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Abstract: An exact analytical, spherically symmetric, three-parametric wormhole solution has been
found in the Einstein-scalar field theory, which covers the several well-known wormhole solutions. It
is assumed that the scalar field is massless and depends on the radial coordinate only. The relation
between the full contraction of the Ricci tensor and Ricci scalar has been found as RαβRαβ = R2. The
derivation of the Einstein field equations have been explicitly shown, and the exact analytical solution
has been found in terms of the three constants of integration. The several wormhole solutions have
been extracted for the specific values of the parameters. In order to explore the physical meaning of
the integration constants, the solution has been compared with the previously obtained results. The
curvature scalar has been determined for all particular solutions. Finally, it is shown that the general
solution describes naked singularity characterized by the mass, the scalar quantity and the throat.

Keywords: Einstein-scalar field theory; wormhole solution; scalar field; curvature invariant

1. Introduction

The formation of spacetime around gravitationally compact objects such as black holes,
wormholes, neutron stars, etc., is a quite common phenomenon in general relativity (GR)
and alternative theories of gravity. The wormhole is an exact solution of the Einstein field
equations describing a hypothetical bridge between two or more points in the Universe
or between two different universes. From an astrophysical point of view, one has to
mention that wormholes are much more exotic and mathematical objects in compaison
to the concept of a black hole. However, wormholes also have interesting features and
might represent similar exiting properties as black holes. From a practical point of view,
wormholes have not been directly observed yet, however, from the theoretical point of
view, they are good candidates for “time machines”, which could provide the possibility
to travel between the different universes and interstellar travel within different parts of
our Universe.

The first idea about the wormhole was proposed by Flamm in 1916, just after the
discovery of Schwarzschild’s solution of the Einstein equations. Later on, in 1935 [1],
Einstein and Rosen introduced a new formation of the spacetime between black holes,
which is a regular wormhole solution, known as the Einstein–Rosen bridge in the present
time. However, notice that Misner and Wheeler coined the term wormhole in 1957 [2]. The
modern interest in a traversable wormhole was stimulated particularly by the pioneering
works of Morris, Thorne and Yurtsever [3]. Notice that the Einstein–Rosen wormhole is
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not traversable, and traversable wormholes are described as having throats that connect
two asymptotically flat regions of spacetime. The several properties of traversable worm-
holes have been investigated by Morris and Thorne [4], and Ellis constructed the famous
eponymous wormhole solution in Einstein gravity coupled to a free phantom scalar [5].

There is a large number of wormhole solutions known in the literature. Particularly,
one of the simple wormhole solutions has been found by Morris and Thorne (MT) [4].
Another well-known wormhole solution has been obtained by Janis–Newman–Winicour
(JNW) [6], which is also known as the JNW naked singularity. The description of a so-
called Ellis–Bronnikov (EB) wormhole solution can be found in [5]. The rotating wormhole
solution has been discussed in [7]. Traversable wormhole solutions described by the
exponential metric have been derived in [8,9].

On the other hand, there are known numerous exact analytical solutions of the Einstein
field equations. In the pioneering work of [10], several static solutions of the Einstein field
equations have been presented. The most interesting and known exact solutions of the
Einstein field equations have been collected in textbooks [11,12]. In Ref [13], it is shown
that the static spherical symmetric solution obtained by Wyman [14] is the same as Janis–
Newman–Winicour’s [6] spacetime. Generalizations of these solutions have been reviewed
in [15–19]. The exact solution of the Einstein equations for the wormhole with the scalar
field have been recently studied in [20,21]. The contribution of the scalar field in the
spacetime of static [13,22] and rotating black holes [23] and rotating wormholes [24] have
been also studied.

Here, we are interested in finding and exploring the spherically symmetric solutions
of the Einstein-scalar field equations. First, we introduce the line element of space-time
containing unknown metric functions. Then, using Einstein field equations, we obtain
the second-order differential equations for the radial profile functions. The derived exact
analytical solutions for the radial functions contain the constants of the integration which
are explored. The paper is organized as follows. In Section 2, we provide the detailed
derivations of Einstein-scalar fields equations. In Section 3, we obtain the general three-
parametric wormhole solution by solving the Einstein-scalar field equations. In the next
Section 4, we reproduce some of the well-known wormhole and black hole solutions.
Section 5 is devoted to identifying the physical meaning of the constant of the integration.
Finally, in Section 6, we summarize the main obtained results.

