3, 0g9 orbits for protons and 0 f7, 1d5, 1d3, 2s1, 0h11 for
neutrons.

For the theoretical calculations, I use the NN + 3N (lnl) interaction developed by
Navrátil [35]. The interaction and current are consistently SRG-evolved to a scale
λSRG = 2.0 fm−1 and evaluated in an oscillator space defined by 2n + ` ≤ emax = 12
and h̄ω = 16. The 3N matrix elements are further truncated with e1 + e2 + e3 ≤ E3max = 14.
All operators are transformed to the Hartree–Fock basis, and then the residual 3N operators
are truncated (the NO2B approximation). Next, a VS-IMSRG calculation is performed
using the code imsrg++ [67], yielding and effective valence space interaction and operator.
The valence space diagonalization is carried out either using NuShellX@MSU [68] with oper-
ators evaluating using the code nutbar [69], or with KSHELL [70]. The results are listed in
Table A1 and plotted in Figure 2.

Table A1 in the appendix contains the numerical results. The column labeled M(GT)exp
lists the experimental Gamow–Teller matrix elements defined by (13) (experimental uncer-
tainties are not listed). The column labeled στbare is the obtained by evaluating the operator
στ (assuming identical radial wave functions for protons and neutrons) between valence
space wave functions obtained using the VS-IMSRG evolved interaction. The column
labeled στIMSRG is obtained by consistently SRG and VS-IMSRG evolving the στ operator
(including the radial mismatch due to the Hartree–Fock basis). Finally, M(GT)th also
includes the two-body currents, consistently SRG and VS-IMSRG evolved. In a few cases,
the listed strength is summed over multiple final states with the same spin and parity.

In Figure 2, panel (a) shows a scatter plot of M(GT)exp vs M(GT)bare, while panel
(b) shows MGT)th vs M(GT)exp. The solid line shows y = x corresponding to the perfect
agreement between theory and experiment. The dashed line shows a best-fit slope, which
is indicated as a quenching factor at the top of the figure. For this quenching factor, I only
include sd and p f shell nuclei because the p shell nuclei have a large scatter due to nuclear
structure details. The quantity in parenthesis indicates the standard deviation about the
best-fit line. If I include p shell nuclei in the fit, the full theory quenching factor changes to
q = 0.99, but the standard deviation increases to 0.21.

0 1 2 3 4 5
M(GT) bare

0

1

2

3

4

5

M
(G

T)
 e

xp
.

qsd, pf=0.80(0.08)

(a)

p-shell
sd-shell
pf-shell
100Sn

0 1 2 3 4 5
M(GT) IMSRG+SRG+2BC

0

1

2

3

4

5

M
(G

T)
 e

xp
.

12N 12C0 +

qsd, pf=0.95(0.11)

(b)

Figure 2. Experimental M(GT) vs. M(GT obtained with (a) the bare gAστ operator, (b) the SRG- and
IMSRG-transformed transition operator including two-body currents. In both panels, the solid line
shows y = x corresponding to perfect agreement, while the dashed line indicates the best-fit slope.

It is evident from Table A1 that both the correlations included in στIMSRG and the
two-body currents lead to a reduction of the Gamow–Teller matrix element. As discussed
in Ref. [37], the detailed breakdown of the quenching into correlations and currents is
scheme- and scale-dependent; some of the effects attributed to correlations when using a
hard interaction get shuffled into currents, when using a soft interaction. Thus the smaller
impact of currents found in quantum Monte Carlo calculations [62] is consistent with the
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harder interactions used. However, even with soft interactions, the impact of currents for
p-shell nuclei is less than for heavier systems.

It is also evident from Figure 2 that the systematic quenching effect, observed when
using the bare στ operator, essentially vanishes when using the consistently-evolved
operator including two-body currents.

In the right panel of Figure 2 I highlight the transition 12N→12C0+ as an illustration of
the cancellation effects in the p shell which wash out the quenching signal. When evaluating
the bare στ operator (the matrix element of the bare operator is not an observable, so
strictly there’s no reason different Hamiltonians should agree on it. On the other hand
one might expect some degree of universality within a low-resolution picture like the
shell model [21,71]) (including gA), there are four terms that contribute, corresponding to
proton-to-neutron transitions p3 → p3, p3 → p1, p1 → p3, and p1 → p1. The contributions
are +0.366, −0.955, +1.592, and −0.173, respectively, totaling to 0.830. Evidently, there is
significant cancellation so that a relatively small change of the individual terms can lead to
a relatively large change on the final matrix element. For example, if I use valence-space
wave functions obtained with the phenomenological Cohen–Kurath interaction [72], the
bare operator yields a matrix element of 1.219. This difference, due to configuration mixing
within the valence space, is larger than the systematic quenching effect of interest.

