
Article

The Relation between General Relativity’s Metrics and Special
Relativity’s Gravitational Scalar Generalized Potentials and
Case Studies on the Schwarzschild Metric, Teleparallel Gravity,
and Newtonian Potential

Spyridon Vossos * , Elias Vossos * and Christos G. Massouros *

����������
�������

Citation: Vossos, S.; Vossos, E.;

Massouros, C.G. The Relation

between General Relativity’s Metrics

and Special Relativity’s Gravitational

Scalar Generalized Potentials and

Case Studies on the Schwarzschild

Metric, Teleparallel Gravity, and

Newtonian Potential. Particles 2021, 4,

536–576. https://doi.org/10.3390/

particles4040039

Academic Editor: Kazuharu Bamba

Received: 29 April 2021

Accepted: 6 August 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Core Department, Euripus Campus, National and Kapodistrian University of Athens, GR 34400 Euboia, Greece
* Correspondence: svossos@uoa.gr (S.V.); evossos@uoa.gr (E.V.); ChrMas@uoa.gr (C.G.M.)

Abstract: This paper shows that gravitational results of general relativity (GR) can be reached by
using special relativity (SR) via a SR Lagrangian that derives from the corresponding GR time
dilation and vice versa. It also presents a new SR gravitational central scalar generalized potential
V = V(r,

.
r,

.
φ), where r is the distance from the center of gravity and

.
r,

.
φ are the radial and angular

velocity, respectively. This is associated with the Schwarzschild GR time dilation from where a SR
scalar generalized potential is obtained, which is exactly equivalent to the Schwarzschild metric.
Thus, the Precession of Mercury’s Perihelion, the Gravitational Deflection of Light, the Shapiro time
delay, the Gravitational Red Shift, etc., are explained with the use of SR only. The techniques used in
this paper can be applied to any GR spacetime metric, Teleparallel Gravity, etc., in order to obtain
the corresponding SR gravitational scalar generalized potential and vice versa. Thus, the case study
of Newtonian Gravitational Potential according to SR leads to the corresponding non-Riemannian
metric of GR. Finally, it is shown that the mainstream consideration of the Gravitational Red Shift
contains two approximations, which are valid in weak gravitational fields only.

Keywords: Einstein’s Equivalence Principle; gravitational deflection of light; gravitational red shift;
kinematics and dynamics of the solar system; linear spacetime transformation; Lorentz metric;
precession of Mercury’s perihelion; Newtonian gravitational potential; non-Riemannian metric;
Schwarzschild metric; Shapiro time delay; Teleparallel Gravity; variable-speed wave

PACS: 02.10.Ud; 03.30.+p; 04.20.-q; 04.80.Cc; 96.12.De; 96.15.De

1. Introduction

Throughout this paper, the weak Einstein’s Equivalence Principle (EEP) is adopted [1]
(p. 245):

mG = m, (1)

where the gravitational mass (mG) is equal to the inertial rest mass (m), as it appears in
all classical mechanics (Newtonian Physics). Then, the following equality holds, for the
gravitational potential energy

U = mGV(r) = mV(r), (2)

where V(r) is the gravitational scalar potential, which depends on the distance r only. In the
case of the gravitational scalar generalized potential that is used in this paper, Equation (2)
is valid only for the unmoved particles. The following four significant gravitational
phenomena are explained below, with both the General Relativity (GR) and the Special
Relativity (SR):

(i) Precession of Mercury’s Perihelion due to Sun gravity;
(ii) Gravitational Deflection of Light;
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(iii) Shapiro time delay; and
(iv) Gravitational Red Shift.
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Figure 1. (a) Precession of the pericenter (perihelion) of a particle/planet due to a spherical mass (the 
Sun). (b) Gravitational deflection of a ray due to a spherical mass (the Sun). R is the (minimum) 
distance of the pericenter (perihelion) from the center of gravity, Δ is the angle that the perihelion 
precesses per revolution, and φ∞ is the half gravitational deflection of a ray. 

The Newtonian scalar gravitational potential 

r
MV G

N −=  (3)

combined with the weak Einstein’s Equivalence Principle (EEP) (1) and SR provides a 
method for calculating the precession of Mercury’s perihelion due to Sun gravity (Figure 

Figure 1. (a) Precession of the pericenter (perihelion) of a particle/planet due to a spherical mass (the Sun). (b) Gravitational
deflection of a ray due to a spherical mass (the Sun). R is the (minimum) distance of the pericenter (perihelion) from the center
of gravity, ∆ is the angle that the perihelion precesses per revolution, and ϕ∞ is the half gravitational deflection of a ray.

The Newtonian scalar gravitational potential

VN = −
GM

r
(3)

combined with the weak Einstein’s Equivalence Principle (EEP) (1) and SR provides a
method for calculating the precession of Mercury’s perihelion due to Sun gravity (Figure 1a),
according to which Ω = 7′′.16 per century, [2] (p. 355), [3] (p. 338). This theoretical result
though is far from the experimental value: Ωexp = 4 2′′.9799(9)cy−1, which is the contri-
bution of the Sun because of the Schwarzschild gravito-electric effect on the total precession
rate of Mercury’s perihelion [4] (p. 6), [5] (p. 152), where the Schwarzschild radius

rS =
2GM

c2 (4)

is used.
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On the other hand, the gravitational deflection of light (Figure 1b) is an effect that was
first predicted by Johann von Soldner in 1801. He solved the problem by using classical
mechanics and the Newtonian gravitational potential (3) [6] (p. 169) in the case of a ray that
contains particles (photons) moving with a steady speed υ = c, which is grazing the Earth
(or the Moon, or the Sun). His result for the half deflection (φ∞) was

tan φ∞ =
GM

c
√

c2R2 − 2GMR
≈

GM
c2R

=
rS

2R
, (5)

which gives the magnitude of the total deflection of a ray

Θ ≈
2GM

c
√

c2R2 − 2GMR
≈

2GM
c2R

=
rS

R
, (6)

where R is the minimum distance from the center of gravity. In 1911, Albert Einstein
obtained a similar result, before the development of GR. He solved the problem with the
use of SR, the EEP, and the Newtonian gravitational potential (3) and he obtained [7] (p. 904):

Θ =
2GM
c2R

=
rS

R
. (7)

For a ray grazing the Sun, their calculations gave Θ = 0′′.84 and Θ = 0′′.83, respec-
tively. These results are nearly half of the observed value Θexp = 1′′.75 [8] (p. 249), which
was predicted by the Schwarzschild metric formula [5] (p. 153):

Θ =
4GM
c2R

=
2rS

R
. (8)

Generally, potentials that depend on the distance only (VSR = VSR(r)) are inefficient to
explain the gravitational deflection of light according to SR and/or classical mechanics,
in contrast to the gravitational central scalar generalized potential (160) (see below) according
to SR.

The above analysis explains why the gravitational field is usually studied by using
Geometric theories of gravitation according to GR [5]. The GR-EEP states that the accelerated
motions caused by the gravitational field only (free fall) happen along geodesics of the
metric, which corresponds to the particular gravitational field [2] (p. 248).

In this paper, we initially present the Schwarzschild metric and the corresponding
Lagrangian, GR time dilation, equations of motion, precession of planets’ perihelion,
gravitational deflection of light, and the Shapiro time delay. In addition, the corresponding
GR generalized potential energy is calculated by reducing the SR kinetic energy from the
GR total energy. Thus, it is shown that although the Schwarzschild metric is a static and
stationary metric of non-rotating mass, it produces a gravito-magnetic effect because the
SR gravitational potential and the SR gravitational relativistic force depend on the velocity
of the particle.

The next step is the development of a new method that obtains the GR gravitational
results with the use of SR via a SR Lagrangian, which comes from the GR time dilation.
Additionally, a new SR gravitational central scalar generalized potential V = V(r,

.
r,

.
φ) of

spherical symmetry is used, where r is the distance from the center of gravity and
.
r,

.
φ are

the radial and angular velocities, respectively. This method is applied in the case of the
Schwarzschild metric of GR and gives the same equations of motion, explaining thus the
precession of Mercury’s perihelion, gravitational deflection of light, and Shapiro time delay via SR.
Moreover, it is shown that the mainstream consideration of gravitational red shift contains
two approximations, which are valid for weak gravitational fields only. The alternative SR
explanation, which is based on the variable-speed electromagnetic waves around a center
of gravity, is presented as well.
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The procedure described in this paper can also be applied to any other GR spacetime
metric, such as the Kerr metric or the Kerr–Newman metric, in order to find the corresponding
SR gravitational potential.

The above procedure can also be reversed. Thus, if we start from the gravitational
central scalar generalized potential (160) (see below) according to SR, then the (Riemannian)
Schwarzschild metric is obtained. However, if we start from the Newtonian Gravitational
Potential (3) according to SR, then the corresponding metric of GR that is obtained is
non-Riemannian (see Section 6). So, the approach described in this paper can also be
extended to any theory of gravity (Riemannian and/or non-Riemannian), such as Lorentz
Gauge Theory [9–14], Teleparallel Gravity [15–21], etc., with the use of the corresponding
time dilation.

In this way, we can work with the gravitational fields in the same manner as in any
other type of field (such as the electro-magnetic field) in Minkowski spacetime (M4) with the
Lorentz metric and we avoid dealing with the motions of particles in the curved spacetime
of GR. This is also important for the concept of a unified description of the basic physical
interactions, where the biggest barrier is the gravity [9]. This is formulated in the GR
curved spacetime, while the other interactions are formulated in M4.

2. SR: Isometric Linear Transformations in Spacetime Endowed with the Lorentz
Metric (Minkowski Spacetime)

In the case of Relativistic Inertial Observers (RIOs), the representation of the non-
degenerate inner product on a holonomic basis [eµ] = [e0, e1, e2, e3] = [ect, ex, ey, ez] in M4

is the matrix of the Lorentz Metric

gL = diag(−1, 1, 1, 1). (9)

In addition, SR considers real universal speed

cI = c (10)

and the transformation (Lorentz boost) of a contravariant four-vector is

dX′ = Λ(β)dX, (11)

where

Λ(β) =

 γ(β) −γ(β)β
T

−γ(β)β I3 +
γ(β) − 1

βT β
ββT

; βi =
dxi

dx0; β =

β1

β2

β3

 =

βx
βy
βz

, (12)

and

γ(β) =
1√

1− βT β
(13)

is the Lorentz γ-factor (see e.g., [2] p. 24, eq. 1.47). The typical proper Lorentz boost along
the x-axis (see e.g., [2] p. 21, eq. 1.38) is expressed by the matrix

Λ(x)(β) =


γ(β) −γ(β)β 0 0
−γ(β)β γ(β) 0 0

0 0 1 0
0 0 0 1

. (14)
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For a Particle (P) with real mass m, which is moving with velocity
→
υ P =

→
β Pc with

regard to observer O, the relativistic kinetic energy, the relativistic energy, and the energy of
rest mass are, correspondingly:

K =
(

γ(βP)
− 1
)

mc2; E = γ(βP)
mc2; Erest = mc2. (15)

3. GR: Metrics with Spherical Symmetry and the Schwarzschild Metric
3.1. The Metric of a Static and Centrally Symmetric Gravitational Field

The single tensor equation Rµν = 0 comes from Einstein’s field equations [8] (pp. 303,
396) applied in vacuum. This produces the metric of a static and centrally symmetric
gravitational field

dS2 = − f(r)c
2dt2 + g(r)dr2 + h(r)dθ2 + h(r) sin2 θdφ2, (16)

with the following conditions [22] (p. 2):

g(r) =
µ

f(r)
(

1− f(r)
)4

(
d f
dr

)2

; h(r) =
µ(

1− f(r)
)2, (17)

where µ is an arbitrary constant and f is an arbitrary function of r (not constant). According
to Birkhoff’s theorem, any metric of spherical symmetry can be reduced to a Schwarzschild
metric form, with the use of suitable coordinates [8] (pp. 230–231). It is noted that the
coordinates of metric (16) are referred to a Relativistic Inertial Observer with the origin
of its frame on the center of gravity O (RIO O). So, they are coordinates of Minkowski
spacetime (M4).