2. Einstein’s Massless Scalar Field Equations

The action for Einstein’s massless scalar field system reads as follows (Throughout
the paper, we use the geometrized system of units in which c = G = h̄ = 1 and spacelike
signature (−,+,+,+)):

S =
1

16π

∫
d4x
√
−g(R− 2∂αΦ∂αΦ) , (1)

where g is the determinant of the metric tensor of arbitrary spacetime, i.e., g = ||gαβ||,
R is the Ricci scalar, i.e., R = Rα

α, and Φ is the scalar field. By minimizing the action (1),
equations of motion, namely, the Einstein field equations and the Klein–Gordon equation,
can be obtained as:

Gαβ = Rαβ −
1
2

gαβR = Tαβ , (2)

�Φ =
1√−g

∂α

(√
−g∂αΦ

)
= 0 , (3)

where Gαβ is the Einstein tensor, and Tαβ is the energy-momentum tensor for the scalar
field defined as:

Tαβ = 2∂αΦ∂βΦ− gαβ∂µΦ∂µΦ . (4)
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Hereafter, taking traces from both sides of Einsteins field Equation (2) and using the
following summation condition gα

α = δα
α = 4, one can obtain the expression for the Ricci

scalar as:

R = 2∂αΦ∂αΦ , (5)

which is one of the curvature invariants. On the other hand, inserting the expression (5)
into (2), one can obtain:

Rαβ = 2∂αΦ∂βΦ , (6)

which is also called the Einstein-scalar field equation. Notice that the above equation is
equivalent to Einstein’s field equations in the presence of a scalar field. We now wish to
determine the Einstein “scalar”, which is a product of the Einstein tensor (i.e., GαβGαβ) and
can be calculated as:

GαβGαβ =

(
Rαβ −

1
2

gαβR
)(

Rαβ − 1
2

gαβR
)
= RαβRαβ , (7)

and, finally, using Equations (5) and (6), one can obtain the following expression:

GαβGαβ = RαβRαβ = 4∂αΦ∂βΦ∂αΦ∂βΦ = R2 . (8)

Keep in mind that Equation (8) is valid for massless scalar fields only. One has to
emphasize that there exists one more curvature invariant, the so-called Kretschmann scalar,
which is independent of the Lagrangian of the system and defined as K = RαβµνRαβµν,
where Rαβµν is the Riemann tensor.

Now, we focus on obtaining the spherically symmetric solution for the Einstein-scalar
field system. Assume that the scalar field depends on the radial coordinate only, Φ = Φ(r),
then the expression for the diagonal elements of the energy-momentum tensor in (4) can be
written as:

Tt
t = −Tr

r = Tθ
θ = Tφ

φ = −∂rΦ∂rΦ , (9)

which are equivalent to the following equations:

Gt
t = −Gr

r = Gθ
θ = Gφ

φ = −∂rΦ∂rΦ . (10)

Simultaneously, the scalar field Φ satisfies the following equation:

∂r
(√
−ggrr∂rΦ

)
= 0 , or

√
−ggrr∂rΦ = const . (11)

We are now in a position to find the solution of the Einstein-scalar field equations
combined with the Klein–Gordon equation. In Boyer–Lindquist coordinates xα = (t, r, θ, φ),
the general form of the spherically symmetric, static spacetime metric is given by:

ds2 = −eν(r)dt2 + e−ν(r)
(

dr2 + eλ(r)dΩ2
)

, (12)

where ν(r) and λ(r) are arbitrary radial functions, and dΩ2 = dθ2 + sin2 θdφ2. Taking into
account Equation (12), the components of the Einstein tensor can be expressed as:

Gt
t =

1
4

eν
(

4λ′′ − 4λ′ν′ + 3λ′2 − 4ν′′ + ν′2 − 4e−λ
)

, (13)

Gr
r =

1
4

eν
(

λ′2 − ν′2 − 4e−λ
)

, (14)

Gθ
θ =

1
4

eν
(

λ′2 + ν′2 + 2λ′′
)
= Gφ

φ . (15)
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where prime and double primes denote the first- and second-order derivatives with respect
to the radial coordinates. Now, using Equation (10), one can write the following equations
for the radial functions:

Gr
r + Gθ

θ = 0 =
1
2

eν
(

λ′′ + λ′2 − 2e−λ
)

, (16)

Gr
r + Gt

t = 0 = eν
(

λ′′ + λ′2 − 2e−λ − λ′ν′ − ν′′
)