We may view this “noise” in the quenching from another perspective. Figure 3 shows
the theory-to-theory quenching factor M(GT)th/M(GT)bare as a function of mass number.
This indicates the quenching factor needed if we wanted to approximately account for the
correlations and currents contained in M(GT)th. The main point here is to emphasize that
the quenching is not a smooth function of A, but in fact has considerable state dependence.

0 10 20 30 40 50
A

0.6

0.7

0.8

0.9

1.0

M
(G

T)
fu

ll /
 M

(G
T)

ba
re

100

Figure 3. Theory-to-theory “quenching” factors as a function of mass numberA.

It is clear that including two-body currents consistently with the NN + 3N interaction
helps to remove the ambiguity of empirical quenching factors. Moving forward, the
analogous calculation should be pursued for double beta decay, where the quenching effect
is an important source of uncertainty [58,73]. In single beta decay, it will be important
to explore the impacts of currents from the next order in the chiral expansion to confirm
the convergence.
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4. Superallowed 0+ → 0+ Fermi Decays

For transitions between J = 0 states, B(GT) = 0 by conservation of angular momen-
tum. Furthermore, in the limit in which isospin is a perfect symmetry, a “superallowed”
transition between T = 1 isobaric analogue states yields B(F) = 2, and so (12) reduces to
(I am also neglecting here radiative corrections, which have a non-negligible impact)

f t =
K

2G2
V

(isospin limit) (14)

(where here f = fV). This implies all superallowed 0+ → 0+ should have the same f t
value, and that from this one may measure the coupling constant for semileptonic decay
GV , which is in turn related to the constant GF obtained from muon decay by GV = VudGF,
where Vud is the up-down element of the Cabibbo–Kobayashi–Maskawa (CKM) quark
mixing matrix. Consequently, precise f t measurements of superallowed 0+ → 0+ decays
provide a sensitive test of the Standard Model: non-universality of superallowed f t values,
or non-unitarity of the CKM matrix would be signs of new physics.

Of course, isospin is not a perfect symmetry of the Standard Model. It is broken by the
quark electric charges, and the up-down mass difference. This is manifested at the nuclear
level as the Coulomb force between protons and isospin-violating strong interactions. The
Standard Model corrections to (14) have been parameterized by Towner and Hardy [6] as

F t ≡ f t(1 + δ′R)(1 + δNS − δC) =
K

2G2
V∆V

R
. (15)

In (15) ∆V
R is a process-independent radiative correction [74], δ′R is a radiative cor-

rection only depending on the electron energy and the charge of the daughter nucleus,
and δNS is a radiative correction depending on the detailed nuclear structure. The isospin-
symmetry-breaking correction δC accounts for the fact that the final state is not exactly an
isospin rotation of the initial state.

Consequently, only δNS and δC are the purview of nuclear structure theory. To draw
an analogy with the situation for Gamow–Teller decays, δC corresponds to including the
effects of correlations for the leading operator τ, while the radiative corrections correspond
to sub-leading corrections to the operator, with δNS corresponding to two-body currents.
The difference here is that the corrections are sub-leading in the fine structure constant
α ≈ 1/137 (or Zα), as opposed to the chiral EFT expansion parameter Q ∼ 1/4. The
various corrections are illustrated in Figure 4.

eν̄

n

p
W

(a)

eν̄

n

p

γ

W

(b)

eν̄

n

p

p

γ

W

(c)

Figure 4. Schematic high-resolution diagrams corresponding to (a) the leading operator τ, (b) the
one-body correction leading to ∆V

R and δ′R, and (c) the two-body correction leading to δNS.

In this paper, we focus on the δC correction, for no better reason than the operator
is the simplest to implement. Towner and Hardy decompose δC into a correction due to
isospin-breaking configuration mixing effects, and a correction due to the mismatch in
single-particle wave functions between protons and neutrons. As we will be treating both
within a consistent calculation, such a decomposition is not necessary (and ambiguous)
and we will simply use

δC = 1− |MF|2/2 (16)
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where MF = 〈Ψ f ‖τ‖Ψi〉 is the result of the ab initio calculation.
Nevertheless, it is useful to keep the two mechanisms (configuration mixing and wave

function mismatch) in mind when considering the impact of various approximations. The
wave function mismatch effect is taken into account primarily by the fact that we use a
Hartree–Fock single-particle basis, with Coulomb and nuclear ISB effects included in the
potential (see also [75]).

