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Abstract: Arsenic (As) is one of the most widespread, toxic elements in the environment, and human
activities have resulted in a large number of contaminated areas. However abundant, the potential
of As toxicity from exposure to contaminated soils is limited to the fraction that will dissolve in the
gastrointestinal system and be absorbed into systemic circulation or bioavailable species. In part,
the release of As from contaminated soil to gastrointestinal fluid depends on the form of solid
phase As, also termed “As speciation”. In this study, 27 As-contaminated soils and solid wastes
were analyzed using X-ray absorption spectroscopy (XAS) and results were compared to in vivo
bioavailability values determined using the adult mouse and juvenile swine bioassays. Arsenic
bioavailability was lowest for soils that contained large amounts of arsenopyrite and highest for
materials that contained large amounts of ferric arsenates. Soil and solid waste type and properties
rather than the contamination source had the greatest influence on As speciation. Principal component
analysis determined that As(V) adsorbed and ferric arsenates were the dominant species that control
As speciation in the selected materials. Multiple linear regression (MLR) was used to determine the
ability of As speciation to predict bioavailability. Arsenic speciation was predictive of 27% and 16%
of Relative Bioavailable (RBA) As determined using the juvenile swine and adult mouse models,
respectively. Arsenic speciation can provide a conservative estimate of RBA As using MLR for the
juvenile swine and adult mouse bioassays at 55% and 53%, respectively.
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1. Introduction

Arsenic (As) is widespread across the environment. Not only is it naturally occurring in soils and
geological materials, it has been used in a variety of ways by humans since ancient times. Arsenic
has been used as a medicine, pesticide, herbicide, colorant, additive to animal feed, wood treatment,
and as a poison [1]. Human use and the high toxicity potential has led to arsenic becoming the
number one hazard of concern on the Agency for Toxic Substances and Disease Registry (ATSDR)
National Priorities List (NPL) [2]. However abundant, the exposure and potential toxicity of As from
contaminated soils is limited to the fraction of As that will dissolve in the gastrointestinal system and
be available for absorption into systemic circulation (i.e., bioaccessible) [3]. Once bioaccessible, As can
be absorbed across the intestinal epithelium and enter systemic circulation where the As is bioavailable.
In part, the release of As from contaminated soil to gastrointestinal fluid depends on the form of solid
phase arsenic also termed “As speciation”.

Relating As speciation to bioavailability can prove beneficial when considering site cleanup for
contaminated areas. If the speciation of As within the soil limits its dissolution into the gastrointestinal
system, then the potential bioavailability will be low and can result in higher cleanup levels of As
in soil or not having to perform soil cleanup at all. There have been many studies that investigate
the bioavailability of As contaminated soils [4]. A large number of soils have been evaluated for As
bioavailability using the juvenile swine bioassay. Juvenile swine were chosen due to the gastrointestinal
system similarities between swine and humans. The growth rate and subsequent parameters of juvenile
swine are similar to that of children who are often identified as the most susceptible population
regarding exposure to As contaminated soils [5,6]. In addition to the juvenile swine bioassay, the U.S.
Environmental Protection Agency (U.S. EPA) developed a bioassay with adult mice, which has been
used to determine As bioavailability for a number of soils [7,8].

There are several excellent spectroscopic methods capable of determining arsenic speciation,
but the most authoritative and direct measurement is through X-ray absorption spectroscopy (XAS).
X-ray absorption spectroscopy is used to determine oxidation state, coordination environment,
interatomic bond distances, and the identity of nearest-neighbor elements relative to the As soil
contaminant. X-ray absorption spectroscopy experiments provide an in situ look at the current
chemical form of soil metals that can be used to predict the long-term fate of the metal and its potential
bioavailability based on known solubility products.