, (17)

Gθ
θ − Gt

t = 0 =
1
2

eν
(

λ′′ + λ′2 − 2e−λ − 2λ′ν′ − 2ν′′
)

, (18)

which allows one to write the following equations for unknown metric functions:

d2

dr2 eλ(r) − 2 = 0 ,
d
dr

(
ν′(r)eλ(r)

)
= 0 . (19)

The solutions of Equation (19) are rather simple and can be found as follows:

eλ(r) = r2 + 2c1r + c2 , (20)

ν(r) = 2c3

∫ dr
r2 + 2c1r + c2

= − 2c3√
c2

1 − c2

tanh−1

 r + c1√
c2

1 − c2

 , (21)

where c1, c2 and c3 are the constants of integration. The factor 2 in front of the constants c1
and c3 is introduced for further convenience. From Equation (20), one can easily see that
the dimension of constants c1 and c3 is in length, while constant c2 measures in square of
length, i.e., [c1] = [c3] = length, [c2] = length2.

3. General Solution of Einstein-Scalar Field Equations

Finally, the general solution of the Einstein-scalar field equations can be expressed as:

ds2 =−

 r + c1 +
√

c2
1 − c2

r + c1 −
√

c2
1 − c2

−
c3√
c2
1−c2

dt2

+

 r + c1 +
√

c2
1 − c2

r + c1 −
√

c2
1 − c2


c3√
c2
1−c2

dr2

+
(

r2 + 2c1r + c2

) r + c1 +
√

c2
1 − c2

r + c1 −
√

c2
1 − c2


c3√
c2
1−c2

dΩ2 , (22)

and the associated scalar field is:

Φ(r) =
1
2

√
1−

c2
3

c2
1 − c2

ln

 r + c1 +
√

c2
1 − c2

r + c1 −
√

c2
1 − c2

 , (23)

while the non-vanishing components of the energy-momentum tensor are:

Tt
t = −Tr

r = Tθ
θ = −

c2
1 − c2 − c2

3

(r2 + 2c1r + c2)
2

 r + c1 +
√

c2
1 − c2

r + c1 −
√

c2
1 − c2

−
c3√
c2
1−c2

.



Particles 2022, 5 5

The curvature invariants, namely, the Ricci scalar and Kretchmann scalar, are:

R =
c2

1 − c2 − c2
3

(r2 + 2c1r + c2)
2

 r + c1 +
√

c2
1 − c2

r + c1 −
√

c2
1 − c2

−
c3√
c2
1−c2

, (24)

K =
C1r2 + C2r + C3

(r2 + 2c1r + c2)4

 r + c1 +
√

c2
1 − c2

r + c1 −
√

c2
1 − c2

− 2c3√
c2
1−c2 . (25)

where:

C1 = 48c2
3 , (26)

C2 = 32c3[c2 − (c1 − 2c3)(c1 − c3)] , (27)

C3 = 4
[
7c4

3 − 16c1c3
3 + 2

(
7c2

1 − c2

)
c2

3 + 8c1

(
c2 − c2

1

)
c3 + 3

(
c2

1 − c2

)
2
]

. (28)

The curvature invariants at the center of gravitational source take the following values:

lim
r→0

R =
2
(
c2

1 − c2
3 − c2

)
c2

2

 c1 +
√

c2
1 − c2

c1 −
√

c2
1 − c2

− c3√
c2
1−c2 , (29)

lim
r→0

K =
C3

c4
2

 c1 +
√

c2
1 − c2

c1 −
√

c2
1 − c2

− 2c3√
c2
1−c2 , (30)

which show that the general wormhole solution (22) is regular. However, it might be
singular for specific values of the constants of the integration. It is also easy to check that
the obtained general wormhole solution (22) is asymptotically flat:

lim
r→∞

R = 0 , lim
r→∞

K = 0 . (31)

So far, we have shown the general wormhole solution of the Einstein-scalar field
equation with three constants of integration. Now, we focus on the particular cases of the
general three-parameter solution (22).