3.2. Schwarzschild Metric: Relativistic Potential, Field Strength, and Isotropic Form

The definition of the original Schwarzschild Relativistic Potential around a center of
gravity O with mass M, is

Φ =
c2

2
ln

(
1−

rS

r

)
. (18)

This is related to the corresponding metric via the formula

ln f(r) =
2
c2Φ, (19)

which implies

f(r) = 1−
rS

r
. (20)

The substitution of the above equation and µ = rS
2 to (17) gives

g(r) =
1

1−
rS

r

; h(r) = r2. (21)

So, we obtain the (Riemannian) original Schwarzschild metric [23]:

dS2 = −
(

1−
rS

r

)
c2dt2 +

1

1−
rS

r

dr2 + r2dθ2 + r2 sin2 θdφ2, (22)
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with spatial part

dl2 =
1

1−
rS

r

dr2 + r2dθ2 + r2 sin2 θdφ2. (23)

In textbooks, the following definition is considered as the radial field strength (e.g., [8]
(p. 230)):

→
g = −

→
∇Φ = −

dΦ
dl

r̂ = −
dΦ
dr

dr
dl

r̂ = −gr̂; g =
dΦ
dr

dr
dl

(24)

The positive value (g > 0) means gravity, while the negative value (g < 0) means antigravity.
Moreover,

g =
GM
r2

(
1−

rS

r

)− 1
2

> 0. (25)

In the following, it is shown that the field strength on a moving particle is given by a different
formula (163), which also contains the velocity of the particle. Formula (25) just gives the
field strength of an unmoved particle.

The substitution of

r = r̃

(
1 +

rS

4r̃

)2

∼= r̃ +
rS

2
; r̃ =

rS

4

2r
rS

1 +

√
1−

rS

r

− 1

 ∼= r−
rS

2
(26)

to Schwarzschild metric (22) gives [8] (p. 254):

dS2 = −

1−
rS

4r̃

1 +
rS

4r̃


2

c2dt2 +

(
1 +

rS

4r̃

)4(
dr̃2 + r̃2dθ2 + r̃2 sin2 θdφ2

)
. (27)

Besides,

d
→
r̃

2
= dr̃2 + r̃2dθ2 + r̃2 sin2 θdφ2 = dx̃2 + dỹ2 + dz̃2, (28)

where
x̃ = r̃ sin θ cos ϕ; ỹ = r̃ sin θ sin φ; z̃ = r̃ cos θ. (29)

So, (27) gives the isotropic form of the Schwarzschild metric [8] (p. 237):

dS2 = −

1−
rS

4r̃

1 +
rS

4r̃


2

c2dt2 +

(
1 +

rS

4r̃

)4(
dx̃2 + dỹ2 + dz̃2

)
. (30)

The approximation in (26) refers to r � rS. Besides, r ∼= r̃ is a good approximation,

because for r = 10rS the relative error is Er =
r̃− r

r
= −5%, while for r = 100rS it is only

Er = −0.5%.

3.3. Schwarzschild Metric: Lagrangian, Geodesics, Equations of Motion, Equation of Trajectory,
Precession of Planets’ Perihelion, Deflection of Light, and the Shapiro Time Delay

Consider a particle P with mass m, which is moving around the center of gravity O
with mass M. The definition of the Lagrangian [8] (p. 205):

L = m
.
xµgµν

.
xν (31)
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for the orbit on the “plane” θ = π/2, gives the Schwarzschild Lagrangian [8] (p. 238):

L = m

−
(

1−
rS

r

)
c2 .

t
2
+

1

1−
rS

r

.
r2

+ r2 .
φ

2

; · =
d

dτ
, (32)

where τ is the proper time, i.e., the time indicated by an arbitrary moving ideal clock. The
Euler–Lagrange equations [8] (p. 205):

d
dτ

(
∂L

∂
.
xµ

)
−

∂L
∂xµ = 0; µ = 0, 1, 2 (33)

yield the equations of motion:

EGR =

(
1−

rS

r

)
mc2 .

t; · =
d

dτ
; (34)

d
dτ

 2
.
r

1−
rS

r

−
− rS

r2c2 .
t
2
+

∂

∂r

 1

1−
rS

r

 .
r2

+ 2r
.
φ

2

 = 0; (35)

JGR = mhGR = mr2 .
φ; · =

d
dτ

, (36)

where the integrals of motion are: the GR total energy (EGR) and the GR total angular
momentum (JGR) of the system (hGR = JGR/m is the GR angular momentum per mass unit),
according to RIO O. Lagrangian (32) also satisfies the condition

L = −mc2. (37)

So, the solutions of the above equations of motion can also be used for the practical
determination of geodesics [8] (p. 205). Moreover,

hGR = r2 .
φ = r2 dφ

dτ

dt
dt

= r2 dφ

dt
dt
dτ

= hN
.
t; hN = r2 dφ

dt
; · =

d
dτ

, (38)

where hN = JN/m is the corresponding Newtonian angular momentum per mass unit. Further-
more, (35) can be written as

2
..
r

(
1−

rS

r

)
−

rS

r2
.
r2

+

(
1−

rS

r

)2
rS

r2c2 .
t
2
− 2

(
1−

rS

r

)2

r
.
φ

2
= 0; · =

d
dτ

, (39)

or equivalently,

2
d2r
dt2

(
1−

rS

r

)
−

rS

r2

.
r2

.
t
2 +

(
1−

rS

r

)2
rS

r2c2 − 2

(
1−

rS

r

)2

r

.
φ

2

.
t
2 = 0; · =

d
dτ

. (40)

Thus, it derives

2
..
r

(
1−

rS

r

)
−

rS

r2
.
r2

+

(
1−

rS

r

)2
rS

r2c2 − 2

(
1−

rS

r

)2

r
.
φ

2
= 0; · =

d
dt

. (41)



Particles 2021, 4 543

When
.
r = 0, the motion is at the perihelion and/or aphelion or it is a Uniform Circular

Motion (UCM) or the particle is momentarily unmoved (for the extra condition
.
φ = 0). So,

(41) becomes

2
..
r +

(
1−

rS

r

)
rS

r2c2 − 2

(
1−

rS

r

)
r

.
φ

2
= 0; · =

d
dt

. (42)

The UCM (with r = R = const) gives the additional condition
..
r = 0. Thus, the above

equation gives the angular velocity and the centripetal acceleration, respectively:

ω =
.
φ =

dφ

dt
=

√
GM
R3 ; a =

υ2

R
= ω2R =

GM
R2 = gN . (43)

As is known, the linear relation that connects N Euler–Lagrange equations yields that a
non-constant solution for any (N-1) of them satisfies the Nth as well [8] (p. 213). Since we
have already dealt with the case of r = constant, we can now ignore Equation (35) and use
Lagrangian (32) combined with condition (37) instead [8] (p. 239). Thus, we have

.
r2

= −c2

(
1−

rS

r

)
+ c2

(
1−

rS

r

)2
.
t
2
−
(

1−
rS

r

)
r2 .

φ
2
; · =

d
dτ

, (44)

or equivalently,(
dr
dt

)2

= −c2

(
1−

rS

r

)
1
.
t
2 + c2

(
1−

rS

r

)2

−
(

1−
rS

r

)
r2

.
φ

2

.
t
2 ; · =

d
dτ

. (45)

With the use of (34) and (36), the above equations can be written:

.
r2

= −c2

(
1−

rS

r

)
+

EGR
2

m2c2 −
(

1−
rS

r

)
hGR

2

r2 ; · =
d

dτ
, (46)

(
dr
dt

)2

= c2

(
1−

rS

r

)2[
1−

m2c4

EGR
2

(
1−

rS

r

)(
1 +

1
c2

hGR
2

r2

)]
, (47)

respectively.
The next step of the study is the determination of the connecting relation of the proper

time to the time of RIO O (GR time dilation with respect to RIO O), which is derived below
(50). Substituting this into (34), we obtain the final formula of the GR total energy. Finally,
the GR generalized potential energy is calculated by reducing the SR relativistic energy from
the GR total energy. Thus, we obtain a gravito-electric effect in the case of an unmoved
particle, while a moving particle also has a gravito-magnetic effect. So, we conclude that
even though the Schwarzschild metric is a static and stationary metric of non-rotating
mass, there exists gravito-magnetism because the GR generalized potential energy depends
on the velocity of the particle. This is not obvious in the case of GR, because the motion
on the curved geodesics is considered as inertial motion. However, Minkowski spacetime
endowed with a constant Lorentz metric and null curvature (K = 0) makes evident the above
consideration as the SR gravitational potential and the SR gravitational force depend on
the velocity of the particle as well.

The GR time dilation is obtained from the isometry of spacetime. Thus, (22) is rewritten as

dS2 = −c2dτ2 = −
(

1−
rS

r

)
c2dt2 +

1

1−
rS

r

dr2 + r2dθ2 + r2 sin2 θdφ2; θ =
π

2
, (48)
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or equivalently,(
dτ

dt

)2

= 1−
rS

r
−

1

1−
rS

r

(
dr
dt

)2
1
c2 − r2

(
dφ

dt

)2
1
c2; θ =

π

2
. (49)

This gives the connecting relation of the proper time with the time of RIO O (GR time dilation
with respect to RIO O)

dt
dτ

=

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

≥ 1; · =
d
dt

. (50)

The corresponding connecting relation of the time of the unmoved observer located at distance
r = r0 from O (local observer) with the time of RIO O (GR time dilation of the local observer with
respect to RIO O) is obtained from the above equation:

dt
dt(r0)

=

(
1−

rS

r0

)− 1
2

≥ 1. (51)

This gives the connecting relation of the proper time to the time of the local observer t(r0)
(GR

time dilation with respect to the local observer)

.
t(r0)

=
dt(r0)

dτ
=

dt(r0)

dt
dt
dτ

=

√
1−

rS

r0

.
t=

d
dτ

. (52)

Moreover, the substitution of (50) into (34) gives the final formula of the GR total energy
with respect to RIO O

EGR =
1−

rS

r√√√√√√√1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2


mc2 ≥ 0; · =

d
dt

. (53)

Next, the corresponding GR total energy with respect to the unmoved observer located
at distance r = r0 from O (the local observer) is obtained as follows:
Schwarzschild Lagrangian (32) is rewritten as

L = m

−
(

1−
rS

r

)
c2

(
dt

dt(r0)

)2(
dt(r0)

dτ

)2

+
1

1−
rS

r

.
r2

+ r2 .
φ

2

; · =
d

dτ
, (54)

where coordinate time is the local time t(r0)
. The application of the corresponding Euler–

Lagrange equation (33) for µ = 0 yields

EGR(r0)
=

(
1−

rS

r

)
mc2

(
dt

dt(r0)

)2
dt(r0)

dτ
, (55)
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which, with the use of (51) and (52), is transformed to

EGR(r0)
=

1−
rS

r

1−
rS

r0

mc2

√
1−

rS

r0

.
t; · =

d
dτ

. (56)

This combined with (34) gives

EGR(r0)
=

(
1−

rS

r0

)− 1
2

EGR, (57)

which relates the GR total energy with respect to the local observer to the corresponding one
of the RIO O.