Several studies have attempted to relate As XAS to As solubility, but only a few to bioaccessible
As and even fewer with in vivo animal exposure experiments (bioavailability). Brattin et al. [9] used
in vitro bioaccessibility (IVBA) methods to predict bioavailability of soils for the juvenile swine bioassay.
After a good prediction was achieved using the in vitro bioaccessibility method, the authors included
As speciation data obtained via electron microprobe analysis for the 20 soils into the predictive equation,
which increased the R2 value from 0.723 to 0.906 [9]. Attempts to correlate relative abundance of As
species and RBA have found limited success in mouse [7] and in juvenile swine [10] animal models.
In a study using the mouse bioassay, Bradham et al. [7], determined that the amount of arsenopyrite
(FeAsS) was a significant predictor of bioavailable As (negatively correlated) in 11 soils. Although
significant (p < 0.10), the R2 value of 0.28 for the predictive equation indicates that the overall fit was not
very good, resulting in the conclusion that As speciation does not accurately predict bioavailable As [7].
In a dataset of 19 samples, Foster et al. [11] found significant correlations between the amount of As
released during IVBA and As(V) sorbed to gibbsite, As(V) substituted in jarosite (positive correlations)
and arsenopyrite (negative correlation).

Among the studies correlating As XAS data with bioavailable and/or bioaccessible As, most have
used mine-impacted soils [10–12]. In our study, we attempted to determine if As speciation can be
predictive of As bioavailability in either the juvenile swine or adult mouse bioassays from a large
(27 soils) dataset which includes arsenic from diverse contamination sources and geographic regions.
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2. Materials and Methods

2.1. Soil and Solid Waste Preparation

Twenty-seven arsenic (As) containing soils and solid wastes that represent a wide variety of As
sources were collected, homogenized and sieved to <250 µm. Homogenization of the 27 soils and
solid wastes was done by mixing air dried soil in an HDPE rotary mixer and analysis via microwave
assisted digestion [13]. Homogenization analysis was done by dividing the materials into eight
equal units then three subsamples from each unit were analyzed, resulting in a total of 24 samples.
The means of each unit were calculated and analysis of variance (ANOVA) tests performed to ensure
homogenization. Analysis of variance testing resulting in no difference within units and between
units at a 95% confidence level (p < 0.05). The units were combined into one container for laboratory
use for all further analysis. One of the 27 materials was a National Institute of Standards (NIST)
Standard Reference Material (SRM) 2710A (Montana Soil II) and was not homogenized because
homogenization was done prior to certification at NIST. All materials were stored at 25 ◦C as dry
powders for further analysis.

2.2. In Vivo Bioavailability

The in vivo adult mouse and juvenile swine bioassays were used to determine bioavailable
As for the 27 study soils and solid wastes. The adult mouse bioassay was performed according to
Bradham et al. [7,8]. The adult mouse bioassay was conducted with C57BL/6 mice and the urinary
excreted fraction (UEF) of the dosed As was used to determine bioavailable As. Test soils were mixed
with AIN-93G purified rodent diet obtained from Dyets (Bethlehem, PA, USA) to a 1% (wt/wt) soil:diet
ratio. Animals were allowed to consume drinking water and the mixture of test material and basal
diet with unlimited access. Excreted urine was collected and stored at −20 ◦C until As analysis
was completed. The juvenile swine bioassay was performed according to Brattin and Casteel [14].
The juvenile swine bioassay was conducted with juvenile males and the UEF of the dosed As was
used to determine RBA As. Test soils were placed in the center of a ball of moistened feed that did not
contain detectable amounts of As to achieve an As dose ranging from 40–350 ug/kgBW-day. Feed balls
containing test material were given to the animals twice daily. Dosing occurred 2 h prior to feeding
ensuring the animals were in a semi-fasted state and to limit any interactions due to food on As
absorption. Although test material and feed was limited, animals had unlimited access to drinking
water that did not contain detectable amounts of As. Excreted urine was collected, acidified with nitric
acid, and refrigerated until As analysis was completed.

Relative bioavailability (RBA) for both bioassays was calculated as the ratio of the As UEF for a
test material to the As UEF in a diet containing a reference arsenical (e.g., sodium arsenate, Na3AsO4)
(Equation (1)).

