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Abstract: Climate change is projected to aggravate water quality impairment and to endanger drinking
water supply. The effects of global warming on water quality must be understood better to develop
targeted mitigation strategies. We conducted water and sediment analyses in the eutrophicated
Antrift catchment (Hesse, Germany) in the uncommonly warm years 2018/2019 to take an empirical
look into the future under climate change conditions. In our study, algae blooms persisted long into
autumn 2018 (November), and started early in spring 2019 (April). We found excessive phosphorus
(P) concentrations throughout the year. At high flow in winter, P desorption from sediments fostered
high P concentrations in the surface waters. We lead this back to the natural catchment-specific
geochemical constraints of sediment P reactions (dilution- and pH-driven). Under natural conditions,
the temporal dynamics of these constraints most likely led to high P concentrations, but probably did
not cause algae blooms. Since the construction of a dammed reservoir, frequent algae blooms with
sporadic fish kills have been occurring. Thus, management should focus less on reducing catchment
P concentrations, but on counteracting summerly dissolved oxygen (DO) depletion in the reservoir.
Particular attention should be paid to the monitoring and control of sediment P concentrations,
especially under climate change.

Keywords: eutrophication; phosphorus; water quality; sediment; dissolved oxygen; phosphorus
mobilization; climate change; algae bloom

1. Introduction

In the environmental sciences, eutrophication is considered problematic under excessive
anthropogenic nitrogen (N) and phosphorus (P) enrichment in aquatic ecosystems [1-4].
The eutrophication of coastal marine waters is driven by N as the nutrient that limits biomass
production. Instead, P is the major driver of primary production in rivers, lakes, and reservoirs [5,6].
A surplus of N and P triggers plant growth, mainly of algae [7-9]. Such algae blooms can drastically
decrease water quality in terms of turbidity, foul odor/taste, and (brown-) green color [4]. Some species
(e.g., cyanobacteria) even produce toxic substances that make water consumption harmful to human
and animal health [1,2,10]. Moreover, dead algae sink to the ground and are decayed by microorganisms
under the consumption of oxygen. Due to the large number of dead algae during algae blooms,
decay increasingly depletes dissolved oxygen (DO) in the water until the ecosystem finally becomes
hypoxic (low concentrations of DO) or even anoxic (depletion of DO) [1,11]. In the latter case,
higher aquatic organisms depending on DO (e.g., fish) die and mass “fish kills” may result [3,6,12].
Such extermination of certain species undermines the structure and functioning of the aquatic ecosystem
until it finally collapses [2,4].
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Due to global warming, the frequency and geographical extent of harmful algae blooms has already
increased in recent decades [1]. Climate change is expected to further intensify eutrophication [5,13].
Increasing air temperatures will lead to increasing water temperatures of surface waters [2,14,15].
Warmth fosters most biochemical processes [5,16]. It will likely trigger algae growth, especially of
cyanobacteria at temperatures >25 °C [13,14]. Due to global warming, algae blooms are expected to
start earlier and persist longer in the year [16,17]. Higher water temperatures also enhance the decay
of dead organic matter at the bottom of water bodies, thus exacerbating the depletion of DO, and,
in turn, P dissolution from sediment and fish kills [2,13]. Eutrophication risk is assumed to increase
substantially in the summer, when high temperatures and low precipitation lead to low water levels.
As a consequence, the dilution of nutrients is low [3,5,14]. Moreover, long residence times and a slow
velocity of water are expected in warmer summers [16,18]. Such conditions foster the build-up of algae
blooms. Additionally, climate change is predicted to increase the frequency and magnitude of extreme
summer storms [2,13,18]. Such events trigger soil erosion and overland flow, transporting P-containing
sediment into water bodies [5,14,19].

Climate change is projected to decrease surface water quality significantly [1,2,16]. This might
become a challenge for the global community, because freshwater ecosystems are suppliers of drinking
water [2,4]. As eutrophication reduces water quality, the production of drinking water from affected
water bodies becomes more cost-intensive and insecure [3,5]. Moreover, due to lacking aesthetics
or health risks, affected water bodies often cannot be used for tourism and recreational activities
anymore [3,9]. There might even be considerable loss of value of waterfront real estate [4]. Furthermore,
harmful algae blooms and fish kills result in lower profits for fisheries [9,12].

To assess the effects of climate change on eutrophication, a case study was conducted in the
catchment of the Antrift reservoir (Hesse, Germany). Because 2018 and 2019 were uncommonly warm
and dry years in Germany, our water quality assessment gives a preview of eutrophication under
climate change conditions. We consider our data empirically illustrative of the assumptions made in
modelling-based studies on climate change impacts on water quality. The goals of our study were
(1) to empirically depict the temporal development of eutrophication in an uncommonly warm year,
(2) to elucidate the effects of sediment P loads on eutrophication, and (3) to seek an indication of diffuse
P sources beside erosion and surface runoff. A better understanding of eutrophication drivers and
their relations with climate change is a prerequisite for targeted management to secure the availability
of water in a warmer world [2,5].