4. Special Wormhole Solutions

4.1. Special Solution in the Case When c2 = c2
1

Let us start the analysis of solution (22) from the most simple case. Assume that
c2 = c2

1. Then, the metric functions in (20) take the following form:

eλ(r) = (r + c1)
2 , ν(r) = 2c3

∫ dr
(r + c1)2 = − 2c3

r + c1
, (32)

and two constants can be taken as the throat: c1 = a and mass c3 = M of the wormhole.
Then, the spacetime metric can be expressed as:

ds2 = − exp
(
− 2M

r + a

)
dt2 + exp

(
2M

r + a

)[
dr2 + (r + a)2dΩ2

]
, (33)

and the associated scalar field is Φ(r) = iM/(r + a), which is responsible for the phantom
field. The non-vanishing components of the energy-momentum tensor are:

Gt
t = −Tr

r = Tθ
θ =

M2

(r + a)4 exp
(
− 2M

r + a

)
, (34)
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while curvature invariants take the form:

R = − 2M2

(r + a)4 exp
(
− 2M

r + a

)
, (35)

K =
4M2[12(r + a)2 − 16M(r + a) + 7M2]

(r + a)8 exp
(
− 4M

r + a

)
, (36)

which are regular at the origin (i.e., r = 0), and our analyses show that the expressions
in (35) are regular for any values of the wormhole throat. Notice that, in the case when
a = 0, the metric (33) reduces the wormhole solution obtained by Papopetrou [8], see also
recent paper [9].

4.2. Special Wormhole Solutions When c1 = 0

Now, we concentrate on the case when c1 = 0. Then, the metric (22) reads:

ds2 =−
(

r +
√
−c2

r−
√
−c2

)− c3√
−c2 dt2 +

(
r +
√
−c2

r−
√
−c2

) c3√
−c2 dr2

+
(

r2 + c2

)( r +
√
−c2

r−
√
−c2

) c3√
−c2 dΩ2 . (37)

which in turn shows two separate solutions.
Assume that c2 = −M2 < 0 and c3 = Mγ ∈ R, then one can obtain the well-known

JNW solution [6,13,14]:

ds2 =−
(

r + M
r−M

)−γ

dt2 +

(
r + M
r−M

)γ

dr2 +
(

r2 −M2
)( r + M

r−M

)γ

dΩ2 , (38)

where the scalar field is:

Φ(r) =
1
2

√
1 +

1
γ2 ln

(
r + M
r−M

)
, (39)

the energy-momentum tensor is:

Gt
t = −Tr

r = Tθ
θ =

M2(1 + γ−2)

(r2 −M2)
2

(
r + M
r−M

)−γ

(40)

and the curvature invariants are:

R =
2(1− γ2)M2

(r2 −M2)2

(
r−M
r + M

)γ

, (41)

K =
4M2

(r2 −M2)
4

(
r−M
r + M

)2γ[
12γ2r2 − 8γ

(
2γ2 + 1

)
Mr +

(
7γ4 + 2γ2 + 3

)
M2
]

. (42)

If the constant c2 is positively identified, i.e., c2 = M2 > 0 and D = c3, then one
can obtain:

eλ = r2 + M2 , ν(r) =
2c3

M
tan−1

( r
M

)
. (43)

ds2 =− exp
[

2M√
D2 −M2

tan−1 r√
D2 −M2

]
dt2

+ exp−
[

2M√
D2 −M2

tan−1 r√
D2 −M2

][
dr2 + (r2 − D2 −M2)dΩ2

]
, (44)



Particles 2022, 5 7

which is the Ellis–Bronnikov wormhole solution.

4.3. Special Solutions in the Case When c2 = 0
4.3.1. Schwarzschild Space-Time

The Schwarzschild space-time metric can be obtained by setting c3 = −c1 = M, which
takes the following form:

ds2 =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2 , (45)

with Φ(r) = 0 and Gt
t = −Tr

r = Tθ
θ = 0. The curvature invariants are found as R = 0 and

K = 48M2/r6.

4.3.2. Janis–Newman–Winicour Wormhole

In order to obtain the Janis–Newman–Winicour space-time metric, one can set c1 =
−M/γ and c3 = M, and then obtain the well-known JNW naked singularity:

ds2 =−
(

1− 2M
γr

)γ

dt2 +

(
1− 2M

γr

)−γ

dr2 + r2
(

1− 2M
γr

)1−γ

dΩ2 , (46)

and the associated scalar field takes the following form:

Φ(r) =

√
1− γ2

2
ln
(

1− 2M
γr

)
, (47)

and the non-vanishing components of the energy-momentum tensor have the follow-
ing form:

Gt
t = −Tr

r = Tθ
θ = −

M2(1− γ−2)
r4

(
1 +

2M
γr

)γ−2
. (48)