RBA % =
UEF % Soil

UEF % Na3 AsO4
(1)

2.3. Arsenic Speciation Methods

X-ray absorption spectroscopy was performed on all 27 soils and solid wastes at the Materials
Research Collaborative Access Team (MRCAT) beamline 10-BM, Sector 10, at the Advanced Photon
Source of the Argonne National Laboratory, U.S. The storage ring operated at 7 GeV in top-up mode.
A liquid N2 cooled double crystal Si(111) monochromator was used to select the incident photon
energies and a platinum-coated mirror was used for harmonic rejection.

Each of the soil and solid waste materials as prepared for bioassays were further prepared by
fracturing with a mortar and pestle, pressing into a 1-cm pellet, and encasing in Kapton tape. Standard
material dilutions for sample preparation were determined by XAFSMass [15]. Data collection was
conducted in transmission and fluorescence modes (Vortex-ME4, silicon drift detector, SII) with several
layers of aluminum foil covering the fluorescence detector window to suppress fluorescence from
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other elements (such as iron) in the samples. Up to five As Kα (11,867 eV) spectra were collected
in transmission and fluorescence mode at room temperature for every soil. Each scan included
simultaneous collection of transmission on a reference sodium arsenate powder for energy calibration
at the first derivative inflection point (11,874 eV).

Background subtraction and calibration were performed in the Athena module of Demeter
software [16]. Each scan was calibrated to a sodium arsenate (As(V)) standard (11,874 eV), averaged,
normalized, and the background was removed by spline fitting [16]. The normalized X-ray absorption
near edge structure (XANES) were used in linear combination fitting (LCF) models for relative
abundance of oxidation state resolved by spectral edge position (e0 energy). Methods and table
of standards for XANES LCF are in Table S1 in Supplemental Information.

Species identification was performed in a two-step process using SIXpack software for principle
component analysis (PCA) [17] and the IFEFFIT software package for linear combination fitting
(LCF) [16] using the extended X-ray absorption fine structure (EXAFS) with a k3-weighting. PCA was
used to determine the number of components (standards) that are most likely to be present in the
samples and target transformation was used to identify the most suitable standards for LCF. Standards
used and their SPOIL values are provided in Supplemental Table S2.

Linear combination model quality was defined by smallest residual error as the R-factor. The best
LCF model was selected when R-factor could not be reduced by more than 20% of the previous
best model. Quantification error from LCF is commonly reported and estimated to be ±10% [18].
Identification between adsorption species [19] and amorphous phases [20] require EXAFS measured to
16 Å−1 at a high signal to noise ratio, which was not feasible in our study. Therefore, species abundance
of individual As adsorption standards and amorphous ferric arsenates were summed into general
groups that cannot be resolved with our data [10]. These groups are As(III) adsorbed, As(V) adsorbed,
and ferric arsenates the species included in each group are indicated in Table 1. All As XAS spectra
(XANES and EXAFS) of standards and soils are in the supplemental information in Figures S1 and
S2, respectively. Reference standards used for EXAFS LCF are listed in Table 1, which include lab
synthesized and natural minerals received from the Smithsonian National Museum of Natural History
and Excalibur Minerals Inc. (Charlottesville, VA, USA). Natural minerals were verified using Energy
Dispersive Spectroscopy or X-ray diffraction.

Table 1. List of natural and synthetic As species used for linear combination fitting (LCF) to predict As
phases in the soil and solid waste samples.

As Species Molecular Formula As Oxidation and Covalence Type

Arsenopyrite FeAsS As(-I)
Arsenite coppt with pyrite (syn) FeS2-As

Loellingite FeAs2
Orpiment As2S3 As(III)-S
Realgar As4S4

Arsenolite As2O3 As(III)-O
As (III) ads 1 Ferrihydrite (syn 2) 3 FeOOH•0.4(H2O)-As(III)

As(III) ads Al2O3 (syn) 3 Al2O3-As(III)
As(III) ads Montmorillonite (syn) 3 (Na,Ca)0.33(Al,Mg)2 (Si4O10)(OH)2·nH2O-As(III)