To get an idea of what the VS-IMSRG framework produces for the isospin-breaking
correction δC, I consider three transitions spanning the p, sd, and f p shells: 14O→14N,
34Ar→34Cl, and 46Cr→46V. I take the 1.8/2.0 (EM) interaction [76] with oscillator frequency
h̄ω = 16 MeV and E3max = 16. The resulting δC values are plotted in Figure 5 as a function
of the emax truncation. I show results where the normal-ordering reference |Φ〉 is taken
to be either the initial or the final nucleus, and also the results from including only the
one-body part of the evolved operator. For reference, I also indicate the δC values adopted
by Towner and Hardy [6].

If the calculation were under control, we should observe the following: convergence
with respect to emax; independence of the choice of reference; and a relatively small cor-
rection from including induced two-body terms, indicating a converging hierarchy of
the cluster expansion. For the 46Cr→46V transition, we observe reference independence
and a small two-body correction, but only a hint of convergence in emax. For the lighter
nuclei, the situation is worse, especially for 14O→14N. In all cases, it appears that the large
emax behavior will need to be incorporated in some manner, possibly by utilizing natural
orbitals [77,78], or by obtaining an extrapolation formula [79,80]. However, I leave this for
future work. It appears that, at least for the near term, such calculations will tell us more
about the IMSRG than about physics beyond the Standard Model.
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Figure 5. Isospin-breaking correction δC for three transitions, computed with the VS-IMSRG as
a function of the emax truncation. Dashed lines show the result using only the one-body part of
the evolved operator while solid lines also include induced two-body terms. The black circles
indicate the preferred values reported by Towner and Hardy [6]. For the 14O decay, we also include
coupled-cluster points [81].

The transition 14O→14N warrants a closer inspection, because it is light enough that
it can be benchmarked against the no core shell model [34], although the observed emax
dependence suggests converged results may be challenging. Moreover, the dramatic
reference-dependence and contribution of two-body terms make this a good system for
studying such effects, which are also important (in double beta decay, the bare operator is
already two-body, and we are concerned with induced three-body terms, making this a
more challenging case) in neutrinoless double beta decay [38,73,82,83]. The two references
used are shown schematically in Figure 6.
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14O

protons neutrons
14N

protons neutrons

Figure 6. Schematic illustration of reference states used for the 14O→14N decay in the left panel
of Figure 5. The half-filled circles for 14N indicate the equal filling of m-states used in the ensem-
ble reference.

Because 14O is a closed shell, it may also be treated by the coupled-cluster method [12]
with the transition handled by the isospin-breaking equation-of-motion approach [59]. The
strong emax dependence suggests sensitivity to infrared physics, and this may be probed by
including the continuum in the coupled-cluster calculation [84]. The results at emax = 12
are indicated with yellow diamonds in Figure 5. The large δC correction obtained with
coupled cluster, as well as the substantial effect of including the continuum reinforces the
notion that the pathology is not unique to the IMSRG.

The reference dependence persists even down to emax = 3, which is sufficiently small
that we may directly perform truncated configuration interaction (CI) calculations and
extrapolate to the full CI result. At emax = 3, the VS-IMSRG yields δC values of 0.839%
and 0.056% with 14O and 14N references, respectively. The full CI result is 0.081%, which
is considerably closer to the 14N reference value. This reinforces our suspicion that the
calculation with the 14O reference is misbehaving.

As I mentioned above, results would be independent of the reference if all induced
many-body terms were retained during the IMSRG evolution. In practice, we only retain up
to two-body operators, so any reference dependence indicates the impact of discarded three-
body or (if we are especially unlucky) higher-body terms. If I truncate the expansion (7) for
the transformed operator at two nested commutators, the reference dependence remains,
while truncating at one nested commutator eliminates the effect. This suggests that three-
body operators—which first show up at two nested commutators if O(0) is purely one-
body—are the culprit.

A more complete investigation would benefit from calculations at the IMSRG(3) level,
which are becoming available [85], but which will not be pursued here. For the moment,
I will speculate. It appears that using the 14O reference produces the largest error on the
δC value out of all the calculations presented in Figure 5. This is naively counterintuitive
because 14O is a closed shell and should be best approximated by the single-configuration
reference. However, we are interested in the extent to which isospin symmetry is violated.
Choosing a reference that approximates 14O well but does a poor job for 14N artificially
breaks this symmetry, leading to an overestimate of the correction δC. On the other hand,
the ensemble 14N reference used is not a great approximation of the state of interest in 14N,
which is actually open shell. Using the 14N ensemble reference, we make an error in our
description of 14N, and we make a similar error in the description of 14O, so the artificial
breaking of isospin symmetry is reduced. In support of this, using a 12C reference, which is
a poor approximation of both 14O and 14N, results in δC values in very close agreement to
those obtained with the 14N reference.