2. Study Area

In Hesse (Germany), 79% of surface waters were classified as of poor ecological status in 2015,
because they overstepped the total P (TP) threshold value of 0.1 mg/1 [20]. According to modelling
estimations, 1100 t of P are anthropogenically introduced into the Hessian surface waters every year;
65% resulting from communal point sources (wastewater treatment plants), 15% from erosion and
surface runoff, 17% from other diffuse sources (e.g., rainwater channels), and 3% from industrial point
sources [20]. On the basis of these results, the target values for effluents from wastewater treatment
plants were drastically lowered from 1.0 to 0.2 mg TP/l in 2015-2021, which required the technical
improvement of many sewage plants [21].

Improved wastewater treatment is estimated to reduce P inputs by only 43% [21]. Further technical
improvement is currently considered technically impossible or not economically feasible. The Hessian
State Ministry is skeptical that point-source-management would suffice to transfer the Hessian surface
waters to a good ecological state [20]. When the proportion of point sources decreases, the relative
contribution of diffuse sources to P inputs in water bodies increases. Hence, improved knowledge on
diffuse P sources is required to develop targeted and efficient management strategies, to prevent or
mitigate future P transfer to water bodies [3,5,14].

We conducted a case study in the catchment of the Antrift reservoir 5 km to the northwest
of Alsfeld (Hesse, Germany) (Figure 1) [22]. The climate is warm and temperate [22,23], with an
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average annual temperature of 8.4 °C and with annual mean precipitation of 714 mm [24]. For 2035,
regional climate projections depict a significant increase in the annual mean temperature (+0.8 °C;
high confidence), an increase in heat extremes and droughts, an increase in events with intensive
precipitation (>20 mm precipitation), and a slight increase in total annual precipitation [25,26].
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Figure 1. Location of the Antrift catchment with main water courses and sampling/measurement
stations. (Data source: CORINE land use classification by Umweltbundesamt, 2019, DEM 1 m by
Hessian Administration for Soil Management and Geoinformation, and overview map according to
Weihrauch et al. 2020).

The catchment of the Antrift reservoir has a total area of 61.7 km? and an altitudinal difference
of 152 m from the higher southern parts to the lower northern area. The population ranges between
49-69 persons/km? (Hessian average: 269 persons/km?). The catchment is a rural region [27] composed
of ca. 7.9% settlement area, 45.6% forest, and 45.2% agricultural areas (53.0% cropland and 47.0%
grassland) [27,28]. Its landscape is shaped by geological and pedological features (i.e., suitability
for land use; Table 1). Forests are mainly found on wooded hills and ridges, where Cambisols and
Leptosols (WRB classification) developed from Tertiary alkali basalts or red Mesozoic sandstones.
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Agricultural lands are largely situated in moderately sloping terrain on Luvisols, Stagnic Luvisols,
and Anthrosols developed from Pleistocene loess. Grassland can largely be found in the floodplain areas
and valley floors on Gleysols, Gleyic Fluvisols, and Anthrosols developed from Quaternary alluvial
sediments [29-33]. Wooded areas are used for forestry, and grassland for grazing [28]. The farms
mainly produce wheat, winter wheat, and barley. Out of 67 agricultural holdings, only five practice
organic farming [27].

The Antrift catchment comprises the main river Antrift, with a length of 16.5 km, and the
headwaters Goringer Bach (11.0 km) and Ocherbach (10.0 km) [34]. Both headwaters join with the
main river before it flows into the Antrift reservoir (Figure 1). North of the reservoir, the Antrift river
continues to drain towards the Weser River, which finally flows into the North Sea.

The Antrift reservoir has an average water surface of 0.31 km? and a maximum depth of
10.0 m [35]. It has been characterized as carbonatic and polymictic, with an unstratified water column
throughout the year (except for May 2015) [35]. While construction began in 1971, the reservoir
was first used for water retention in 1981 [34]. Besides flood protection, it was initially planned to
be used for recreational activities and swimming. However, this has never been realized due to
strong eutrophication, frequent algae blooms, and fish kills since the 1980s [34]. In 2015, the Antrift
reservoir was classified as being in a poor ecological state (polytrophic) according to the European
Water Framework Directive [35,36]. High TP concentrations of 0.14 mg TP/l were already measured at
the reservoir’s inlet [35], indicating that the local eutrophication issue was catchment-based instead of
solely reservoir-based.

Table 1. Environmental characterization of the Antrift catchment.