Arseniosiderite Ca2Fe3(AsO4)3O2•3H2O As(V)-O
Pharmacosiderite KFe4(AsO4)3(OH)4•6H2O

Scorodite 4 FeAsO4•2H2O
Parascorodite 4 FeAsO4•2H2O

Kankite 4 FeAsO4•3.5H2O
Amorphous ferric arsenate (syn) FeAsO4•4-7H2O

Arsenate coppt with jarosite (syn) Na,KFe3(SO4)2(OH)6-As(V)
Arsenate coppt with calcite (syn) CaCO3-As(V)

Lead Arsenate PbHAsO4
As (V) ads Goethite (syn) 5 α-FeO(OH)-As(V)

As (V) ads Ferrihydrite (syn) 5 FeOOH•0.4(H2O)-As(V)
As (V) ads Birnessite (syn) 5 MnO2-As(V)
As(V) ads Gibbsite (syn) 5 Al(OH)3-As(V)
1 ads adsorbed; 2 syn synthetic; 3 As(III) sorption group; 4 Ferric arsenates group; 5 As(V) sorption group.
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2.4. Statistical Analyses

Uncertainty for both the mouse and swine RBA As values were calculated using Fieller’s Theorem
to produce 90% confidence intervals (CI) [21]. All other statistical analyses were performed using
Minitab 17.2.1 and Microsoft Excel [22].

3. Results

Arsenic Speciation

The results from EXAFS LCF models of the 27 study soils and solid wastes are presented in
Table 2. The major species across all soils and solid wastes was the As(V) adsorbed species group
which included As(V) sorption to Al/Fe/Mn oxides. These phases are major components of As in
most oxidized environmental media. Arsenic adsorbed to metal-oxide surfaces have been commonly
identified via As XAS in both soil [23–26] and solid waste [27–29]. In addition, As(V) was identified in
all of the study materials ranging from 10–100%, although some (6) soils and solid wastes did contain
As(III) ranging between 7–90%. All but two of the study materials contained the majority of As in the
+5 oxidation state. Material 1 contained a very large amount (90%) of adsorbed As(III) and material 36
also contained a large amount (78%) of arsenopyrite (As (-I)). Table S3 contains the oxidation states
from the XANES LCF results.

As expected, we observed trends in As speciation that followed each sample’s contamination
source. Soils that were spiked with aqueous arsenic showed As associated with highly-available,
amorphous ferric arsenates and As(V) adsorbed species. The arsenic in material 16 was identified as
30% arseniosiderite, which is a calcium iron arsenate. The identification of arseniosiderite is supported
by the material’s high pH (greater than 7.0) and relatively high total content of Ca and Fe (Table S4).

In pesticide-contaminated samples (1, 2, 3, 7, 18, 19, 20 and 21) the majority of the As was As(V)
adsorbed species. Almost all of the arsenic existed as As(V) adsorbed species, with the exception of
material 1, with an unusually high amount of As(III), fit as 90% As(III) adsorbed species. Material 7
contained 100% As(V); however, it was not identified as As(V) adsorbed species, but as arseniosiderite
(54%) and As(V) coprecipitated with calcite (32%).

The mining-contaminated samples (6, 8–13, 17, 33–38) had the greatest amount of reduced As,
a greater variety in As oxidation states as well as a greater proportion of As-containing minerals of the
samples in the dataset. As(III) was present in 5 of 14 materials as As(III) adsorbed to mineral surfaces.
Samples 36 and 38 were the only materials where As(-I) was identified. Arsenopyrite as As(-I) was
identified in samples 36 and 38 as 70% and 19%, respectively.

The two samples (29 and 30) that were contaminated due to glass manufacturing did not
have an observed trend associated with the contamination source. Sample 29 was best identified
as predominantly amorphous ferric arsenate (63%) whereas sample 30 contained 36% amorphous
ferric arsenate, 41% As(V) coprecipitated with calcite, and 23% adsorbed As(V)species.
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Table 2. Arsenic speciation results.