The curvature invariants are found as:

R =
2M2(1− γ−2)

r4

(
1 +

2M
γr

)γ−2
, (49)

K =
48M2

r6

(
1− 2M

γr

)2γ−4[
1− 2(2γ + 1)(γ + 1)M

3γ2r
+

(7γ2 + 2γ + 3)(γ + 1)2 M2

12γ4r2

]
. (50)

4.3.3. Papapetrou Wormhole

Assume that c2 → 0 and c3 = M. Then, the metric (37) reduces to the Papapetrou
solution [8,9]:

ds2 = − exp
(
−2M

r

)
dt2 + exp

(
2M

r

)[
dr2 + r2dΩ2

]
, (51)

and when the scalar field reads Φ(r) = iM/r, the energy-momentum tensor is:

Gt
t = −Tr

r = Tθ
θ =

M2

r4 exp
(
−2M

r

)
, (52)

while the curvature invariant takes the form:

R = −2M2

r4 exp
(
−2M

r

)
, (53)

K =
4M2[12r2 − 16Mr + 7M2]

r8 exp
(
−4M

r

)
. (54)
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4.4. Special Solutions in the Case When c3 = 0

Finally, one can consider the case when c3 = 0, then, the wormhole is described by
two parameters c1, c2, and the space-time metric (22) reads:

ds2 = −dt2 + dr2 +
(

r2 + 2c1r + c2

)
dΩ2 , (55)

Φ(r) =
1
2

ln

 r + c1 +
√

c2
1 − c2

r + c1 −
√

c2
1 − c2

 . (56)

Now, the question arises how two parameters are related to the physical quantities re-
lated to wormholes. To interpret these parameters, one can reconsider previously obtained
and well-known solutions and relate them to measurable quantities.

Morris–Thorne Wormhole

One of the well-known wormhole solutions is described by Morris–Thorne’s space-
time metric with a single parameter, which is the so-called throat of the wormhole. Assume
that c1 = 0 and c2 = r2

0, where r0 is the throat of the wormhole. Then, the general wormhole
solution reduces the Morris–Thorne wormhole space-time metric in the following form [4]:

ds2 = −dt2 + dr2 +
(

r2 + r2
0

)
dΩ2 , (57)

and the associated scalar field takes the following form:

Φ(r) =
i
2

tan−1
(

r
r0

)
, (58)

the components of the energy-momentum tensor have the form:

Gt
t = −Tr

r = Tθ
θ =

r2
0(

r2 + r2
0
)2 . (59)

The curvature invariants read:

R = −
2r2

0(
r2 + r2

0
)2 , K =

12r4
0(

r2 + r2
0
)4 . (60)

4.5. Solution in the Case When c1 = b and c2 = 0

In the case when c1 = b and c2 = 0, the solution is described by the scalar field only
and reads as:

ds2 = −dt2 + dr2 + r(r + 2b)dΩ2 , (61)

with the associated scalar field:

Φ(r) =
1
2

ln
(

1 +
2b
r

)
, (62)

the components of the energy-momentum tensor have the form:

Tt
t = −Tr

r = Tθ
θ = − b2

r2(2b + r)2 . (63)
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as well as the curvature invariants reading as:

R =
2b2

r2(r + 2b)2 , K =
12b4

r4(r + 2b)4 . (64)

5. Relation of Integration Constants c1, c2 and c3 to Physical Quantities

Our above-performed analyses shows that the physical meaning of constant c1 is the
mass of the wormhole c1 = M, c2 is responsible for the size of the throat of the wormhole
c2 = r2

0 and c3 = σ is the scalar charge parameter.
Finally, the space-time metric for the tree parametric wormhole solution can be ex-

pressed as:

ds2 =−

 r + M +
√

M2 − r2
0

r + M−
√

M2 − r2
0

−
σ√

M2−r2
0

dt2

+

 r + M +
√

M2 − r2
0

r + M−
√

M2 − r2
0


σ√

M2−r2
0

dr2

+
(

r2 + 2Mr + r2
0

) r + M +
√

M2 − r2
0

r + M−
√

M2 − r2
0


σ√

M2−r2
0

dΩ2 , (65)

and the associated scalar field is:

Φ(r) =
1
2

√
1− σ2

M2 − r2
0

ln

 r + M +
√

M2 − r2
0

r + M−
√

M2 − r2
0

 . (66)

6. Conclusions

It is well-known that in order to find the exact wormhole solutions to the field equa-
tions, one needs to assume the presence of exotic matter, for example, in the throat. In
most cases, the exotic matter can be either scalar or phantom field. In general, it is diffi-
cult to find the exact analytical wormhole solutions to the field equations, however, the
several particular wormhole solutions can be found for given forms of the action, which
includes the exotic matter term. Some solutions including exotic matter might be also
solutions for either the naked singularity or black holes. The main purpose of this paper is
to demonstrate the derivation of three-parametric wormhole solutions in the framework of
general relativity.