Water Body Features Riparian Features Features of Surrounding Landscape
. . Bedrock/Sub-strata Bedrocks/Substrata
Water Body Type Sampling Stations and Soils Land Use and Soils Land Use
. . Grassland (meadow), Basalt ridge Wl.th some Forest (low
. . Alluvial sediments, Gleysols . loess accumulation along
Tributaries GOE OCH strip of trees (alder) next percentage
and Anthrosols slopes, Leptosols,
to water courses X . of cropland)
Cambisols, Luvisols
L AT Alluvial sediments, Gleyic Qrassland (meadow), Dominantly loess, Cropland (low
Main river AT-2 . strip of trees (alder) next . ! . percentage
Fluvisols and Anthrosols Luvisols, Stagnic Luvisols
AT-3 to water courses of grassland)
Oligocene clays (S, SE),
Strip of trees Mesozoic sandstones
Flood protection AB-1 Alluvial sediments, Gleyic (alder, willow), (direct reservoir Cropland (low
R AB-2 . . . percentage
reservoir Fluvisols and Anthrosols dam structures, surroundings), Pleistocene
AB-3 . of forest)
nature reserve loess (surrounding slopes),

Luvisols, Stagnic Luvisols

The poor ecological status of the Antrift reservoir has remained unexplained to the present
day. Several official assessments were carried out to develop effective strategies for water quality
improvement. In line with the research history, the eutrophication of the Antrift reservoir was first
attributed to P inputs from point sources [1,34,37,38]. However, eutrophication recurred after the only
wastewater treatment facility of the catchment had been closed in 2002 (personal communication,
F. Reissig, Regional Administrative Council Giessen). Since then, erosion and surface runoff have been
considered the major sources of P inputs [37,39-41], even though Grimm et al. (2000) concluded in
their assessment that only few agricultural lands in the Antrift catchment were severely threatened by
erosion [42]. Moreover, erosion has been alleviated further due to financial support and far-reaching
advice to farmers, with regard to conservation tillage, intercrop cultivation (especially in winter),
conversion of arable lands into permanent grassland, as well as the establishment of vegetated buffer
strips along surface waters [20,21]. Since the implementation of erosion conservation measures,
the ongoing eutrophication of the Antrift reservoir has been increasingly attributed to P-containing
sediment in the catchment water bodies, from which P can be desorbed [37,43,44]. As the impacts
of erosion are rather small in this catchment [42], there might not be much sediment in the water
courses from which P could be desorbed continuously in an extent large enough to lead to poor
ecological state. With regard to legacy P [43], we presume a relatively quick equilibration between
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P-containing sediments and the water column took place after sediment deposition. This is suggested
by Cornel et al. (2015), who showed in a desorption experiment that 20% of the mobilizable P
from solids within the effluents of waste-water treatment plants (with Fe and Al precipitation to
eliminate P) were set free within a few minutes, and 50% were mobilized within two days [45]. Hence,
as sediment deposition has been largely controlled in the Antrift catchment since the 1990s, we do not
assume P release from prior sediments to be still relevant today. Thus, theoretically; it is difficult to
attribute the present eutrophication of the Antrift reservoir to the P sources commonly discussed in the
scientific literature.

3. Material and Methods

3.1. Water Sampling and Water Quality Analyses in the Field

To depict the temporal development of water quality in the Antrift catchment, we determined water
quality parameters via field measurements and laboratory analyses of water samples. Our evaluation
is based on threshold values and quantitative recommendations for a good ecological status of water
bodies given in the “Oberflichengewdsserverordnung”, a national regulation implementing the
guidelines of the EU Water Framework Directive (WFD) [46]. Water sampling and field measurements
were performed in a three-week interval from 5 November 2018 until 6 August 2019 (i.e., 14 sampling/
measurement dates). Samples were taken from eight sampling stations in the Antrift catchment
(Figure 1, Table 1). GOE and OCH represent the two main headwaters of the Antrift river and pass
through forest areas. AT-1 represents the upper reaches of the Antrift river, and AT-2 was chosen
because of its location downstream from the major settlement. AT-3 is situated downstream of the
tributary Goringer Bach (GOE) and represents the central agricultural area of the catchment. Finally,
we chose three sampling stations inside the Antrift reservoir, located at the inlet (AB-1), in the shallow
water near the bank of the main reservoir (AB-2), and in the deepest section of the reservoir at the
overflow construction of the dam (AB-3).

On each sampling date, three water samples were taken per sampling station from 10-30 cm
below the water surface. For GOE, OCH, AT-1, AT2, and AT-3, samples were taken along the channel
line. The stations within the Antrift reservoir (AB-1, AB-2, AB-3) were sampled at 3 m distance from
the shoreline. Water samples were filled into PE-flasks and kept frozen until further analyses were
performed [47].

The field measurements of water quality parameters were performed with an automatic water
quality logging system during water sampling (portable logging multiparameter system, HI98290,
Hanna Instruments Inc., Woonsocket, RI, USA). The system was operated with the following sensors and
accuracies: temperature sensor (°C, + 0.15), HI7609829-1 sensor for pH (pH, + 0.02), and HI7609829-2
sensor for DO (%, saturation and concentration, + 1.5% and + 0.10 ppm, respectively). The sensor
setup was calibrated through autocalibration with standard solutions (Hanna Instruments Inc.)
before each measurement date [48]. Temperature, pH, and DO were measured during the whole
investigation period.