Sample As Source Total As
(mg kg−1)

Mouse
RBA

Swine
RBA Arsenopyrite Arseniosiderite Ferric Arsenate

(Scorodite, Kankite)
Am. Ferric
Arsenate

As(V) Coppt
Jarosite

As(V) Coppt
Calcite

As(III)
Adsorbed

As(V)
Adsorbed R-Factor

33 Au mining 302 8.55 23.7 7 93 0.060
37 Au mining 370 9.83 11.7 54 30 16 0.084
35 Au mining 633 16.1 19.2 46 54 0.046
34 Au mining 2541 6.37 15.3 38 42 20 0.029
36 Au mining 10,482 4 70 30 0.158
38 Au mining 12,041 23 19 24 56 0.026
30 Glass Works 3996 26 36 41 23 0.167
29 Glass Works 4553 48 63 37 0.057
11 Mining 249 44.8 60 75 25 0.026
6 Mining 839 41.7 42 12 46 0.032
12 Mining 1236 39.7 63 13 24 0.137
10 Mining 3913 12.9 19 64 15 21 0.012
13 Mining 12,483 7.87 63 37 0 0.147
3 Pesticide 222 43.5 100 0.110
18 Pesticide 283 30 31 100 0.114
7 Pesticide 332 34 54.3 54 32 14 0.020
19 Pesticide 353 46.1 41 100 0.105
21 Pesticide 375 39.4 53 100 0.329
20 Pesticide 391 21.5 49 100 0.259
1 Pesticide 464 20.2 90 10 0.418
2 Pesticide 641 29.1 39.5 47 53 0.037
8 Smelter 162 29.9 54.9 47 41 12 0.063
16 Spiked 226 81.2 30 14 56 0.093
14 Spiked 238 79.7 52 48 0.072
15 Spiked 259 69.7 66 34 0.149
17 SRM 1540 41.4 41.8 23 26 51 0 0.040
9 Tailings 521 14 32 39 29 0.062
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4. Discussion

4.1. Arsenic Speciation and Bioavailability

In 2012, the U.S. Environmental Protection Agency (U.S. EPA) published a review of As
bioavailability data that determined for most soils a bioavailability of 60% would not be exceeded [30].
This trend also proved to be true for the study soils and solid wastes presented here, except for the
spiked materials which had RBA As ranging from 70–80%. The high bioavailability is most likely due
to the As adsorbed to amorphous species and arseniosiderite present in the soil. Meunier et al. [12]
reported that soils with high amounts of Ca-Fe-arsenates had high As bioaccessibility values due to
the high solubility of these mineral phases.

The amorphous ferric arsenates species have particular importance in many natural systems
and are important in mining-impacted environments where relatively high dissolved concentrations
of arsenate and other cations and anions can form metal arsenate precipitates. Amorphous ferric
arsenates can have significant substitution with anions (PO4, SO4, CO3) and cations (Ca, K, Fe, Mg).
As shown within this data set, samples 9, 10, 12–17, 29, 30, 34, 37 and 38 all contain ferric arsenates
but have RBA As ranging from 6% to 48% and 10% to 81% as determined using the swine and mouse
bioassays, respectively. Samples 9, 10, 13, 30, 34, 37 and 38 have RBA As that are less than 26%,
but samples 12, 14–17, and 29 all have RBA As that are greater than 40%. Samples with ferric arsenates
and lower RBA As (9, 10, 12–17, 29, 30, 24, 27) are most likely to be a more insoluble forms of ferric
arsenate. Samples with ferric arsenate and higher RBA As (12, 14–17, 29) are more likely to be soluble
phases. In addition, the mineral solubilities of scorodite and yukonite were compared and show that
the bioaccessible As for yukonite is much higher than that for scorodite [31].