Now, considering zero kinetic energy (K = 0), when the particle P is static (βp = 0),
EGR(βP=0) = Erest + U(r), where U(r) is the potential energy of the unmoved particle. Substitut-
ing (15iii) and (51) into the above equation, we have

U(r) =

√1−
rS

r
− 1

mc2 ≤ 0. (58)

This, combined with (2), gives the Schwarzschild Potential of the unmoved particle

V(r) =

√1−
rS

r
− 1

c2 ≤ 0, (59)

with respect to RIO O. The above is the central potential with field strength

→
g (r) = −

dV
dr

r̂ = −
GM
r2

(
1−

rs

r

)− 1
2

r̂ , (60)

which is the same as (25). Additionally, the mechanic energy Em = EGR − Erest = K + Ug with
respect to RIO O is calculated:

Em =


1−

rS

r√√√√√√√1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2


− 1


mc2; · =

d
dt

. (61)

Moreover, the GR generalized potential energy is defined as

Ug = EGR − Erest − K = EGR − E.

The consideration of the SR relativistic energy (15ii) gives

Ug =


(

1−
rS

r

)1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

− γ(βP)

mc2, (62)
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with respect to RIO O. We also observe that if βP → 0 , the above equation coincides
with (58).

Finally, the substitution of (50) into (38i) gives

hGR = hN
dt
dτ

= hN

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

≥ hN ; hN = r2 dφ

dt
; · =

d
dt

. (63)

In the case of a particle or planet at the perihelion and/or aphelion, or in UCM (where
r = R;

.
r = 0), the above equation becomes

hGR = hN

1−

 rS

R
+

R2
.
φ(R)

2

c2

− 1
2

≥ hN ; hN = r2 dφ

dt
; · =

d
dt

(64)

More specifically, for a particle or planet in UCM, we obtain

hGR = hN

[
1−

(
rS

R
+

GM
c2R

)]− 1
2

= hN

[
1−

3rS

2R

]− 1
2

≥ hN ; hN = r2 dφ

dt
; · =

d
dt

, (65)

where (43i) has been applied in the process.
In the case of a photon (m = 0), the velocity at an infinite distance from the center of

gravity O is cp = cl = c. Additionally, according to (36), the total angular momentum of
the system JGR = mr2

.
φ = mhGR is generally finite and nonzero (except for radial motion).

So,
hGR = +∞, (66)

and (63) gives

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2

 = 0; · =
d
dt

. (67)

This can also be obtained from the energy formula (53), when considering E 6= 0. We
observe that the above equation relates the radial to the angular velocity of a photon located
at distance r. Furthermore, the speed of a photon (cp) is given by the formula

cP
2 =

.
r2

+ r2 .
φ

2
. (68)

Thus, (67) becomes

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
cP

2 − .
r2

c2

 = 0, (69)

or equivalently,

1−

 rS

r
+

rS

r

1−
rS

r

.
r2

c2 +
cP

2

c2

 = 0. (70)
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In the case of a photon in radial motion, it is cp =
.
r and (69) gives

cp = ±
(

1−
rS

r

)
c; γ(βp) =

1√√√√ rS

r

(
2−

rS

r

), (71)

where the ± sign signifies whether the photon moves away from O or approaches it. From
(71), it derives that when r = rS, i.e., on the horizon the speed of light is zero (cp = 0),
while as the distance from O becomes extremely large,

∣∣cp
∣∣→ c and the Lorentz γ-factor

approaches infinity. In the case of motion at the perihelion/aphelion or UCM, where r = R,
.
r = 0, the photon speed is denoted by cR and (70) becomes

1−
(

rS

R
+

cR
2

c2

)
= 0, (72)

or equivalently,

cR = c

√
1−

rS

R
. (73)

The comparison of formulas (71i) and (73) yields that at the same distance from O, the
speed of a photon in radial motion is smaller than the corresponding speed at the perihe-
lion/aphelion or UCM. Moreover, the combination of (65) and (66) gives the corresponding
radius of UCM:

R =
3
2

rS. (74)

The above result can also be extracted by substituting (43i) into Schwarzschild metric (22) [8]
(p. 239). Furthermore, the substitution of (74) into (73) gives

cR = c

√
1−

2
3
=

1
√

3
c. (75)

The orbit of motion [8] (pp. 241–245) derives from the exact differential equation
of orbit

d2u
dφ2 + u =

GM
hGR

2 + 3
GM
c2 u2; u =

1
r
; hGR = r2 .

φ; . =
d

dτ
(76)

This presents a similarity to the orbit of a conic section with differential equation

d2u
dφ2 + u =

1
R(1 + e)

=
1

a|1− e2| =
GM
h2

GR
,

whose solution

u =
1
r
=

1 + e sin φ

R(1 + e)
=

1 + e sin φ

a|1− e2| =
GM
hGR

2(1 + e sin φ), (77)

where R is the (minimum) distance of the pericenter (perihelion) from the center of gravity
O, e is the eccentricity, α is the semimajor axis of the conic section, and the angle φ is
measured from the axis that passes through the center of gravity and is perpendicular to
the radius of the perihelion R as is shown in Figure 1. It is noted that

R = a|1− e|;
hGR

2

GM
= R(1 + e) = a

∣∣∣1− e2
∣∣∣. (78)
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When the velocities are small with respect to c (u � c or r � rS), we can substitute the
solution of the simplified differential equation (77) into the last term of the exact differential
equation of motion (76i). This yields the approximate differential equation of motion (which
only approximates the UCM):

d2u
dφ2 + u =

GM
hGR

2 + 3
G3M3

c2hGR
4(1 + e sin φ)2; u =

1
r
; hGR = r2 .

φ; · =
d

dτ
, (79)

with exact solution

u =
GM
hGR

2

(
1 + e sin φ + 3

G2M2

c2hGR
2e

(
π

2
− φ

)
cos φ

)
; hGR = r2 .

φ; · =
d
dt

;

GM
hGR

2 =
1

R(1 + e)
=

1
a|1− e2|.

(80)

The approximate solution of (79) is obtained if we rewrite (80i) as

u =
GM
hGR

2

[
1 + e

(
sin φ + 3

G2M2

c2hGR
2

(
π

2
− φ

)
cos φ

)]
(81)

and use the identity
sin(φ + d) = sin φ cos d + cos φ sin d. (82)

These are associated by using

d =
3G2M2

c2hGR
2

(
π

2
− φ

)
=

3GM
c2R(1 + e)

(
π

2
− φ

)
=

3GM
c2a|1− e2|

(
π

2
− φ

)
� 1;

cos d ≈ 1; sin d ≈ d.

(83)

Thus, we have

u =
GM
hGR

2

[
1 + e sin

(
φ +

3G2M2

c2hGR
2

(
π

2
− φ

))]
=

=
GM
hGR

2

[
1 + e sin

(
φ

(
1− 3

G2M2

c2hGR
2

)
+

3πG2M2

2c2hGR
2

)]
,

(84)

which can be written as

u ≈
GM
h2

GR

[
1 + e sin

(
λGRφ + (1− λGR)

π

2

)]
;

λGR = 1−
3G2M2

c2h2
GR

= 1−
3GM

c2R(1 + e)
= 1−

3GM
c2a(1− e2)

,

(85)

or equivalently,

u =
1
r
≈

GM
hGR

2

[
1 + e sin

(
λGR

(
φ−

π

2

)
+

π

2

)]
. (86)
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This gives

u =
1
r
≈

GM
hGR

2

[
1 + e cos

(
λGR

(
φ−

π

2

))]
=

=
1

R(1 + e)

[
1 + e cos

(
λGR

(
φ−

π

2

))]
=

=
1

a|1− e2|

[
1 + e cos

(
λGR

(
φ−

π

2

))] (87)

where

λGR = 1−
3G2M2

c2hGR
2 = 1−

3GM
c2R(1 + e)

= 1−
3GM

c2a(1− e2)
(88)

under the restriction

0 <
6πG2M2

c2hGR
2 =

6πGM
c2R(1 + e)

=
6πGM

c2a|1− e2| � 1. (89)

In the case of ellipse (0 < e < 1), every perihelion has

cos

(
λGR

(
φ−

π

2

))
= 1. (90)

The first, the second, and the n-th perihelion correspond to φ =
π

2
, φ =

2π

λGR
+

π

2
, and

φ =
2nπ

λGR
+

π

2
, respectively (Figure 1a). Thus, the orbit can be regarded as a conic section

that rotates (“precesses”) about focus O:

∆ =
2π

λGR
− 2π =

(
1

λGR
− 1

)
2π ≈ 2π(1− λGR) =

=
6πG2M2

c2h2
GR

=
6πGM

R(1 + e)c2 =
6πGM

a(1− e2)c2

(91)

rad per revolution. Observe that the above equation also predicts the precession of cycle
(e = 0), because it derives from the approximate solution (87) of the approximate differential
equation of motion (79). Moreover, the angular velocity of rotation of pericenter (perihelion) is
given by the formula

Ω

(
′′

cy

)
= ∆

(
rad
rev

)(
360◦

2π rad

)(
3600′′

1◦

)
1
T

(
rev
day

)(
365.242 day

year

)(
100 year

cy

)
, (92)

or equivalently,

Ω

(
′′

cy

)
= ∆

(
rad
rev

)(
7533657× 103′′ · day

rad · cy

)
1
T

(
rev
day

)
. (93)

The corresponding angular and radial velocities of a particle (planet) are obtained via the
following process. We initially calculate EGR = EGR(R,e) and hGR = hGR(R,e) by working
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on the first pericenter (perihelion) of the ellipse (there exists only one in a parabola and

hyperbola), where φ =
π

2
; R = α|1-e|;

.
r = 0;

..
φ = 0. Thus, (53) and (64) become

EGR =
1−

rS

R√√√√√1−

 rS

R
+

R2
.
φ(R)

2

c2


mc2 ≥ 0

hGR = R2 .
φ(R)

1−

 rS

R
+

R2
.
φ(R)

2

c2

− 1
2

; · =
d
dt

.

(94)

The null radial velocity at the perihelion transforms (47) to

1−
m2c4

EGR
2

(
1−

rS

R

)(
1 +

1
c2

hGR
2

R2

)
= 0. (95)

Moreover, (95), with the use of (94) becomes

1−

1−

 rS

R
+

R2
.
φ(R)

2

c2


(

1−
rS

R

)
1 +

1
c2

R2
.
φ(R)

2

1−

 rS

R
+

R2
.
φ(R)

2

c2



 = 0, (96)

or equivalently,

1−
1(

1−
rS

R

)
1−

 rS

R
+

R2
.
φ(R)

2

c2

+
1
c2R2 .

φ(R)
2

 = 0, (97)

which is identity for any value of
.
φ(R) and R. So, a different approach with differentiation

of (87) with respect to time will be followed:

.
r
r2 =

GMe
hGR

2λGR
.
φ sin

(
λGR

(
φ−

π

2

))
=

=
e

R(1 + e)
λGR

.
φ sin

(
λGR

(
φ−

π

2

))
=

=
e

a(1− e2)
λGR

.
φ sin

(
λGR

(
φ−

π

2

)) (98)

..
rr2 − 2r

.
r2

r4 =
GMe
h2

GR
λGR

[
λGR

.
φ

2
cos

(
λGR

(
φ−

π

2

))
+

+
..
φ sin

(
λGR

(
φ−

π

2

))]
; . =

d
dt

.