3.2. Determination of Total Phosphorus in Water Samples

In the laboratory, total phosphorus (TP) was determined according to DIN EN ISO 6878: 2004-09
(2019). Prior to analysis, water samples were unfrozen, brought to an ambient temperature, and mixed
with 1 ml 17.97 M sulfuric acid (H,SOy) to adjust pH to ~1. Samples were then oxidized with potassium
persulfate (K;S,Og), while heating to 90-100 °C for 90 minutes in closed vessels [49]. Afterwards,
extracts were filtered with ashless blue ribbon filters (2 um pore size). The extracts’ concentration of
phosphate was determined on a spectrophotometer (Genesys 10S; Thermo Fisher Scientific; Bremen,
Germany) via the molybdenum-blue method at 700 nm [50,51]. Samples were measured three times
and averaged. Phosphate concentrations were arithmetically converted into mg TP/1.
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We calculated the relative standard deviations of the method (RSDM) and the detection limits
for colorimetric TP measurement [52-54]. Data below the detection limit were excluded from data
evaluation. In our 14 measurements, the maximum RSDM was 4.07%. Hence, we interpret our TP
concentrations with a rounded uncertainty range of + 5.0%.

3.3. Sediment Analyses

We took sediment samples from the water courses in the Antrift catchment to assess potential
correlations between water quality parameters and sediment features, especially with regard to P
mobilization from sediments. The sediment sampling sites correspond to the water sampling sites
(Figure 1). Sediments were sampled about 5-10 cm deep from the bottom of the rivers and the reservoir
with a plastic receptacle attached to an extensible stick. The first sampling date (5 November 2018) was
in the end phase of a summerly algae bloom after a prolonged period with warm, dry weather and low
flow conditions (average in the week before sampling: 0.22 m3/s). The second sampling date (15 March
2019) was after an expected regeneration of water quality during winter. Even though the winter
of 2018/2019 was relatively mild and dry, some precipitation occurred prior to our second sampling.
Thus, the second date marks relatively moist weather and higher flow conditions (average in the week
before sampling: 1.03 m3/s). Sediment samples were stored airtight in plastic bags for about one day
until further processing in the laboratory. The sediments were then dried at 70 °C in a drying furnace
for eight days. Afterwards, they were ground in a mortar and sieved (2 mm mesh).

We determined the content of organic matter (OM; via loss on ignition; DIN 19684-3:2000-08) and
pH (with 0.01 M CaCly; m:V = 1:2.5; DIN ISO 10390:1997-05) of the prepared samples. Furthermore,
we assessed the sediments’ texture with the integral suspension pressure method [55] after samples
were prepared according to DIN ISO 11277:2002-08. We used three aliquots of each sediment sample
for a P fractionation. We determined the following: (1) easily soluble P with 0.1 M hydrochloric acid
(Parcr) [56]); (2) pedogenic oxide-bound P soluble in an ammonium oxalate—oxalic acid solution (Poy;
DIN 19684-6:1997-12 [56]); and (3) pseudo-total P (PsR) after extraction with aqua regia (12.1 M HCl
and 14.4 M HNO; in a ratio of 1:3; [56]). P4qrc) was measured on the spectrophotometer according to
Murphy and Riley (1962) [48]. Pox and Par were quantified with an ICP-MS (X Series 2; Thermo Fisher
Scientific; Bremen, Germany), as well as Feoy, Alox, Mnoy, Fear, Alar, Mnagr, Nagr, Mgar, Kar,
and Caar. All data were converted into the unit mg element/kg. The results of the three aliquots were
averaged for further evaluation.

We calculated RSDM and the detection limits for ICP measurement of each element [52-54].
Data below the detection limits were excluded from evaluation. Data measured with a relative
standard deviation (RSD) of >20% were also excluded [57,58]. To quantify measurement uncertainty;,
we added RSDM (as a standard parameter of calibration-based measurement) with RSD (as a parameter
depicting data reproduction, and reflecting effects of heterogeneous matrixes typical for environmental
samples [59]). As our sediments were measured in one calibration, only one RSDM resulted for each
element. From the several RSD calculated during this measurement, we chose the median RSD for
each element, because it is insensitive to outliers. In sum, we calculated rounded-up measurement
uncertainty ranges of + 2.0% (Pox, Par, Alox, AlaR, Feox, Fear, Caar, Kar, Naar, Mgar), + 3.0% (Mnoy,
MHAR), and + 9.0% (PdHCI)‘

3.4. Discharge and Precipitation Datasets

At the inlet of the Antrift reservoir, there is a gauging station operated by the Wasserverband
Schwalm e.V. (Schwalmstadt, Germany), which measured daily means of flow (m3/s) during our
investigation period. Because there is no climate station in the Antrift catchment, average daily
precipitation and air temperature were calculated based on data from three climate stations close
to the catchment (7-16 km off). These stations were Neustadt (Station-ID: DWD3516, 257 m a.s.l.),
Alsfeld-Eifa (Station-ID: DWD91, 300 m a.s.l.), and Meiches (Station-ID: HLNUG4288360, 467 m a.s.l.).
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The stations are operated by the German Weather Service (DWD) and the Hessian Agency for Nature
Conservation, Environment and Geology (HLNUG) [60,61]. All climate data are freely available online.