The RBA As for the pesticide contaminated materials ranged from 20–46% using the adult mice
bioassay and from 31–54% for the juvenile swine bioassay. These are midrange RBA values, which are
also consistent with what Ruby et al. [3] reported. The RBA As for sample 36 was 4.0% as determined
using the juvenile swine bioassay. The low RBA As associated with materials that contain high amounts
of arsenopyrite is consistent with Ruby et al. [3] and Meunier et al. [12] mainly due to the low solubility
of arsenopyrite. The RBA As for sample 38 was 23% as determined using the juvenile swine bioassay.
Compared to material 36 the smaller amount of As(-I) and presence of more soluble As species is the
cause for higher RBA As in sample 38 compared to sample 36.

Sample 29 was obtained on the site of the glass manufacturing facility whereas sample 30 was
obtained from a residential area nearby. The high pH and relatively high RBA As (48%) for sample 29
is consistent with ferric arsenates. The decreased RBA As for sample 30 (26%) compared to sample
29 (48%) is likely attributed to the sorption of As on iron oxide surfaces which has lower solubility
compared to ferric arsenates [3,12]. Sample 30 is a residential soil that contains more Fe oxides than
sample 29.

Meunier et al. [12] compared their bioaccessibility data along with the As speciation and solubility
of those mineral phases to determine a qualitative ranking (Table 3). The trend observed for the mice
and swine RBA reported in this manuscript is not as clear as that presented in Meunier et al. [12].
In general, soils and solid wastes that contained arsenopyrite had the lowest bioavailability compared
to the rest of the soils and solid wastes.
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Table 3. Arsenic mineralogy speciation phases and bioaccessibility trend.

Species Group Mineral Phase

1 Sulfides Arsenopyrite Least Bioaccessible
Realgar
Pyrite

2 Iron Arsenates Scorodite
Kankite

Pharmacosiderite
Amorphous

3 Arsenic bearing Iron(oxy) Hydroxides Goethite
Lepidocrocite
Akaganeite
Amorphous

4 Roaster Iron Oxides Hematite
Maghemite

5 Sulfates Tooeleite
Jarosite

Schwertmannite

6 Clay minerals—Generally Iron Bearing Undifferentiated

7 Calcium-Iron Arsenates Yukonite
Most Bioaccessibleamorphous

Adapted from Meunier et al. [12]

4.2. Species Groupings via Principle Component Analysis

The As species groups and data obtained from linear combination fitting of As speciation results
were used to determine which soils and solid wastes were most similar to one another using principal
component analysis (PCA). For the PCA analysis, the ferric arsenate group and amorphous ferric
arsenate group were summed for each material and viewed as one As speciation grouping. Figure 1
shows the score plot of principal component two versus principal component one for the As speciation
data set. These two principal components described about 67% of the variance within the As data.
Ferric arsenates and As(V) adsorbed species were identified as dominant As species by PCA with
principal component one coefficients of 0.481 and −0.833, respectively. Principal component two
included ferric arsenates and As(V) coprecipitated with jarosite with coefficients of 0.725 and −0.558,
respectively. There were two major groupings within the data set which comprised of soils and solid
wastes that As speciation was dominated by As(V) adsorbed species (3, 16, 18, 19, 20, 21, 33 and 38),
soils and solid wastes that As speciation was dominated by ferric arsenates (9, 10, 12, 13, 14, 15, 17, 29,
30, 34, 37).
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Trends were observed when comparing As speciation across the As contamination source.
However, comparing the As contamination source within the PCA groupings does not show a trend.
Soils and solid wastes that were contaminated with As due to general pesticide use, pesticide use in
orchards, mining activities, tailings, and glass works were found in a mixture in both groups when
only As speciation is considered. This further suggests that material type governs As speciation within
soils and solid wastes. This was also shown by Meunier [32] using PCA on total elemental analysis and
bioaccessibility tests and found that the soils grouped together based on location and not concentration.
Materials found within the same location are expected to have similar physical and chemical properties
i.e., similar type of material. Within the groupings, there was a wide range of bioaccessibility values,
which was also seen in this study when comparing soil groupings, and examining the range of As RBA
within PCA groups [32].