(99)
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At the perihelion (
.
r = 0,

..
φ = 0), the above equation becomes

..
r(R)

R2 =
GMe
hGR

2λGR
2 .
φ(R)

2. (100)

Moreover, the combination of (78ii) with (94ii) gives

hGR
2 = GMR(1 + e) = GMa

∣∣∣1− e2
∣∣∣ = R4

.
φ(R)

2

1−

 rS

R
+

R2
.
φ(R)

2

c2

; · =
d
dt

, (101)

which yields 1−

 rS

R
+

R2
.
φ(R)

2

c2

GMR(1 + e) =

=

1−

 rS

R
+

R2
.
φ(R)

2

c2

GMa
∣∣∣1− e2

∣∣∣ = R4 .
φ(R)

2,

(102)

or equivalently,

.
φ(R) =

√√√√√√√√
(

1−
rS

R

)
GMR(1 + e)

R4 +
rSR3

2
(1 + e)

; R = a|1− e| � rS. (103)

Furthermore, the GR total energy can be calculated by substituting (103) into (94i):

EGR =
1−

rS

R√√√√√√√√√1−

 rS

R
+

rS

2R

(
1−

rS

R

)
(1 + e)

1 +
rS

2R
(1 + e)


mc2 ≥ 0; R = a|1− e| � rS, (104)

or equivalently,

EGR =
1−

rS

R√√√√√√√√√1−
rS

2R


2 +

rS

R
(1 + e) +

(
1−

rS

R

)
(1 + e)

1 +
rS

2R
(1 + e)


mc2 ≥ 0; R = a|1− e| � rS. (105)

Thus, we obtain

EGR =
1−

rS

R√√√√√√√1−
rS

2R

 3 + e

1 +
rS

2R
(1 + e)


mc2 ≥ 0; R = a|1− e| � rS (106)
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and the mechanical energy (61) becomes

Em =


(

1−
rS

R

)1−
rS

2R
·

3 + e

1 +
rS

2R
(1 + e)


− 1

2

− 1

mc2; R = a|1− e| � rS. (107)

In the case of the UCM ( e→ 0 , a→ R ), (103) gives the angular velocity

.
φ(R) =

√√√√√√√√
(

1−
rS

R

)
GMR

R4 +
rSR3

2

, (108)

which is slightly smaller than the valid one given by (43i), as it derives from the approximate
solution (87) of the approximate differential equation of motion (79).

Moreover, the gravitational deflection of light can be obtained as follows [8] (pp. 248–
49). Initially, (66) turns (76) to

d2u
dφ2 + u = 3

GM
c2 u2; u =

1
r
. (109)

In the case of large distances from the center of gravity with respect to rS (r � rS; u� 1/rS),
we can substitute the solution (straight line) of the simplified equation of orbit:

d2u
dφ2 + u = 0; u =

sin φ

R
, (110)

to the last term of the exact differential equation of orbit (109) (Figure 1b). Thus, we obtain the
approximate differential equation of orbit

d2u
dφ2 + u = 3

GM
c2

sin2 φ

R2 = 3
GM
c2R2

(
1− cos2 φ

)
, (111)

with solution

u =
sin φ

R
+ 3

GM
2c2R2

(
1 +

1
3

cos 2φ

)
. (112)

Note that the angle φ is measured from the axis that passes through the center of gravity
and is perpendicular to the radius of perihelion R (Figure 1b). For r → +∞ , we also have

u→ 0 ; φ→ φ∞ ; sin φ∞ → φ∞ ; cos 2φ∞ → 1. (113)

This gives

φ∞ = −2
GM
c2R

= −
rS

R
, (114)

which is the right-hand deflection. Moreover, there exists the left-hand deflection with

φ∞l = π + 2
GM
c2R

= π +
rS

R
. (115)

So, (114) and (115) yield the magnitude of the total deflection of a ray

Θ = φ∞l + |φ∞| − π = 4
GM
c2R

= 2
rS

R
. (116)
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The relevant Newtonian results, for the sake of comparison with the Schwarzschild
metric, are [8] (p. 239), [24] (p. 17):

→
g N(r) = −

GM
r2 r̂; gN(r) =

GM
r2 ; (117)

LN =
1
2

m(
.
r2

+ r2 .
φ

2
)−

G Mm
r

; (118)

..
r +

GM
r2 − r

.
φ

2
= 0; JN = mr2 .

φ; hN = r2 .
φ; · =

d
dt

; θ =
π

2
. (119)

The Newtonian differential equation of orbit and the corresponding solution are

d2u
dφ2 + u =

GM
hN2 ; u =

GM
hN2(1 + eN cos φ); u =

1
r
; hN = r2 .

φ; · =
d
dt

; (120)

eN =

√
1 +

2EmNhN
2

G2M2m
; EmN = −

GMm
2aN

= −
GMm

2R(1 + e)
;

hN
2

GM
= RN(1 + eN) = aN

∣∣∣1− eN
2
∣∣∣,

(121)

where αN is the semimajor axis of the Newtonian conic section, which does not rotate
(∆N = 0). Additionally,

UN = −
GMm

r
; VN = −

GM
r

; KN =
1
2

∣∣∣∣→β P

∣∣∣∣2mc2 =
1
2

m
∣∣∣→υ ∣∣∣2

EmN =
1
2

m
∣∣∣→υ ∣∣∣2 − GM

r
.

(122)

Finally, the corresponding total deflection of light (which travels with speed c) is [6]
(p. 169):

ΘN ≈
2GM
c2R

=
rS

R
. (123)

The Shapiro Time Delay can be easily obtained from the isotropic form of the Schwarzschild
metric [8] (p. 237). Let us consider a light signal passing through the center of gravity
O at (minimum) distance R � rS, as in Figure 1b. Approximately, the path is given by
x = x, y = R, z = 0. So,

r̃2 = x̃2 + R̃2 = x2 + R2 = r2, (124)

and (30) becomes

0 = −

1−
rS

4r

1 +
rS

4r


2

c2dt2 +

(
1 +

rS

4r

)4

dx2. (125)

The above equation is equivalent to

c2dt2 =

(
1 +

rS

4r

)6

(
1−

rS

4r

)2dx2, (126)
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which is written as

dt =

(
1 +

rS

4r

)3

c

(
1−

rS

4r

)dx ≈
(

1 +
rS

r

)
dx
c

=

(
1 +

rS√
x2 + R2

)
dx
c

. (127)

The integration of (127) from the nearest point of the path to O (x = 0) to the point with
x = X > 0 gives

∆t ≈
X
c
+

rS

c
ln

X +
√

X2 + R2

R
≈

X
c
+

rS

c
ln

2X
R

. (128)

where the last approximation is valid for X � R. The first term is the result of flat
spacetime, while the second expresses the Shapiro time delay. In the case that the signal
travels from X1 > 0 on one side to X2 > 0 on the other side, the total Shapiro time delay is

∆tS ≈
rS

c
ln

(
X1 +

√
X1

2 + R2
)(

X2 +
√

X22 + R2
)

R2 ≈
rS

c
ln

4X1X2

R2 . (129)

The experimental validation of the Shapiro time delay in our Solar system has been
done by transponders on the Viking spacecraft in orbit around Mars and on the ground on
Mars with an accuracy of 0.1%, in 1979 [25] (p. L220).

4. SR: Gravitational Field from the Central Scalar Generalized Potential
4.1. SR Gravitational Central Scalar Generalized Potential, Lagrangian, Equations of Motion, and
Correlation to GR Time Dilation

The motion of a particle P (with mass m) around a center of gravity O (with mass
M) is considered in this section, according to SR. The definition of the Lagrangian of a
gravitational system [8] (p. 205) in both the GR and SR [2] (p. 345) gives

L = m
.
xµgµν

.
xν

=
mdS2

dτ2 =
−mc2dτ2

dτ2 = −mc2; · =
d

dτ
. (130)

In the frame of SR, gravity can only be studied as a field that comes from the SR
gravitational potential

(
VSR,

→
wSR

)
because the geometry of spacetime has the constant

Lorentz metric (9). Thus, more terms are added to the SR Lagrangian of a free particle P. This
paper examines the case of scalar potential according to the weak EEP (1). So, it is

→
wSR = 0

and the SR Lagrangian in the rest-frame of mass M (RIO O) becomes [2] (p. 351):

LSR = −
1

γ(βP)
mc2 −mVSR(r,

.
r,

.
φ)

, (131)

where VSR is the SR gravitational central scalar generalized potential. Moreover, central force
makes particle P move on the “plane” θ = π/2 and we use polar coordinates for the velocity:

υP
2 =

.
r2

+ r2 .
φ

2
; γ(βP)

=
1√

1−
.
r2

+ r2
.
φ

2

c2

, (132)

which turns the Lagrangian to

LSR = −

√
1−

.
r2

+ r2
.
φ

2

c2 mc2 −mVSR(r,
.
r,

.
φ)

; · =
d
dt

. (133)
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The first integral of motion for the above SR Lagrangian is

E∗ =
n=2

∑
µ=1

(
∂LSR

∂
.
xµ

)
.
xµ − LSR; µ = 1, 2, (134)

which gives

E∗ = γ(βP)
mc2 + mVSR(r,

.
r,

.
φ)
−mc2

(
∂VSR

∂
.
φ

.
φ

c2 +
∂VSR

∂
.
r

.
r
c2

)
. (135)

The first two terms of the above equation give the quantity

EtSR = γ(βP)
mc2 + mVSR(r,

.
t,

.
φ)

, (136)

while the third term is the quantity

EdSR = −mc2

(
∂VSR

∂
.
φ

.
φ

c2 +
∂VSR

∂
.
r

.
r
c2

)
. (137)

Thus, the quantity EtSR is maintained when

EdSR =
∂VSR

∂
.
φ

.
φ

c2 +
∂VSR

∂
.
r

.
r
c2 = 0. (138)

For instance, for VSR = VSR(r), the dSR energy is null and the tSR energy is maintained [26]
(pp. 11–12). Generally, the first integral of motion is the SR total energy

E∗ = EtSR + EdSR. (139)

Moreover, the SR generalized potential energy is defined as

U∗ = E∗ − E = mVSR(r,
.
t,

.
φ)
−mc2

(
∂VSR

∂
.
φ

.
φ

c2 +
∂VSR

∂
.
r

.
r
c2

)
. (140)

Observe that if the condition (138) is valid (e.g., VSR = VSR(r) or the particle is unmoved), then
the potential energy is given by the formula:

U = mVSR(r,
.
r,

.
φ)

. (141)

It is noted that the coordinate φ is ignored in the SR Lagrangian (133) and the second
integral of motion can be obtained by

J∗ =
∂LSR

∂
.
φ

, (142)

which becomes

J∗ = mγ(βP)
r2 .

φ−m
∂VSR

∂
.
φ

. (143)

The first term of the above equation is the tSR angular momentum:

J = mh = mγ(βP)
r2 .