This is in line with the behavior observed with other relative quantities, namely exci-
tation energies and separation energies. It is a robust finding that the VS-IMSRG predicts
too-high 2+ excitation energies for closed-shell nuclei [86,87]. This can be understood
by considering that the reference is a good approximation of the 0+ ground state, and a
worse approximation for the 2+ excited state. The truncation of three-body terms has a
more severe impact on the 2+ state, leading to missed correlation energy, and consequently
an excitation energy that is too high. For open-shell nuclei, the reference is a mediocre
approximation of both the ground and excited states, and so they are treated on more
equal footing, leading to a more accurate excitation energy. Likewise, it was observed that
separation energies are more accurately obtained when using the same valence space for
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both the mass A and mass A− 1 nuclei, even if a different valence space might produce a
more accurate ground state for one of the nuclei [88].

Preliminary studies have found that including three-body terms ameliorates the issue
with 2+ states, and an analogous effect is observed in coupled cluster [89]. Presumably
retaining three-body terms would also reduce the dependence of separation energies on the
choice of valence space, but this has not yet been explored. One hopes that then including
three-body terms will also help with the δC calculation.

5. Conclusions and Outlook

We are in an exciting time in nuclear structure theory, in which it is becoming possible
to address issues that were long plagued by ambiguities arising from inconsistent modeling.
On the question of Gamow–Teller decays, considerable progress has been made and it
appears the issue is understood. However, in order to fully put the question to rest one
should properly assess theoretical errors from the EFT truncation and the many-body
solution, and demonstrate systematic improvement in both.

In addition, a similar quenching is observed in strong-interaction charge exchange
reactions [90], where it is assumed that the transition operator for the target nucleus is
proportional to στ. The quenching is often ascribed to missing strength at higher energies
(the equivalent of “correlations” in beta decay). However, three-body forces should play
an analogous role as two-body currents do for beta decay (replace the axial current in
the diagrams in Figure 1 with an additional nucleon). From another point of view, the
three-body forces correspond to an effective density-dependent two-nucleon interaction,
which has also been considered in this context [91]. In practice, charge exchange cross
sections are often analyzed by normalizing to a low-lying beta decay transition [92], thus
implicitly assuming that any quenching effects in charge exchange scale identically to those
in beta decay. It will be interesting to quantitatively investigate this parallel.

For superallowed Fermi decays, the work of Towner and Hardy [6] has laid a clear
path, but there is more work to do on the many-body side. A more detailed understanding
of how errors creep into the calculations will be essential.
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Appendix A. Table of Gamow–Teller Matrix Elements

Table A1. Matrix elements for the Gamow–Teller transitions plotted in Figures 2 and 3. In the last
column, † indicates the lowest 3 states of the listed Jπ in the final nucleus are summed in the matrix
element, while * indicates that 4 states are summed.

A Zi Z f 2Ji 2J f M(GT)exp στbare στIMSRG M(GT)th

6 2 3 0 2 2.748 2.995 2.817 2.776
7 4 3 3 3 2.882 3.088 2.889 2.808
7 4 3 3 1 2.678 2.907 2.709 2.639

12 7 6 2 0 1.184 0.830 0.637 0.616
12 7 6 2 2 2.370 1.816 1.728 1.687
15 8 7 1 1 0.889 1.037 1.077 1.035
17 9 8 5 5 3.168 3.681 3.504 3.424
18 9 8 2 0 2.209 2.860 2.483 2.430
19 10 9 1 1 2.273 2.944 2.641 2.540
20 8 9 0 2 1.058 1.419 1.307 1.266
20 11 10 4 2 2.403 2.430 2.208 2.124
24 13 12 8 8 2.886 3.023 2.731 2.639 †
25 13 12 5 5 1.971 2.433 2.273 2.139
26 14 13 0 2 3.055 3.648 3.128 3.006 *
27 11 12 5 3 1.361 1.718 1.435 1.365
27 14 13 5 5 1.688 1.934 1.703 1.630
30 12 13 0 2 1.090 1.488 1.281 1.181
35 15 16 1 1 1.033 1.299 1.060 0.999
37 19 18 3 3 1.169 1.768 1.633 1.565
39 20 19 3 3 1.308 1.967 1.724 1.628
41 21 20 7 7 2.999 4.073 3.733 3.548
42 21 20 14 12 2.497 3.305 3.006 2.836
42 22 21 0 2 2.038 2.713 2.415 2.237
45 22 21 7 7 1.123 1.513 1.362 1.252
45 23 22 7 7 1.801 2.177 1.982 1.844
47 24 23 3 3 0.942 1.190 1.077 0.967
48 25 24 8 8 3.596 4.081 3.494 3.340 *
49 25 24 5 5 1.364 1.768 1.525 1.466
49 25 24 5 7 0.764 0.768 0.656 0.629

100 50 49 0 2 2.870 5.355 3.717 3.471
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