The first principal component (As(V) adsorbed and ferric arsenates) explained 47% of the variance
within the As mineralogy, which follows the findings of others that As in soil closely associates with
major soil oxide minerals [33]. Adding principal component two increased the variance accounted for
to 67%, suggesting principal component two (As(V) coprecipitated with jarosite) is also an important
species when looking at As mineralogy in soils. Although the majority of the variance is accounted
for when considering ferric arsenates and As(V) adsorbed species, the inclusion of As(III) phases
increases the variance accounted for to 80%, suggesting that As(III) plays a minor role in As speciation
in oxidized environments.

4.3. Predicting Bioavailability Using Arsenic Speciation

Multiple linear regression (MLR) was used to generate a relationship between As mineral species
(groupings) and bioavailability. Data for this study was obtained using both the adult mouse and the
juvenile swine bioassays, and each animal was considered separately. The regression equations for
each animal are shown below (Equations (2) and (3)).

Mouse RBA = 36.165 + (0.459 × Arseniosiderite) − (0.255 × Ferric Arsenates) +
(0.290 × Am. Ferric Arsenate) − (0.201 × As(V) coppt. w/Jarosite) − (0.369 × As(V)

coppt. w/Calcite) − (0.160 × As(III) adsorbed) + (0.00 × As(V) adsorbed,
(2)

Swine RBA = 38.345 − (0.491 × Arsenopyrite) + (0.0408 × Arseniosiderite) −
(0.247 × Ferric Arsenates) − (0.287 × Am. Ferric Arsenate) + (0.0233 × As(V) coppt.

w/Jarosite) + (0.0708 × As(V) coppt. w/Calcite) + (0.321 × As(III) adsorbed) +
(0.00 × As(V) adsorbed),

(3)

The predicted RBA As using the MLR equation for each animal bioassay compared against the
actual measured RBA is shown in Table 4. The MLR for the adult mouse model was not significant
with F > 0.05 and the MLR for the juvenile swine model was not significant F > 0.05. The MLR had an
adjusted R2 of <0.000 and 0.101 for the adult mouse and juvenile swine bioassays, respectively.
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Table 4. Predicted RBA and comparison to actual RBA As for MLR using arsenic speciation data.

Mouse RBA (%) Swine RBA (%)

ID Mean CI a Predicted RBA Mean CI a Predicted RBA

1 20.2 18.1, 22.4 21.8 *,#

2 29.1 26.0, 32.3 18.8 39.5 + 35.8, 43.1 + 41.7 *,#

3 43.5 37.9, 49.2 36.2
6 41.7 34.5, 48.8 43.2 *,#

7 34.0 29.8, 38.3 49.1 # 52.3 + 54.3, 58.4 + 42.8
8 29.9 26.6, 33.3 20.2 54.9 + 50.4, 59.4 + 52.6 *
9 14 13, 15 30.0 #

10 12.5 2.57, 22.4 17.4*,# 19 17, 20 27.4 #

11 44.8 41.6, 48.2 21.1 60 56, 65 40.1
12 39.7 38.7, 40.7 27.0
13 7.87 4.33, 11.4 21.1 #

14 79.7 73.8, 85.9 51.2
15 69.7 65.9, 73.6 55.3
16 81.2 70.9, 91.7 54.0
17 41.4 39.1, 43.6 27.6 41.8 39, 45 26.4
18 30.0 27.4, 32.7 36.2 # 31 25, 38 38.3 #

19 46.1 41.8, 50.5 36.2 41 38, 44 38.3 *
20 21.5 17.6, 25.3 36.2 # 49 42, 57 38.3
21 39.4 36.1, 42.8 36.2 * 53 49, 57 38.3
29 48 45, 51 20.3
30 26 24, 28 30.9 #

33 8.55 6.51, 10.6 35.0 # 23.7 10.9, 36.5 40.6 #

34 6.37 5.33, 7.43 38.7 # 15.3 11.7, 18.8 28.4 #

35 16.1 15.2, 17.0 26.9 # 19.2 16.9, 21.4 39.4 #

36 4 3.3, 4.6 4.00 *,#

37 9.83 8.82, 10.9 45.8 # 11.7 8.3, 15.2 23.5 #

38 23 17.6, 28.5 23.1 *,#

a CI 90% Confidence Interval except for soil 17 (95%). * Soils that the predicted RBA falls within the CI of the
measured RBA. # Predicted RBA values that are > the measured RBA.