φ; · =
d
dt

, (144)
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where h = J/m is the tSR angular momentum per rest mass unit. The second term of (143) is
the quantity

JdSR = mhdSR = −m
∂VSR

∂
.
φ

, (145)

which is called the dSR angular momentum. Observe that the tSR angular momentum (J) is
maintained only when

JdSR =
∂VSR(r,

.
r,

.
φ)

∂
.
φ

= 0. (146)

For instance, if VSR = VSR(r), the dSR angular momentum is null and the tSR angular momen-
tum (J) is maintained [26] (pp. 11–12). Generally, the second integral of motion is the SR total
angular momentum

J∗ = mh∗ = J + JdSR = m(h + hdSR), (147)

where h* = J*/m is the SR total angular momentum per rest mass unit.
Moreover, the Euler–Lagrange equations

d
dt

(
∂LSR

∂
.
xµ

)
−

∂LSR

∂xµ = 0; µ = 1, 2, (148)

give the equations of motion:

d
dt

(
γ(βP)

.
r−

∂VSR

∂
.
r

)
− γ(βP)

r
.
φ

2
+

∂VSR

∂r
= 0 (149)

J∗ = mh∗ = mγ(βP)
r2 .

φ−m
∂VSR

∂
.
φ

; · =
d
dt

. (150)

Given all the above, a suitable function for the potential VSR can be set. Fortunately,
GR can assist SR via the EEP in GR: “accelerated motions caused by the gravitational field
only (free fall) take place along geodesics of the metric, which corresponds to the particular
gravitational field” [2] (p. 248). So, the curved spacetime of GR assumes no force and also
the Lorentz γ-factor is replaced by the GR time dilation

.
tGR:

γ(βP)
→

.
tGR =

dt
dτGR

. (151)

Moreover, it is
dS2 = −c2dτGR

2, (152)

or equivalently,

−c2 dτGR
2

dt2 =
dS2

dt2 , (153)

which gives

.
tGR =

dt
dτGR

=

(
− dS2

c2dt2

)− 1
2

≥ 1. (154)

Furthermore, the SR Lagrangian of a free particle P [2] (p. 351) is

LSR = −
1

γ(βP)
mc2, (155)
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which, with the use of (151), becomes

LSR = −
1

.
tGR

mc2;
.
tGR =

dt
dτGR

. (156)

Observe that the above SR Lagrangian is not the same as the corresponding GR (32) (because
GR refers to spacetime with variable curvature, while SR works in Minkowski spacetime
with no curvature), but, as it is shown below, they give exactly the same results. Besides,
the combination of (156i) with (131) gives

1
.
tGR

mc2 =
1

γ(βP)
mc2 + mVSR(r,

.
r,

.
φ)

;
.
tGR =

dt
dτGR

. (157)

Thus, we obtain the potential

VSR(r,
.
r,

.
φ)

= c2

(
1

.
tGR
−

1
γ(βP)

)
;

.
tGR =

1

VSR

c2 +
1

γ(βP)

;
.
tGR =

dt
dτGR

, (158)

which contains the GR time dilation
.
tGR =

.
tGR(r,

.
r,

.
φ)

. Of course, the substitution of the
potential (158) to (131) yields the SR Lagrangian (156).

Finally, the central scalar generalized potential and the weak EEP (1) give

→
F = m

→
g ;
→
g = −

∂VSR(r,
.
r,

.
φ)

∂r
r̂; g =

∂VSR(r,
.
r,

.
φ)

∂r
, (159)

where
→
F ;
→
g are the relativistic force and the field strength, respectively [2] (p. 342). The

positive value of field strength (g > 0) means gravity, while the negative value (g < 0) means
antigravity.

4.2. SR Gravitational Central Scalar Generalized Potential from the GR Time Dilation of the
Schwarzschild Metric: Field Strength, Lagrangian, Equations of Motion, Equation of Trajectory,
Precession of Planets’ Perihelion, Deflection of Light, and Shapiro Time Delay

The above procedure can be specified by combining the SR with the Schwarzschild
metric. The substitution of the time dilation of Schwarzschild metric (50) to (158) gives the
SR Schwarzschild Generalized Potential

VSR(r,
.
r,

.
φ)

= c2


1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2




1
2

−
1

γ(βP)

 . =
d
dt

. (160)

The above can be regarded as a modification of the classical Newtonian potential with
relativistic effects taken into account and adjustment to the Schwarzschild solution known
in GR. Next, the following quantities are calculated:

∂VSR

∂
.
φ

= −r2 .
φ

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

+ r2 .
φγ(βP)

; (161)

∂VSR

∂
.
r

= −
1

1−
rS

r

.
r

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

+
.
rγ(βP)

; (162)
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g =
∂VSR

∂r
=

= c2



1
2


rS

r2 +

rS

r2(
1−

rS

r

)2

.
r2

c2 −
2r

.
φ

2

c2


1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

+

+
r

.
φ

2

c2 γ(βP)


(163)

Moreover, the SR Lagrangian (156) becomes

LSR = −mc2

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2




1
2

; · =
d
dt

(164)

which is called the SR Schwarzschild Lagrangian. Furthermore, the substitution of (161)
and (162) to (135) implies

E∗ = γ(βP)
mc2 + mVSR(r,

.
r,

.
φ)
−

−mc2



−
r2

.
φ

2

c2

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

+ r2

.
φ

2

c2 γ(βP)
−

−
1

1−
rS

r

.
r2

c2

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

+

.
r2

c2γ(βP)


, (165)

or equivalently,

E∗ = γ(βP)
mc2 + mVSR(r,

.
r,

.
φ)
−mc2



1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

·

·

− r2
.
φ

2

c2 −
1

1−
rS

r

.
r2

c2

+
υ2

c2 γ(βP)


. (166)

The above equation can be written in the form

E∗ = γ(βP)
mc2 + mVSR(r,

.
r,

.
φ)
−mc2



1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

·

·

− r2
.
φ

2

c2 −
1

1−
rS

r

.
r2

c2

+
υ2

c2

γ(βP)
2

γ(βP)


(167)
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in order to use the identity

1 +
υ2

c2 γ(βP)
2 = γ(βP)

2. (168)

So,

E∗ = γ(βP)
mc2 + mVSR(r,

.
r,

.
φ)
−mc2



1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

·

·

− r2
.
φ

2

c2 −
1

1−
rS

r

.
r2

c2

+
γ(βP)

2 − 1

γ(βP)


, (169)

which is simplified to

E∗ = mVSR(r,
.
r,

.
φ)
−mc2



1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

·

·

− r2
.
φ

2

c2 −
1

1−
rS

r

.
r2

c2

− 1
γ(βP)


. (170)

The substitution of (160) to the above, gives

E∗ = mc2



1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2




1
2

+

+

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2
 r2

.
φ

2

c2 +
1

1−
rS

r

.
r2

c2




(171)

or equivalently,

E∗ =mc2

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

·

·

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2

+
r2

.
φ

2

c2 +
1

1−
rS

r

.
r2

c2

.

(172)

Hence, the first integral of motion gave the SR total energy

E∗ = mc2

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2(
1−

rS

r

)
≥ 0, (173)
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which is exactly equal to the GR total energy (53). Now, considering zero kinetic energy
(K = 0), when the particle is static (βP = 0), we have

E∗(βP=0) = Erest + U, (174)

where U is the SR gravitational potential energy of a rest particle and

E∗(βP=0) = mc2

√
1−

rS

r
, (175)

is the SR total energy of a rest particle. The substitution of the above equation and (15iii) to
(174) gives

U(r) =

√1−
rS

r
− 1

mc2 ≤ 0. (176)

The above combined with (2) gives the SR Schwarzschild Potential of an unmoved particle

V(r) =

√1−
rS

r
− 1

c2 ≤ 0. (177)

This is a central potential with field strength

→
g (r) = −

dV
dr

r̂ = −
GM
r2

(
1−

rs

r

)− 1
2

r̂. (178)

Observe that this result is the same as the corresponding GR formula (60). Furthermore,
the SR mechanic energy is

Em = E∗ − Erest. (179)

So,

Em =


(

1−
rS

r

)1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

− 1

mc2; θ =
π

2
. (180)

Note that this result is the same as the corresponding GR formula (61). A part of the above
energy is the dSR energy. Thus, the combination of (137) with (135) and (169) gives

EdSR = mc2

 1
c2

r2 .
φ

2
+

1

1−
rS

r

.
r2


1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

−
γ(βP)

2 − 1

γ(βP)

. (181)

Moreover, the lSR mechanic energy is defined as

EmlSR = K + mVSR(r,
.
r,

.
φ)

= E∗ − Erest − EdSR (182)

So, (182) with the use of (15i) and (160) gives

EmlSR = mc2


1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

+
γ(βP)

2 − γ(βP)
− 1

γ(βP)

. (183)



Particles 2021, 4 561

Then, there derives the SR generalized potential energy

U∗ = E∗ − E =


(

1−
rS

r

)1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

− γ(βP)

mc2. (184)

Observe that the above formula is not associated with Equation (141), because the condition
(138) is not valid for the generalized potential (160). Apart from this, the above result is
exactly the same as the corresponding GR formula (62). The case of circular motion is
obtained via the substitution of (162) and (163) to the equation of motion (149):

d
dt

 1

1−
rS

r

.
r

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2
+

+
c2

2


rS

r2 +

rS

r2(
1−

rS

r

)2

.
r2

c2 −
2r

.
φ

2

c2


1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

= 0.

(185)

For r = R = constant, the equality (186) holds:

rS

R2 −
2R

.
φ

2

c2 = 0. (186)

This gives the UCM, with the same angular velocity and the same centripetal acceleration in
classical mechanics and in SR, which are exactly the same as in the GR (43):

ω =
.
φ =

dφ

dt
=

√
GM
R3 ; a =

υ2

R
= ω2R =

GM
R2 = gN , (187)

As shown below, the orbit of motion derives via a similar way to the original Schwarzschild
space [8] (pp. 238–45). The substitution of (161) to (150) gives

h∗ = r2 .
φ

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

; · =
d
dt

. (188)

Additionally, (173) implies

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

=
E∗

mc2

(
1−

rS

r

). (189)

Equation (188), with the use of the above (189), becomes

.
φ =

mc2h∗
(

1−
rS

r

)
E∗r2 ; · =

d
dt

. (190)
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Moreover, (189) is written as

1−

 rS

r
+

1

1−
rS

r

1
c2

(
dr
dφ

)2
.
φ

2
+

r2
.
φ

2

c2




1
2

=

mc2

(
1−

rS

r

)
E∗

, (191)

which, combined with (190) gives

1−


rS

r
+

(
dr
dφ

)2 m2c2h∗2

(
1−

rS

r

)
E∗2r4 +

m2c2h∗2

(
1−

rS

r

)2

E∗2r2





1
2

=

mc2

(
1−

rS

r

)
E∗

. (192)

The following

u =
1
r
; r =

1
u

;
dr
dφ

= −
1
u2

du
dφ

= −r2 du
dφ

, (193)

transform (192) to1−

rSu +

(
du
dφ

)2
m2c2h∗2(1− rSu)

E∗2 +
m2c2h∗2(1− rSu)2u2

E∗2

 1
2

=

=
mc2(1− rSu)

E∗
.

(194)

Thus, the above equation gives

1− rSu−
(

du
dφ

)2
m2c2h∗2(1− rSu)

E∗2 −
m2c2h∗2(1− rSu)2u2

E∗2 =
m2c4(1− rSu)2

E∗2
, (195)

which is equivalent to

1−
(

du
dφ

)2
m2c2h∗2

E∗2 −
m2c2h∗2(1− rSu)u2

E∗2 =
m2c4(1− rSu)

E∗2
. (196)

Equation (196) becomes(
du
dφ

)2

+ (1− rSu)u2 = −
c2(1− rSu)

h∗2 +
E∗2

m2c2h∗2, (197)

which is differentiated with respect to φ and gives

2
du
dφ

d2u
dφ2 + 2u

du
dφ
− 3rSu2 du

dφ
=

c2rS

h∗2

du
dφ

, (198)

or equivalently,
d2u
dφ2 + u−

3
2

rSu2 =
c2rS

2h∗2. (199)

Thus, the equation of trajectory for SR Schwarzschild Generalized Potential (160) is obtained:

d2u
dφ2 + u =

GM
h∗2 + 3

GM
c2 u2; u =

1
r
, (200)



Particles 2021, 4 563

where, from (188), h* is

h∗ = hN

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

; hN = r2 .
φ; · =

d
dt

. (201)

Observe that the above equation of trajectory and the angular momentum are exactly the
same as the corresponding GR (63) and (76). So, it is easy to obtain the SR results, by just
replacing

hGR → h∗; EGR → E∗ (202)

to the Schwarzschild metric results in Section 3.3. Thus, the same precession of the ellipse
that rotates about one of its foci (91) and the same magnitude of the total deflection of light
(116) are obtained again.