3.5. Statistical Analyses

Basic statistical operations were performed in Microsoft Excel 2013 (Microsoft; Redmond,
WA, USA), in R (R Core Team, 2013) and RStudio (Version 1.1.447; RStudio Inc.; Boston,
MA, USA). Data visualization, tests for normal distribution (Shapiro-Wilk test), and Spearman
correlation analyses were conducted with the R-packages “graphics”, “stats”, and “corrplot” [62,63].
Significances were tested on different levels. We interpret significant (p < 0.05) correlation coefficients as:
weak (rsp 0.4-<0.6), clear (rsp 0.6-<0.8), and strong (rgp > 0.8) [64]. For the sediment data, we performed
Spearman correlation analyses for all our data, as well as separately for the data of each sampling date.

Each of our P fractions was determined for a new aliquot (i.e., 1.0 g) of the respective sediment
sample. Hence, the resulting P’ contents are cumulative and contain P forms of different solubility
(i.e., Pox includes Pgycy, and PR includes Poy). To deduce the reactive behavior of sediment P,
we calculated differential P fractions, which represent only one class of similar P solubility. Next to
easily soluble P4pc), we calculated moderately labile Pp, (Pox minus Pgpcy), and recalcitrant Py
(PAR minus Pyy).

To depict tendencies in the reactive behavior of sediment P, we determined the degrees of P
mobilization (DPM). These ratios between two differently soluble P fractions elucidate whether the
sediment has a tendency for P mobilization (large DPM) or P bonding (small DPM [59]). We calculated
DPM2 via Pgycr: Pox, and DPM3 via Poy: Pag.

The poor ecological status of the water courses of the Antrift catchment is largely attributed to
erosion and overland flow [65-67]. Hence, there should be P inputs into the surface waters shortly
(i.e., maximally within a few hours) after precipitation events with sufficient intensity [68-71]. Thus,
we used our limited dataset to seek an indication of temporal relationships between TP concentrations
in the water and the occurrence of precipitation events. We applied a three-step data evaluation:
(1) we tested for similarities between the time series of precipitation and discharge, as a function of
the increments of precipitation relative to discharge (“cross correlation”; p < 0.05) [62], to find out if
there is a temporal connection between a precipitation event and a discharge event, and to elucidate
how quickly the first affects the later. (2) Next, we performed a Spearman correlation analysis between
TP concentrations in the water and the number of days between each precipitation event and the
next sampling date. For this, rainfall events were classified according to the daily precipitation sum
into heavy (>10 mm/day), and maximal precipitation (maximal daily precipitation sum during each
three-week measurement period). Moreover, we determined “higher precipitation” for events with a
daily precipitation sum between the third quartile and the maximum of each three-week measurement
period. Because we wanted to investigate the (short-term) effects of precipitation on erosion and P loss,
we picked the “higher precipitation” event that occurred closest to our measuring date. (3) Finally,
we checked the absolute number of days between each precipitation event and the next sampling date
to evaluate the correlation results and exclude all events which are backdated more than two days.
This two-day threshold was chosen according to the results of step (1) and the normal duration of
erosion or overland flow events [68,69].

4. Results

4.1. Evaluation of Climate Data: Discharge and Precipitation

According to data from the climate station Alsfeld-Eifa (ca. 7 km northeast of the Antrift reservoir),
the last six years show a positive temperature deviation between 0.29 °C and 1.30 °C from the reference
period 1991-2020 (Figure 2) [72]. Between 2009 and 2019, the highest positive temperature increase
was documented in 2018. A strong negative deviation in annual precipitation sums was reported.



Soil Syst. 2020, 4,29 8 of 29

Precipitation was ca. 19% lower in 2018 (—135.75 mm), and ca. 10.5% lower in 2019 than in the reference
period (1991-2020).
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Figure 2. Temperature (a) and precipitation trend (b) in the Antrift catchment (2009-2019). (Data source:
HLNUG (2019); operator: Deutscher Wetterdienst, data for the climate station Alsfeld-Eifa, station-ID:
DWD9Y1, 50.7447° N, 9.345° E.).

Between July and November 2018, monthly precipitation sums were lower by between 17.8%
(August) and 38.3% (November), compared with the long-term (1979-2020) average monthly
precipitation sums (Figure 3). Except for March and May 2019, monthly precipitation sums were below
the long-term average precipitation sum all through our field measurement and sampling campaign.
The clear increase of the precipitation sum in May 2019 (74.7% higher than in April 2019) resulted
from a thunderstorm event with heavy rainfall on 20 May 2019 (Figure 4) [73]. For that day, a 24-h
precipitation sum of 45.21 mm was calculated on the basis of data from three regional climate stations
(see Materials and Methods). During our investigation period, eleven events with precipitation of
>10 mm per day occurred.