The ability of MLR to predict RBA As was assessed by the predicted RBA being within the 90%
confidence interval (CI) for the measured RBA value. However, for regulatory purposes, a conservative
estimate is preferred to ensure a conservative risk assessment for a contaminated area, which is defined
as a predicted RBA value that is greater than or equal to (>) the measured RBA value.

Three of the 19 predicted RBA As values (16%) generated using the MLR fell within the 90% CI
of the actual RBA for the adult mouse model. The source type of As contamination does not impact
the predictability of the MLR for a specific material. Arsenic speciation is not highly predictive of
RBA As using the MLR. Ten of the 19 predicted RBA As (53%) using the adult mouse MLR were
conservative estimates of RBA As. The MLR was not significant, with the adjusted R2 of <0.001 and an
R2 value of 0.29. Bradham et al. [7] reported a significant correlation (p < 0.10) between mice RBA As
and arsenopyrite; however, the R2 value was reported was 0.28. Other correlations with As speciation
were reported in Bradham et al. [7]; however, RBA As data was only significantly correlated with
arsenopyrite. Although the values reported between this study and Bradham et al. [7] were similar,
the overall variance left unexplained in both studies is too high and suggests that As speciation alone
cannot be used to predicted bioavailability.

Six of the 22 predicted RBA (27%) values generated using the MLR fell within the 90% CI of the
actual RBA As for the juvenile swine model. A conservative estimate of RBA As was predicted for
12 of the 22 predicted RBA (55%) values using the juvenile swine model. The majority of the soils
and solid wastes that were contaminated due to mining and smelting activities had predicted RBA
As values that were greater than or fell within the 90% confidence interval of the measured values.
Arsenic speciation is not highly predictive of swine RBA As using MLR. Although the MLR was
not significant (adjusted R2 0.101), and the R2 (0.40) only explained approximately 40% of the total
variance, the predicted RBA provided a conservative estimate of RBA As for 12 of the 22 soils. The high
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unexplained variance within the MLR suggests that As speciation alone cannot be used to predict
bioavailability. Brattin et al. [9] used maximum likelihood estimation (MLE) to determine if adding
As speciation into a predictive equation with in vitro bioaccessibility would improve the prediction
of RBA As using the juvenile swine model for 20 soils and results showed that the R2 increased.
To investigate the reproducibility of the As speciation data Brattin et al. [9] conducted a round robin
study with 3 different laboratories and determined that the results obtained using As speciation from
electron microprobe analysis were too variable and should not be included in a predictive equation for
RBA As.

5. Conclusions

The relationship between As speciation and bioavailability in contaminated soils is complex and
intertwined. The soils contained a variety of contamination sources, As speciation, and a wide range
of RBA arsenic. Bioavailability was closely tied to Fe chemistry in the soils, evidenced by the most
abundant As species being As(V) adsorbed species. Other identified As species closely related to
As chemistry and bioavailability were ferric arsenates and As(III) minerals. The RBA As for species
followed the trend that arsenopyrite was the least bioavailable compared to other As species. Despite
As(V) adsorbed to common soil mineral surfaces being a major component of most soils, these soils had
RBA As that ranged from 4–80%. This large range indicates that there is significantly different chemical
behavior between sorption species in this group, and this may show the importance of coupling
soil properties and mineralogy to predict As bioavailability. Trends were observed in As speciation
by contamination source; however, the soil type or properties is the dominant factor controlling As
speciation and, in turn, RBA in soils. Multiple linear regression using As speciation can provide
conservative estimates of As RBA for select soils; however, it alone is not predictive of RBA As overall.
Arsenic speciation is an important component of predicting As mobility and toxicity but should be
considered with other soil properties to be predictive of risk and As bioavailability from soils.
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