The deeper cause for the coincidence of the SR and GR approaches is the fact that even
though the SR Lagrangian (164) and the GR Lagrangian (32) are different, their Euler–Lagrange
equations of motion are the same. Indeed, the first GR Euler–Lagrange equation (34) and the
GR time dilation (50) yield the GR total energy (EGR) (53). This is exactly the same as the SR
total energy (E*) (173), which comes from the SR first integral of motion (134). Additionally,
the second SR Euler–Lagrange equation (149) combined with the GR time dilation (50) and
formulas (162)–(163) give the second GR Euler–Lagrange equation (35). Furthermore, the third
SR Euler–Lagrange equation (150) combined with the GR time dilation (50) and formula (161)
yield the third GR Euler–Lagrange equation (36).

In the case of UCM, the SR approach gives

ω =
.
φ =

dφ

dt
=

√
GM
R3 ; a =

υ2

R
= ω2R =

GM
R2 = gN

υ =

√
GM

R
; g = γ(βP)

GM
R2 =

1√
1−

rS

2R

GM
R2 ;

(203)

h∗ =
√

GMR

(
1−

3
c2

GM
R

)− 1
2

; Em =

(1−
rS

r

)(
1−

3
c2

GM
R

)− 1
2

− 1

mc2. (204)

The gravitational field on a momentarily unmoved particle is studied next. Equation (163)
becomes

g =
∂VSR

∂r
=

GM
r2

(
1−

rS

r

)− 1
2

. (205)

While (205) is the same as the corresponding Schwarzschild metric (25), it is much different
than the corresponding UCM (203iv). The initial acceleration is calculated as follows: For
.
φ = 0, (42) becomes

2
..
r +

(
1−

rS

r

)
rS

r2c2 = 0, (206)

which, combined with (4), implies

ar =
..
r = −

GM
r2

(
1−

rS

r

)
. (207)

It becomes evident that the initial acceleration of a momentarily unmoved particle is different
than the corresponding field strength (205) and (25). Moreover, observe that the acceleration of
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an unmoved particle on the Schwarzschild radius (r = rS) is null, while the corresponding field
strength is infinite!

In the case of the planet Mercury, it is α = 0.38709893 AU, e = 0.20563069, and
T = 87.968 days [27]. The values: AU = 1.4959787066 × 1011 m, G = 6.67428(67) ×
10−11m3kg−1s−2, c = 299, 792, 458 ms−1 (exact) [28] (pp. 1−1, 1−20, 14−2), and
M = 1, 988, 500× 1024 kg [29] give

rS

a(1− e2)
=

2GM
c2a(1− e2)

= 5.32518(53) × 10−8 � 1. (208)

In the case of the Earth where α = 1.00000011 AU, e = 0.01671022, and T = 365.242 days [30],
the calculation gives

rS

a(1− e2)
=

2GM
c2a(1− e2)

= 1.97476(20) × 10−8 � 1. (209)

Now, with the above values, the combination of (93) and (91) gives the results in Table 1.
Observe that both SR and GR give the same precessions.

Table 1. Angular velocity of perihelion rotation (“precession”) for Mercury and Earth according to
the gravitational field of the SR Schwarzschild Generalized Potential (ΩSR) and the Schwarzschild metric
(ΩGR), respectively. ∆ΩSRr (%) is the percentile relative change.

Mercury Earth

ΩSR/′′cy−1 ΩGR/′′cy−1 ∆ΩSRr (%) ΩSR/′′cy−1 ΩGR/′′cy−1 ∆ΩSRr (%)

42.9820(43) (1) 42.9820(43) (1) 0 3.83893(38) (1) 3.83893(38) (1) 0
1 data from [27,28] (pp. 1–1, 1–20, 14–2), [29,30].

4.3. SR Gravitational Central Scalar Generalized Potential from the Time Dilation of
Teleparallel Gravity

The above procedure can also apply when combining the SR with Lorentz Gauge
Theory [9–14], Teleparallel Gravity [15–21], etc., with the use of the corresponding time
dilation. Furthermore, the gravitational Poincaré Gauge Theory formulated on Weitzenböck
spacetime (T4) [9] (pp. 57, 68) is called Teleparallel Gravity. This is characterized by vanishing
the curvature tensor (absolute parallelism) and the torsion tensor, which comes from four
parallel vector fields. Albert Einstein in 1928 first gave its original form [15]. So, this theory
is called new general relativity [21] (p. 3524). The corresponding isotropic metric by a static,
spherical body (assuming that the spin of constituent particles of a body can be completely
neglected) [21] (pp. 3533–3537) is

dS2 = −c2dτGR
2 = −

(
1−

rS

2pr̃

)p(
1 +

rS

2qr̃

)−q

c2dt2+

+

(
1−

rS

2pr̃

)2−p(
1 +

rS

2qr̃

)2+q(
dr̃2 + r̃2dθ2 + r̃2 sin2 θdφ2

) (210)

where

p =
2

1− 5ε

[√
(1− ε)(1− 4ε)− 2ε

]
; q =

2
1− 5ε

[√
(1− ε)(1− 4ε) + 2ε

]
; (211)

ε =
k(c1 + c2)

1 + k(c1 + 4c2)
; c1 = a1 +

1
3k

; c2 = a2 −
1
3k

; k =
8πG

c4 (212)
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and c1; c2; a1; a2 are constant parameters that come from the corresponding gravitational
action IG. Besides, we have

ε =
k(c1 + c2)

1 + k(c1 + 4c2)
=

1

1 + 3kc2

k(c1 + c2)
+ 1

=

=
1

1 + 3k

(
a2 −

1
3k

)
k(a1 + a2)

+ 1

=
1

3a2

a1 + a2
+ 1

=
1

1 +
3

1 +
a1

a2

(213)

Since the parameters p and q are real numbers, we have

−∞ < ε ≤
1
4

for− 4 <
a1

a2
≤ 0, (214)

or

ε ≥ 1 for
a1

a2
< −4. (215)

Observe that for c1 = c2 = 0, ε is equal to 0. Thus, it is p = q = 2 and metric (210) becomes
the (Riemannian) isotropic form of the Schwarzschild metric (27) [21] (p. 3537). This happens
because the field equations in Weitzenbock spacetime are reduced to Einstein’s field equations
under two conditions: (i) the axial-vector part of the torsion tensor vanishes identically; and
(ii) effects due to the intrinsic spin −1/2 of the fundamental particles can be neglected [21]
(p. 3539). In this case, where ε = 0 (p = q = 2), the corresponding SR gravitational generalized
potential is exactly the SR Schwarzschild Generalized Potential given by formula (160). In
any other case ε 6= 0 (p 6= 2, q 6= 2), we have to calculate the corresponding time dilation in
Weitzenbock spacetime. This can be done with the use of isotropic metric (210), but it is better
to transform the metric to

dS2 = −c2dτGR
2 = − f(r)c

2dt2 + g(r)dr2 + r2dθ2 + r2 sin2 θdφ2, (216)

in order to compare it with the original Schwarzschild solution of Einstein’s field equations
in a vacuum. The coefficients of dθ2 in metrics (210) and (216) imply

r = r̃

(
1−

rS

2pr̃

)1− p
2
(

1 +
rS

2qr̃

)1+ q
2

(217)

and (210) becomes

dS2 = −c2dτGR
2 = −

(
1−

rS

2pr̃

)p(
1 +

rS

2qr̃

)−q

c2dt2+

+

(
1−

rS

2pr̃

)2−p(
1 +

rS

2qr̃

)2+q

dr̃2 + r2dθ2 + r2 sin2 θdφ2

(218)

Unfortunately, we cannot obtain the accurate function r̃ = r̃(r). So, we have to apply
the following approximation in (217) (a first-order Taylor theorem around p = q = 2 for
variables p, q and then a first-order Taylor theorem for r̃ � rS):

r ∼= r̃

(
1 +

rS

4r̃

)2(
1 +

rS

4r̃
p− q

2

)
= r̃

(
1 +

rS

4r̃

)2(
1 +

rS

4r̃
− 4ε

1− 5ε

)
(219)
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The experimental value of ε (solar system observations of light gravitational deflection
and precession of Mercury’s perihelion) is [21] (p. 3538):

ε = −0.004± 0.004 (220)

Thus, (218) becomes

r ∼= r̃

(
1 +

rS

4r̃

)2(
1 + 0.0157

rS

4r̃

)
(221)

and we obtain the approximate function

r ∼= r̃

(
1 +

rS

4r̃

)2(
1 + 0.0157

rS

4r̃

)
∼= r̃

(
1 +

rS

4r̃

)2

;

r̃ ∼=
rS

4

2r
rS

1 +

√
1−

rS

r

− 1

 ∼= r−
rS

2
.

(222)

We observe that we have approximately obtained the original Schwarzschild result
(26). The comparison of metrics (22) and (27) also implies1−

rS

4r̃

1 +
rS

4r̃


2

= 1−
rS

r
;

(
1 +

rS

4r̃

)4

dr̃2 =
1

1−
rS

r

dr2, (223)

which gives

dr̃2 =
1(

1−
rS

r

)(
1 +

rS

4r̃

)4dr2. (224)

The substitution of (224) to metric (218) gives

dS2 = −c2dτGR
2 = −

(
1−

rS

2pr̃

)p(
1 +

rS

2qr̃

)−q

c2dt2+

+

(
1−

rS

2pr̃

)2−p(
1 +

rS

2qr̃

)2+q
1(

1−
rS

r

)(
1 +

rS

4r̃

)4dr2+

+r2dθ2 + r2 sin2 θdφ2,

(225)

which is the metric according to the Teleparallel Gravity that corresponds to the original
Schwarzschild metric. Once again, the approximation (a first-order Taylor theorem around
p = q = 2 for variables p, q and then a first-order Taylor theorem for r̃ � rS) gives:

f(r) =

(
1−

rS

2pr̃

)p(
1 +

rS

2qr̃

)−q
∼=

∼=
(

1 +
rS

4r̃

)2(
1−

rS

4r̃

)−2

+ 0(p− 2) + 0(q− 2) = 1−
rS

r
.