120.0

100.0

80.0

60.0

40.0

Precipitation (mm)

20.0

0.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M Precipitation 2018 M Precipitation 2019 @ Precipitation (1991-2020)

Figure 3. Monthly precipitation sums in the Antrift catchment during the investigation period,
compared to long-term average monthly precipitation (reference period 1991-2020). (Data source:
HLNUG (2019); operator: Deutscher Wetterdienst, data for the climate station Alsfeld-Eifa, station-ID:
DWD91, 50.7447° N, 9.345° E.).

Discharge remained below its long-term average (MQ), with the exception of a few increases
in discharge during the winter of 2018/2019, and as a result of the precipitation events previously
mentioned (Figure 4). Discharge was low from late spring to summer 2018 and 2019 (data not shown).
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Except for the weeks with higher rainfall, daily discharge declined below the long-term average of
lowest discharge (MNQ).

4 r 50
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3 4 —_—
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_§_2->( X X X X X X X X X X X X X =
g i
w - 208
© [*]
£ g
3 5
©

precipitation - --=MQ ----MNQ X sampling dates

discharge

Figure 4. Monthly precipitation and discharge trend of 2018 and 2019 in the Antrift catchment, compared
to average discharge in the reference period 1991-2000 (MQ = average discharge; MNQ = average
low-flow discharge). Data source for discharge: Wasserverband Schwalm e.V. (2019), water level station
42881009, 50.76245° N, 9.20654° E. Precipitation data triangulated from HLNUG (2019): climate stations
DWD3561 (50.8494° N, 9.1253° E), DWD91 (50.7447° N, 9.345° E), and HLNUG4288360 (50.6281° N,
9.26143° E).

4.2. Water Quality Assessment

4.2.1. Water Temperature

During the investigation period, water temperature rose steadily from winter to summer (Figure 5a).
The increase in water temperature corresponds to the temporal development of air temperature,
which only collapsed shortly in May 2019 due to a thunderstorm (see Supplementary Materials) [72].
During winter (December 2018-March 2019), the maximum water temperatures indicated good
ecological status. The threshold for poor ecological status (20 °C) was reached in July and (locally)
during the following months.

In the Antrift reservoir, maximum water temperatures ranged between 24.4 °C (26 June 2019) and
21.6 °C (5 June 2019), whereas the temperatures in its tributaries were ca. 6.3 °C lower on these dates
(Figure 6a). Since February 2019, the water temperature has been higher in the Antrift reservoir than in
the headwaters and the main river. During this time, median water temperatures ranged below the
threshold for good ecological quality. Single values, mainly recorded at station AB-2 and AB-3 inside
the Antrift reservoir, exceeded the threshold during summer.

422 pH

Our investigation period started with low surface water pH (6.8-6.9; 5 November 2018;
Figures 5b and 6b). All our pH data of the first measurement date, as well as single outliers in
the following periods, were within the range for good ecological status [46]. Since April 2019, the pH
values inside the Antrift reservoir have been exceeding the threshold for good ecological quality until
the end of the investigation period.

With incipient precipitation in late November 2018, pH increased all over the catchment and
remained between pH 7.5-8.5 until March 2019. Since March 2019, pH was significantly higher (mean:
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+ 1.5 pH) in the Antrift reservoir than in the main river and headwaters. The lowest pH was recorded
in the headwaters, ranging by about 1.9 pH units under the reservoir pH.
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Figure 5. Time series of water quality data (n = 8 per date). Dashed lines represent thresholds for
good ecological status according to OGewV (2016): (a) water temperature, winter maximum (blue line),
and summer maximum (red line); (b) pH, minimum (blue line) and maximum (red line); (c) dissolved
oxygen (DO), minimum; (d) total phosphorus (TP), threshold between good (<0.03 mg TP/l) and
moderate ecological status (>0.03 mg TP/l; blue line), threshold between moderate and poor ecological
status (>0.1 mg TP/]; red line).
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Figure 6. Temporal trends of water quality parameters during the investigation period; means according
to types of water bodies (headwaters (n = 2): GOE, OCH; main river (n = 3): AT-1, AT-2, AT-3;
reservoir (n = 3): AB-1, AB-2, AB-3). Dashed lines represent thresholds for good ecological status
according to Bundesministerium der Justiz und fiir Verbraucherschutz (2016): (a) water temperature,
summer maximum; (b) pH, maximum; (c) dissolved oxygen (DO), minimum; (d) total phosphorus
(TP), threshold between moderate and poor ecological status (0.1 mg TP/1).
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4.2.3. Dissolved Oxygen

Our DO data show no clear trend (Figures 5c and 6¢). Generally, DO concentrations increased after
a minimum in November 2018 (mean: 4.8 ppm) to stay above the threshold for good ecological status
(8 ppm DO). Between July and August 2019, DO concentrations clearly decreased in the headwaters
and the main river (80.3% and by 61.0%, respectively), compared to DO concentrations in June.
The minimum DO concentrations in August 2019 ranged between 2.57 ppm in the headwaters and
4.52 ppm inside the reservoir. No significant spatial variability of DO concentrations was found for the
Antrift catchment (Figure 6¢). However, headwaters had slightly higher DO concentrations at single
measurement dates.