We have studied one of the fundamental problems related to the Einstein-scalar field
equations in the framework of general relativity, assuming the scalar is massless. The
Einstein-scalar field equations have been explicitly derived. The relation between the full
contraction of the Ricci tensor and the Ricci scalar has been found as RαβRαβ = R2 for the
massless scalar field. The general form of the spherically symmetric, static solution of the
Einstein-scalar field equations has been found in terms of three constants of integration,
which covers some of the well-known wormhole solutions, namely, the Janis–Newman–
Winicour naked singularity, the Morris–Thorne wormhole and the Papapetrou exponential
wormhole solutions in the specific value of those constants. In addition to that, several new
wormhole solutions can also be generated.

In order to better understand the space-time formation, the curvature invariants,
namely, the Ricci scalar, Ricci square, and Kretschmann scalar, have been determined for
the particular solutions, as well as the components of the energy-momentum tensor. The
exact analytical solution for the scalar field has been found.
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As a future study, it is also possible to explore the Einstein–Maxwell-scalar field
system. In our preceding paper [25], we have presented an exact analytical solution for
the system of the Einstein–Maxwell-scalar field equations, which is a generalization based
on a combination of well-known Reissner–Nordström and JNW space-time. It can also be
shown that the special solution of the Einstein–Maxwell-scalar field equations might be
obtained for charged wormholes described by exponential metrics.

Author Contributions: Conceptualization, B.T. and B.A.; methodology, B.T., A.A. and B.A.; software,
B.T.; validation, A.A., B.A. and Z.S.; formal analysis, A.A., B.A. and Z.S.; investigation, B.T., A.A. and
B.A.; resources, B.T.; writing—original draft preparation, B.T., A.A. and B.A.; writing—review and
editing, B.T. and B.A.; visualization, B.T.; supervision, B.A. and Z.S.; project administration, A.A.,
B.A. and Z.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data is available.

Acknowledgments: This research is supported by Grants F3-2020092957, F-FA-2021-510, and MRB-
2021-527 of the Uzbekistan Ministry for Innovative Development and by the Abdus Salam Interna-
tional Centre for Theoretical Physics under the Grant No. OEA-NT-01.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73–77. [CrossRef]
2. Misner, C.W.; Wheeler, J.A. Classical physics as geometry. Ann. Phys. 1957, 2, 525–603. [CrossRef]
3. Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 1988,

61, 1446–1449. [CrossRef] [PubMed]
4. Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am.

J. Phys. 1988, 56, 395–412. [CrossRef]
5. Ellis, H.G. Ether flow through a drainhole: A particle model in general relativity. J. Math. Phys. 1973, 14, 104–118. [CrossRef]
6. Janis, A.I.; Newman, E.T.; Winicour, J. Reality of the Schwarzschild Singularity. Phys. Rev. Lett. 1968, 20, 878–880. [CrossRef]
7. Teo, E. Rotating traversable wormholes. Phys. Rev. D 1998, 58, 024014. [CrossRef]
8. Papapetrou, A. Eine Theorie des Gravitationsfeldes mit einer Feldfunktion. Z. Phys. 1954, 139, 518–532. [CrossRef]
9. Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Exponential metric represents a traversable wormhole. Phys. Rev. D 2018,

98, 084048. [CrossRef]
10. Tolman, R.C. Static Solutions of Einstein’s Field Equations for Spheres of Fluids. Phys. Rev. 1939, 55, 364. [CrossRef]
11. Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact solutions of Einstein’s Field Equations; Cambridge

University Press: Cambridge, UK, 2003.
12. Kramer, D.; Stephani, H.; MacCallum, M.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge University Press:

Cambridge, UK, 1980.
13. Virbhadra, K.S. Janis-Newman-Winicour and Wyman Solutions are the Same. Int. J. Mod. Phys. A 1997, 12, 4831–4835. [CrossRef]
14. Wyman, M.Static spherically symmetric scalar fields in general relativity. Phys. Rev. D 1981, 24, 839–841. 24.839. [CrossRef]
15. Bergmann, O.; Leipnik, R. Space-Time Structure of a Static Spherically Symmetric Scalar Field. Phys. Rev. 1957, 107, 1157–1161.