(226)
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Thus, the coefficient of time in Teleparallel Gravity is approximately the same as the
corresponding Schwarzschild metric. Moreover, the same approximation gives:

g(r) =

(
1−

rS

2pr̃

)2−p(
1 +

rS

2qr̃

)2+q
1(

1−
rS

r

)(
1 +

rS

4r̃

)4
∼=

∼=
1(

1−
rS

r

)(
1 +

rS

4r̃

)4

(1 +
rS

4r̃

)4

+
rS

4r̃
(p− 2)−

rS

4r̃

(
1 +

rS

4r̃

)4

(q− 2)

 (227)

The above is rewritten as

g(r) ∼=

(
1 +

rS

4r̃

)4

(
1−

rS

r

)(
1 +

rS

4r̃

)4

1 +
rS

4r̃

(
1 +

rS

4r̃

)−4

(p− 2)−
rS

4r̃
(q− 2)

 (228)

which becomes

g(r) ∼=
1

1−
rS

r

[
1 +

rS

4r̃

(
1−

rS

4r̃

)
(p− 2)−

rS

4r̃
(q− 2)

]
(229)

with the use of the approximation (the first-order Taylor theorem for r̃ � rS). Furthermore,
we have

g(r) ∼=
1

1−
rS

r

[
1 +

rS

4r̃
(p− q)−

rS
2

16r̃2(q− 2)

]
, (230)

where the last term is extremely small. Thus, we obtain

g(r) ∼=
1

1−
rS

r

[
1 +

rS

4r̃
(p− q)

]
=

=
1

1−
rS

r

(
1 +

rS

4r̃
− 8ε

1− 5ε

)
∼=

1

1−
rS

r

(
1−

8ε

1− 5ε

rS

4r

)
,

(231)

So, the coefficient of dr2 is a little different from the corresponding Schwarzschild met-
ric. Finally, the metric by a static, spherical body (assuming that the spin of constituent
particles of a body can be completely neglected) according to the Teleparallel Gravity is
approximately:

dS2 = −c2dτGR
2 = −

(
1−

rS

r

)
c2dt2+

+
1

1−
rS

r

(
1−

8ε

1− 5ε

rS

4r

)
dr2 + r2dθ2 + r2 sin2 θdφ2,

(232)

We observe that if ε → 0 (p = q → 2), the above metric becomes the (Riemannian)
Schwarzschild metric (22) and the corresponding SR gravitational generalized potential is the
SR Schwarzschild Generalized Potential given by formula (160). In any other case: ε 6= 0
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p 6= 2, q 6= 2), we have to calculate the corresponding time dilation in Weitzenbock spacetime.

Thus, we divide the above equation with −c2dt2 and we have for θ =
π

2
:

(
dτGR

dt

)2

=

(
1−

rS

r

)
−

1

1−
rS

r

(
1−

8ε

1− 5ε

rS

4r

)(
dr
dt

)2
1
c2 − r2

(
dφ

dt

)2
1
c2. (233)

This gives the connecting relation of the proper time of Teleparallel Gravity with the time of
RIO O (the Teleparallel Gravity GR time dilation with respect to RIO O)

dt
dτGR

=

1−

 rS

r
+

(
1−

8ε

1− 5ε

rS

4r

)
1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2



− 1

2

≥ 1; · =
d
dt

. (234)

The substitution of the above time dilation to (158) gives the corresponding SR Telepar-
allel Gravity Generalized Potential by a static, spherical body (assuming that the spin of
constituent particles of a static spherical body is completely neglected):

VSR(r,
.
r,

.
φ)

= c2


1−

 rS

r
+

(
1−

8ε

1− 5ε

rS

4r

)
1

1−
rS

r

.
r2

c2. +
r2

.
φ

2

c2




1
2

−

−
1

γ(βP)

)
; · =

d
dt

.

(235)

We observe that the GR Schwarzschild time dilation (50) and the SR Schwarzschild
Generalized Potential (160) can be regarded as the limit of corresponding quantities of
Teleparallel Gravity for ε→0 (p = q→2).

5. Gravitational Red Shift

In the following, the first part presents the Gravitational Red Shift according to GR.
Let us consider two consecutive wave fronts passing from point A, which is located at
distance r0 from the center of gravity O. So, there are two events: A(t1), A(t2). Then, the
Schwarzschild metric (22) gives

dSA
2 = −c2dτA

2 = −
(

1−
rS

r0

)
c2dtA

2. (236)

The square root and integration of the above (for one period of the wave/vibration) gives

T∗(r0)
=

√
1−

rS

r0
T(r0)

, (237)

where T∗(r0)
,T(r0)

are the periods of the vibration at point A for the unmoved observer
located at A (local observer A) and the RIO O, respectively. Moreover, (237) implies

f ∗(r0)
=

1√
1−

rS

r0

f(r0)
, (238)
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where f ∗(r0)
, f(r0)

are the frequencies of the vibration at point A for the local observer A and
the RIO O, respectively. Thus, the corresponding GR total energies of a photon can be related
as follows:

E∗GR(r0)
= EGR

(
1−

rS

r0

)− 1
2

, (239)

where E∗GR(r0)
; EGR are the energies of a photon measured by local observer A and RIO

O, respectively, E∗GR(r0)
= h f ∗(r0)

, EGR = h f(r0)
and h is the Plank constant. Evidently,

Equation (57) is obtained once again. Moreover, the definition of the z-factor of Gravitational
Red Shift is

z =
λO − λEL

λEL
=

λO

λEL
− 1 =

cE

fO

cE

fEL

− 1 =
fEL

fO
− 1, (240)

where λO is the observed wavelength of radiation, which is produced at distance r0 from
the center of gravity and λEL is the wavelength of the corresponding radiation that is
produced in an Earth laboratory (both of them are measured by unmoved observers on the
Earth, where the speed of light is cE).

According to the literature (e.g., [8] (p. 188)), the periods/frequencies of the wave/vib-
ration are considered to be steady for the RIO O:

T(r0)
= t2 − t1 = T∞; f(r0)

= f∞. (241)

This consideration is valid only approximately, because the speed of a photon is variable
around the center of gravity O (see formulas (71i) and (73)). So, the corresponding electro-
magnetic wave has a variable period as well and this will be shown in the non-mainstream
SR approach below. According to this approach, the z-factor of the gravitational red shift in
the case of the Schwarzschild metric is:

z =
fEL

fO
− 1 =

f ∗(r0)

f∞
− 1 =

f ∗(r0)

f
(r0)

− 1 =

(
1−

rS

r0

)− 1
2

− 1; z ≈
rS

2r
=

GM
c2r0

. (242)

The above exact formula and approximate formula (in the case of a large distance from the
center of gravity) derive from the additional assumption that:

f ∗(r0)
= fEL, (243)

which is based on the fact that the energy levels of atoms are not affected by the gravita-
tion (even on the horizon, where the protons and electrons are unmoved). This con-
sideration is also valid only approximately. The application of formula (242) to the
Sun’s surface {r0 = 6.9599× 108 m, M = 1, 988, 500× 1024 kg [29], G = 6.67428(67) ×
10−11 m3kg−1s−2, and c = 299, 792, 458 ms−1 (exact) [28] (pp. 1–1, 1–20, 14–2)} gives
ztheoretical = 2.12244× 10−6. The observation of the 74 strong lines of the iron’s spectrum
Fe(I) gives accuracy

R = zobserved/ztheoretical = 0.97± 0.16 (Er = −3%),

while all the 738 (weak, medium, and strong) lines have accuracy [31] (p. 247)

R = zobserved/ztheoretical = 0.76± 0.24 (Er = −24%).

Note that the above mainstream consideration contains two approximations. So, it is valid
only for weak gravitational fields. This could be the cause for the fact that the above
observed gravitational red shift is smaller than the corresponding theoretical one. It is
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also reminded that the anomalous gravitational red shift from type Ia distant supernovae
depends on the distance of the source from the observer. The corresponding variation is a
necessity for Dark Energy [32] (pp. 4–6).

In the case of SR, the gravitational red shift is explained via a different way. For
simplicity reasons, we consider the radial motion of the photon. As mentioned above, the
electro-magnetic wave has a variable period/frequency, because the photon speed is also
variable around the center of gravity O (see formula (71i)). So, this wave is given by another
differential equation/formula than the usual waves with steady speed

∂2Ψ
∂t2 − c2 ∂2Ψ

∂x2 = 0; Ψ = A sin
2π

λ∞
(ct∓ x + φ0), (244)

where A is the amplitude of vibration, ϕ0 is the initial phase, and the minus/plus sign is
referred to the wave moving toward the right/left hand. Additionally, the wavelength is
denoted by λ∞, because the electro-magnetic wave around the center of gravity O has the
above form at an infinite distance. There exist many formulas for the differential equation
of a variable-speed wave [33] (pp. 496–97):

∂2Ψ
∂t2 − c(x)

2 ∂2Ψ
∂x2 = 0;

∂2Ψ
∂t2 −

∂

∂x

[
c(x)

2 ∂Ψ
∂x

]
= 0, (245)

The attention here is given on the characteristics of the wave (period/frequency and
wavelength), rather than the solution of the differential equation that gives it, which
must be covariant under the Lorentz boost and generally under the Lorentz transformation.
Considering a ray of light (electro-magnetic wave) emitted from a source at distance r0
from the center of gravity O, we have

dt =
dr
c(r)

, (246)

whose integral for one period of the vibration T(r0)
= t(r1)

− t(r0)
is

t(r0)
+T(r0)∫

t(r0)

dt =

r0±λ(r0)∫
r0

dr
c(r)

, (247)

where r1 − r0 = ±λ(r0)
is the displacement of the peak within one period of the vibration

at r = r0, λ(r0)
its wavelength, while the ± sign signifies whether the photon moves away

from O or approaches it. The above equation in combination with (71i) gives

t(r0)
+T(r0)∫

t(r0)

dt =
1
c

r0±λ(r0)∫
r0

±
dr

1−
rS

r

= ±
1
c
[r + rS ln(r− rS)]

r0±λ(r0)
r0

, (248)

or equivalently,

T(r0)
= ±

1
c

[
±λ(r0)

+ rS ln
r0 ± λ(r0)

− rS

r0 − rS

]
=

λ(r0)

c

[
1±

rS

λ(r0)
ln

(
1±

λ(r0)

r0 − rS

)]
. (249)

The usual electro-magnetic waves validate the condition

λ(r0)
� r0 − rS, (250)
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which allows for the following simpler form of (249):

T(r0)
≈

λ(r0)

c

[
1 +

rS

λ(r0)

λ(r0)

r0 − rS

]
=

λ(r0)

c

1 +
1

r0

rS
− 1

, (251)

from where

λ(r0)
≈

cT(r0)

1 +
1

r0

rS
− 1

=
c

f(r0)

1 +
1

r0

rS
− 1


. (252)

In the case of large distances from the center of gravity O

r0 � rS, (253)

Equation (252) is further simplified to

λ(r0)
≈

cT(r0)

1 +
rS

r0

=
c

f(r0)

(
1 +

rS

r0

). (254)

Of course, when r0 → ∞ , (254) is simplified even further and gives the fundamental law of
waves with steady speed:

λ∞ = cT∞ =
c
f∞

. (255)

Moreover, the following formulas can be used for the period/frequency of the variable
speed of an electro-magnetic wave:

T(r0)
=

√
1−

rS

r0
T∞; f(r0)

=
f∞√

1−
rS

r0

. (256)

Thus, the deriving SR z-factor of the gravitational red shift is the same as the above mainstream
GR approach (242i):

z =
fEL

fO
− 1 =

f(r0)

f∞
− 1 =

(
1−

rS

r0

)− 1
2

− 1. (257)

The above formula (in the case of a large distance from the center of gravity O), derives
from the additional assumption that:

f(r0)
= fEL, (258)
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which is based on the fact that the energy levels of atoms are not affected by the gravitation
(even on the horizon, where the protons and electrons are unmoved). Moreover, the
substitution of (256) and (255) to (254) gives

λ(r0)
≈

√
1−

rS

r0
cT∞

1 +
rS

r0

=

√
1−

rS

r0

1 +
rS

r0

λ∞, (259)

Furthermore, the corresponding GR total energies of the photon are correlated via the
multiplication of (256ii) by h:

h f(r0)
= EGR

(
1−

rS

r0

)− 1
2

= E∗GR(r0)
, (260)

where
EGR = E∗ = h f∞. (261)

The above formula is in accordance with the maintenance of energy of the system (a spherical
body with mass M and a photon with m = 0). Evidently, Equations (57) and (239) are
obtained once again. This justifies the use of formula (256).