4.2.4. Total Phosphorus

The TP concentrations were relatively high, varied strongly, and indicated bad ecological status
in the investigated water courses (Figure 5d). During November and December 2018, TP levels
remained high (>0.10 mg TP/l). From February 2019 to August 2019, lower TP concentrations were
recorded, ranging between the lower and upper thresholds of eutrophic nutritional status. However,
outliers occurred with >0.25 mg TP/l. The largest outliers were found at station AB-2 (reservoir),
with 0.30 mg TP/1 (18 February 2019) and 0.25 mg TP/1 (3 March 2019). In May 2019, a single increase
was detectable to TP concentrations of >0.20 mg TP/l. We found no systematic spatial trend of TP
concentrations in the catchment despite slight differences between the hydrological water body types
(Figures 6d and 7).
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Figure 7. Total phosphorus (TP) concentration during the investigation period, according to sampling
stations (n = 14 per station). Dashed lines represent thresholds of nutritional status according to
OGewV (2016): orange line = threshold between good (<0.03 mg TP/l) and moderate ecological status
(>0.03 mg TP/1); blue line = threshold between moderate and poor ecological status (>0.1 mg TP/1).

4.3. Correlation of Total Phosphorus Concentrations and Precipitation Events

The cross correlation between the time series of precipitation and discharge data shows a significant
(p < 0.05) mutual influence for a period from 0 to + 2 days (see Supplementary Materials). Within this
two-day period, the results of the auto correlation function (ACF) were above the 0.1 ACF threshold.
At point zero (i.e., precipitation and discharge event on the same day), the highest ACF value (0.416)
is reached, followed by a continuous decrease until point +2 (i.e., discharge event two days after
precipitation event).

Based on this result, Spearman correlation analyses (Figure 8) show a strong and significant
(p £ 0.05) positive correlation between the number of days since the last high, maximum, or heavy
precipitation event (>10 mm/day) and the maximal drainage for each measurement period.
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Figure 8. Spearman correlation coefficients of TP concentrations in the water and the number of days
between each precipitation event and the next sampling date. (Significance levels: p < 0.001 (***);
p <0.01 (**); p <0.05 (*)).

Comparing the average TP concentrations with the number of days since the last maximal drainage
or maximal and heavy precipitation events, a strong significant (p < 0.01) negative correlation was
found. Moreover, a moderate positive correlation was observed between average TP and the number
of days since the last higher precipitation event. Instead, no significant correlation was found for TP
and the number of days since the last higher drainage event.

Beside these results of the correlation analyses, the absolute number of days since an event
was mostly larger than two days for all the precipitation events during our investigation period
(see Supplementary Materials). Only in August 2019 did a maximal precipitation event coincide with
our sampling date. For higher precipitation, six of 14 measurement periods showed an event within
two days. No heavy precipitation event occurred within the two-day interval.

4.4. Sediment Analyses

4.4.1. General Sediment Features

The sediments from the Antrift catchment were largely silty-loamy (average: 63.9 mass-% silt,
18.1 mass-% sand, 18.0 mass-% clay; Table 2). However, the clay content decreased and the sand content
increased from the headwaters (25.7 mass-% clay, 5.5 mass-% sand; averages) to the reservoir (16 mass-%
clay, 27.3 mass-% sand; averages). The silt content decreased slightly from the headwaters/main river
(mean: 68.7 mass-%) to the reservoir (mean: 56.7 mass-%). There was also temporal variation in
the sediments’ textures from the first to the second sampling (average deviations: +6.2 mass-% silt;
+9.3 mass-% sand, —15.5 mass-% clay).
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Table 2. General sediment features.

. Grain Size (Mass-%) P Fractions (mg/kg)
H l a _O,

Station Date pH (CaClp) OM 2 (Mass-%) Clay Silt Sand Pdug Poy Par
GOE 05.11.2018 6.03 18.79 44.34 47.81 7.84 379.61 720.53 1214.73
15.03.2019 6.16 7.53 22.98 74.00 3.02 228.44 630.00 919.80
OCH 05.11.2018 6.66 15.30 28.96 65.08 5.96 326.37 634.67 1093.40
15.03.2019 6.01 9.13 6.53 88.51 4.96 226.64 672.00 1094.80