[CrossRef]
16. Buchdahl, H.A. Reciprocal Static Metrics and Scalar Fields in the General Theory of Relativity. Phys. Rev. 1959, 115, 1325–1328.

[CrossRef]
17. Just, K. Notizen: The Motion of Mercury according to the Theory of Thiry and Lichnerowicz. Z. Naturforschung Teil A 1959,

14, 751–751. [CrossRef]
18. Damour, T.; Esposito-Farese, G. Tensor-multi-scalar theories of gravitation. Class. Quantum Gravity 1992, 9, 2093–2176. [CrossRef]
19. Dadhich, N.; Banerjee, N. Global Monopoles and Scalar Fields as the Electrogravity Dual of Schwarzschild Space-Time. Mod.

Phys. Lett. 2001, 16, 1193–1200. [CrossRef]
20. Gibbons, G.W.; Volkov, M.S. Weyl metrics and wormholes. J. Cosmol. Astropart. Phys. 2017, 5, 039. [CrossRef]
21. Turimov, B.; Ahmedov, B.; Kološ, M.; Stuchlík, Z. Axially symmetric and static solutions of Einstein equations with self-gravitating

scalar field. Phys. Rev. D 2018, 98, 084039. [CrossRef]
22. Herdeiro, C.A.R.; Radu, E. Asymptotically flat black holes with scalar hair: A review. Int. J. Mod. Phys. D 2015, 24, 1542014.

[CrossRef]

http://doi.org/10.1103/PhysRev.48.73
http://dx.doi.org/10.1016/0003-4916(57)90049-0
http://dx.doi.org/10.1103/PhysRevLett.61.1446
http://www.ncbi.nlm.nih.gov/pubmed/10038800
http://dx.doi.org/10.1119/1.15620
http://dx.doi.org/10.1063/1.1666161
http://dx.doi.org/10.1103/PhysRevLett.20.878
http://dx.doi.org/10.1103/PhysRevD.58.024014
http://dx.doi.org/10.1007/BF01374560
http://dx.doi.org/10.1103/PhysRevD.98.084048
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1142/S0217751X97002577
http://dx.doi.org/10.1103/PhysRevD.24.839
http://dx.doi.org/10.1103/PhysRev.107.1157
http://dx.doi.org/10.1103/PhysRev.115.1325
http://dx.doi.org/10.1515/zna-1959-0810
http://dx.doi.org/10.1088/0264-9381/9/9/015
http://dx.doi.org/10.1142/S0217732301004376
http://dx.doi.org/10.1088/1475-7516/2017/05/039
http://dx.doi.org/10.1103/PhysRevD.98.084039
http://dx.doi.org/10.1142/S0218271815420146


Particles 2022, 5 11

23. Sen, A. Rotating charged black hole solution in heterotic string theory. Phys. Rev. Lett. 1992, 69, 1006–1009. ett.69.1006. [CrossRef]
24. Chakraborty, C.; Pradhan, P. Behavior of a test gyroscope moving towards a rotating traversable wormhole. J. Cosmol. Astropart.

Phys. 2017, 2017, 035. [CrossRef]
25. Turimov, B.; Ahmedov, B.; Stuchlík, Z. On exact analytical solution of Einstein-Maxwell-scalar field equations. Phys. Dark

Universe 2021, 33, 100868. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.69.1006
http://dx.doi.org/10.1088/1475-7516/2017/03/035
http://dx.doi.org/10.1016/j.dark.2021.100868

	Introduction
	Einstein's Massless Scalar Field Equations
	General Solution of Einstein-Scalar Field Equations
	Special Wormhole Solutions
	Special Solution in the Case When c2=c12
	Special Wormhole Solutions When c1=0
	Special Solutions in the Case When c2=0
	Schwarzschild Space-Time
	Janis–Newman–Winicour Wormhole
	Papapetrou Wormhole

	Special Solutions in the Case When c3=0
	Solution in the Case When c1=b and c2=0

	Relation of Integration Constants c1, c2 and c3 to Physical Quantities
	Conclusions
	References