6. The Reverse Procedure: GR Metrics from the SR Gravitational Central Scalar
Generalized Potential and the Case Study of a Non-Riemannian Metric from the
Newtonian Gravitational Potential

The procedure of correlation of GR metrics with the SR Gravitational Central Scalar
Generalized Potential can be reversed. Thus, if we substitute the SR gravitational central
scalar generalized potential (160) in formula (158ii), then the Schwarzschild GR time dilation
(50) and the GR (Riemannian) Schwarzschild metric (22) are obtained. However, if we
start from the Newtonian Gravitational Potential (3) according to SR, then the corresponding
metric of GR is non-Riemannian. Indeed, the substitution of (3) in (158ii) implies

dt
dτGR

=
1

−
GM
c2r

+
1

γ(βP)

=
1

−
rS

2r
+

√
1−

.
r2

+ r2
.
θ

2
+ r2 sin2 θ

.
φ

2

c2

; · =
d
dt

, (262)

or equivalently,(
dτGR

dt

)2

=
rS

2

4r2 + 1−
1
c2

(dr
dt

)2

+ r2

(
dθ

dt

)2

+ r2 sin2 θ

(
dφ

dt

)2
−

−
rS

r

√√√√√1−
1
c2

(dr
dt

)2

+ r2

(
dθ

dt

)2

+ r2 sin2 θ

(
dφ

dt

)2


(263)

The above equation gives the non-Riemannian metric of GR:

dS2 = −c2dτ2
GR =

= −

1−
rS

r

√√√√√1−
1
c2

(dr
dt

)2

+ r2

(
dθ

dt

)2

+ r2 sin2 θ

(
dφ

dt

)2
+

rS
2

4r2

c2dt2+

+ dr2 + r2dθ2 + r2 sin2 θdφ2

(264)
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which produces the ‘Finsler’ geometry [8] (p. 173) and gives the same results as the Newtonian
Gravitational Potential (3) according to SR. Thus, the approach described in this paper
can be applied to any gravity theory (Riemannian and/or non-Riemannian) with the use
of the corresponding time dilation. So, the Lorentz Gauge Theory [9–14], Teleparallel
Gravity [15–21], etc., can be used. In the case of small velocities of the test particle, or
equivalently, r � rS, the above non-Riemannian metric (264) becomes Riemannian:

dS2 = −c2dτGR
2 = −

(
1−

rS

2r

)2

c2dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2; r � rS, (265)

but it is not in accordance with Einstein’s field equations in a vacuum and the corresponding
conditions (17). The above procedure proves that SR can be used for the description of the
gravitational interaction combined with the suitable SR Gravitational Scalar Generalized
Potential. This potential is completely free of conditions, because formula (159) implies the

relativistic force (
→
F ), while the corresponding four-force in the rest frame of the spherical

body (RIO O) is given by [2] (pp. 329, 342):

f i = γ
(
→
υ P)

 1
c

→
F ·→υ P
→
F

. (266)

The four-force in any other frame (RIO O′) is obtained with the use of the Lorentz
transformation (SR relativization). So, the SR approach of gravitation can describe the
gravitational interaction of GR field equations (original or new) [21], but it is not limited
to them.

7. Discussion

In the context of SR, the gravity can be treated as a field in spacetime, in contrast
to GR where it is a property of the spacetime (curvature and/or torsion) [9,21]. This
is the only approach in a Minkowski space (M4) with constant null curvature (K = 0),
which is enriched with the Lorentz metric and it is exactly the same as in the case of the
corresponding electro-magnetic field. Moreover, according to the bibliography, SR cannot
explain all the gravitational phenomena that the Schwarzschild metric can explain, i.e.,
(i) the precession of Mercury’s Perihelion due to the Sun’s gravity; (ii) the Gravitational
Deflection of Light; (iii) the Shapiro Time Delay; and (iv) the Gravitational Red Shift. This
paper proves that this is not true when the suitable gravitational generalized potential (160)
is used.

Furthermore, in SR, the gravitational generalized potential can be arbitrary, in contrast
to the metrics of GR, which derive from Einstein’s field equations and/or the corresponding
field equations of new GR [15,21]. The SR Gravitational Scalar Generalized Potential is
completely free of conditions, because formula (159) implies the relativistic force and
the corresponding four-force in the rest frame of the spherical body (RIO O) is given by
(266). The four-force in any other frame (RIO O′) is obtained with the use of the Lorentz
transformation (SR relativization). This is an advantage of SR, as any SR gravitational
generalized potential can be used for the explanation of the experimental data in hand,
while in GR only the metrics that are in accordance with Einstein’s field equations and/or
the corresponding field equations of new GR can be used. The dark matter and dark energy
hypotheses show that the SR approach of a gravitational field can be useful [32]. Besides,
the SR approach to gravity may also be useful for the concept of a unified description of
the basic physical interactions, where the biggest barrier is the GR approach to gravity [9].

A number of solutions to gravitational problems have appeared during the first
century of GR’s existence. The Schwarzschild solution and the corresponding Teleparallel
Gravity are used in this paper for the corresponding SR gravitational generalized potential.
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This method may have many more applications. For instance, the potential (160) can be
modified as follows:

VGSR(r,
.
r,

.
φ)

=
c2

ξ I2

ξ I
2

1−

 rS

r
+

1

1−
rS

r

.
r2

c2 +
r2

.
φ

2

c2




1
2

−
1

γ(ξ I βP)

; . =
d
dt

(267)

The above potential cannot be produced by a GR time dilation in accordance with
Einstein’s field equations (or new GR field equations [21]) and the scalar relativistic po-
tential, but it clarifies the aforementioned gravitational phenomena by using Classical
Mechanics (ξI→0) or SR (ξI = 1) [24] (p. 28). This can be regarded as a modification of the
classical Newtonian potential with relativistic effects taken into account and adjustment to
the Schwarzschild solution known in GR.

In GR, the work is usually done in curved pseudo-Riemannian spaces and especially in
those that are reduced locally to Minkowski spacetime [8] (p. 175). Thus, this method can
use the time dilation in spaces with the Kerr metric or the Kerr–Newman metric, etc., in order
to obtain the corresponding SR gravitational generalized potential.

In addition, the procedure of the correlation of GR metrics with the SR Gravitational
Central Scalar Generalized Potential can be reversed. Thus, if the gravitational central scalar
generalized potential (160) according to SR is used, then the Schwarzschild metric (22) is
obtained (this is a Riemannian metric). However, if we start from the Newtonian Gravitational
Potential (3) according to SR, then the corresponding metric of GR (264) is non-Riemannian.
Thus, only GR in accordance with ‘Finsler’ geometry [8] (p. 173) can produce the same
results as the Newtonian Gravitational Potential (3) according to SR.

The approach described in this paper can be applied to any theory of gravity (Rie-
mannian and/or non-Riemannian) with the use of the corresponding time dilation. So,
the Lorentz Gauge Theory [9–14], Teleparallel Gravity [15–21], etc., can be used. More
specifically, Teleparallel Gravity is a gravitational theory formulated on the Weitzenböck
spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and by the
torsion tensor formed of four parallel vector fields. This theory is called new general relativity
because Albert Einstein in 1928 first gave its original form [15,21] (p. 3524). The corre-
sponding isotropic metric by a static, spherical body (assuming that the spin of constituent
particles of a body can be completely neglected) is given by (210), which contains constant
parameters p = p(ε); q = q(ε), where ε is an arbitrary parameter with an experimental low
value (220). When ε→0, then p = q = 2 and metric (210) becomes the (Riemannian) isotropic
form of the Schwarzschild metric (27). This happens because the field equations in Weitzenbock
spacetime are reduced to Einstein’s field equations under two conditions: (i) the axial-vector
part of the torsion tensor vanishes identically; and (ii) the effects due to the intrinsic spin
−1/2 fundamental particles can be neglected [21] (p. 3539). When ε→0 (p = q = 2), then the
corresponding SR gravitational generalized potential is the SR Schwarzschild Generalized
Potential given by formula (160). In any other case ε 6= 0 (p 6= 2, q 6= 2), we calculate
the metric by a static, spherical body (assuming that the spin of constituent particles of
a body can be completely neglected) (232) and the corresponding time dilation (234) in
Weitzenböck spacetime. The substitution of the time dilation (234) to formula (158) gives the
corresponding SR Teleparallel Gravity Generalized Potential (235). We observe that the
GR Schwarzschild time dilation (50) and SR Schwarzschild Generalized Potential (160) can
be regarded as the limit of the corresponding quantities of Teleparallel Gravity (234) and
(235) for ε→0 (p = q→2) (assuming that the spin of constituent particles of a static spherical
body is completely neglected).

Finally, it is noted that a weak field approximation is used in the standard GR in order
to obtain the gravitational redshift due to a spherical mass. This approach is not mentioned
in the bibliography, which considers that the standard Schwarzschild gravitational redshift
is valid in strong gravitational fields as well. This fact could be the cause for the smaller
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observed gravitational red shift in the solar spectrum than the corresponding theoretical one
(Er = −3% for the strong lines of the iron’s spectrum Fe(I)) [31].

8. Conclusions

The gravitational field can be described equally well via either variable metrics of space-
time according to General Relativity (GR), or Gravitational Generalized Potential according
to Special Relativity (SR). In this paper, the GR gravitational results are obtained by using
SR via the SR Lagrangian, which contains the corresponding GR time dilation. On the scale
of a black hole, a planetary system, or a star system, the Precession of Mercury’s perihelion,
the Gravitational Deflection of Light, the Shapiro time delay, and the Gravitational Red Shift can
be explained equally well with either the Schwarzschild metric according to GR, or the
SR Schwarzschild Generalized Potential (160), according to SR. The aforementioned can
also be explained by using the suitable Gravitational Generalized Potential (267) for ξI→0
according to Newtonian Physics.

The above procedure can be reversed. Thus, if the gravitational central scalar generalized
potential (160) according to SR is used, then the Schwarzschild metric is obtained (this is a
Riemannian metric). In contrast, the Newtonian Gravitational Potential (3) according to SR
leads to the corresponding non-Riemannian metric (264) of GR. So, the approach described
in this paper can be applied to any gravity theory (Riemannian and/or non-Riemannian),
such as Lorentz Gauge Theory [9–14], Teleparallel Gravity [15–21], etc., with the use of the
corresponding time dilation.

In this way, the work with the gravitational fields can be done in the same manner
as in any other type of field (such as the electro-magnetic) in Minkowski spacetime with
the Lorentz Metric, avoiding thus dealing with the motions of particles in the curved
spacetime of GR. This may also be useful for the concept of a unified description of the
basic physical interactions, where the biggest barrier is the gravity according to GR [9].
Finally, it is shown that the mainstream consideration of the Gravitational Red Shift contains
two approximations that are valid in weak gravitational fields only.
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Abbreviations
EEP Einstein’s Equivalence Principle
GR General Relativity
M4 Minkowski spacetime
NPs Newtonian Physics
RIO Relativistic Inertial Observer
RIO O RIO with the origin of its frame on the center of gravity O
SR Special Relativity
UCM Uniform Circular Motion
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