AT1 05.11.2018 ndb n.d. n.d. n.d. n.d. n.d. n.d. n.d.
15.03.2019 6.26 10.72 10.05 75.83 14.12 429.26 796.13 1255.57
AT2 05.11.2018 7.17 8.85 2212 54.26 23.61 559.00 952.23 1727.60
15.03.2019 6.26 11.76 15.59 73.27 11.14 601.05 966.47 1658.77
AT3 05.11.2018 7.16 6.92 18.03 67.61 14.36 465.44 796.13 1311.10
15.03.2019 6.70 3.92 5.54 72.28 22.18 482.89 767.67 1277.73
AB1 05.11.2018 7.03 7.42 23.72 66.22 10.06 331.99 836.73 1376.90
15.03.2019 6.71 17.27 7.66 65.52 26.82 666.55 1188.37  1630.53
ABD 05.11.2018 7.61 3.17 21.11 57.07 21.83 84.33 221.20 507.27
15.03.2019 7.14 2.89 12.59 72.86 14.55 304.29 546.70 1197.70
AB3 05.11.2018 748 341 25.77 66.19 8.04 3.94 107.33 429.80
15.03.2019 7.69 2.09 5.38 12.29 82.33 230.10 154.93 402.73

2 Organic matter; ? not determined.

With an overall mean pH of 6.8, the sediments depict slightly acidic to neutral conditions. However,
over our study period, the catchment pH shifted between slightly alkaline conditions (first sampling)
and slightly acidic conditions (second sampling). The average pH increased from the headwaters
(slightly acidic), to the main river, to the reservoir (slightly alkaline).

The sediments in the Antrift catchment were relatively high in organic matter (OM; overall mean:
8.6 mass-%). There was a slight tendency for OM contents to decrease from the headwaters to the
main river to the reservoir at the first sampling (17.1 vs. 7.9 vs. 4.7 mass-%, respectively). However,
OM contents were relatively similar at the second sampling (8.3 vs. 8.8 vs. 7.4 mass-%, respectively).

4.4.2. Sediment Phosphorus Contents

The sediments in the Antrift catchment are relatively high in each of the determined P fractions
(Table 3). We found spatial and temporal variability in the sediment P data. The average P contents
were significantly larger at the second sampling (+30.3%). Besides, we found relatively large ranges of
the Pqpic) means of the hydrological units. Through our study period, the largest mean P4y occurred
in the main river stations. However, for the first sampling, the smallest mean Pqpc) was in the reservoir.
On the second date, the minimum average P4pc) was instead observed in the headwaters.

The Py, contents changed insignificantly from the first to the second sampling (+26%) and among
the hydrological units. However, there was an increase in Py, in the headwaters and the reservoir at
the second sampling. The mean P, contents also increased in the reservoir at the second sampling,
but decreased in the headwaters. The largest mean P contents were generally found in the main river.

We found relatively large DPM2 and DPM3 (i.e., >0.4). From the first to the second sampling,
DPM2 remained constant in the main river. It was extremely small in the reservoir at the first sampling,
but almost doubled to the second sampling. By contrast, DPM2 decreased by about 33% in the
headwaters from Sampling 1 to Sampling 2. DPM3 increased slightly to the second sampling (+19%).
However, we found no significant changes between the sampling dates and hydrological units.
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Table 3. Differential P fractions and degrees of P mobilization of sediments (means).
Pauar ? P ? Pr? DPM2? a
(mg/kg) (mg/kg) (mg/kg) DrM3
all data 355.8 341.1 484.2 0.47 0.57
sampling 1 2 1 2 1 2 1 2 1 2
catchment 30722 * 4002° 302.62 381.62 484.62 483.82 0432 0512 0522 0.62°
headwaters 353.0 #A 227.5bA 324.6 ¥A 4235bA 476.5 %A 356.3 bA 0.52 %A 0.35bA 0.59 &4 0.65 >4
main river 5122 %A 504.4 B 362.0 ¥A 339.0 ¥A 645.2 >B 553.9 ¥B 0.59 A 0.60 >B 0.58 &4 0.61 %4
reservoir 140.128  4123bAB  p4g32A 407.8 %A 3829%A  498.6 ¥AB 0.27 B 0.56 bB 0.44 22 0.59 A

2 for explanation, see 3.5; * different letters indicate significant differences between means (p < 0.05); lower-case
letters refer to comparison by line (sampling dates per P fraction), upper-case letters refer to comparison by row
(hydrological units per P fraction and sampling date).

4.4.3. Correlation Analyses

We conducted Spearman correlation analyses for all our data, as well as separately for the data of
each sampling date. Different correlation coefficients result in these three versions of data aggregation.
The specific results for the correlation of all data are shown in Figure 9. However, we also found
overarching correlations (i.e., present in all three versions of data aggregation).

Sediment data oxalate

N Sediment data aqua regia extraction
extraction

Sediment features Water sample data

Mg.AR | Ca.AR Temp | pH DO
0.24 | 0.06
014 | -0.10
012 | -0.14

0.00 -0.24

0.04
0.03

0.32
0.09

0.07
0.16

Figure 9. Spearman correlation of sediment and water data for both samplings. p < 0.05 (green), p < 0.01
(blue) and p < 0.001 (brown), not significant (no color).

First, there are regular correlations between the moderately labile to recalcitrant P fractions and
the acid metal cations, as well as the base cations. Pgpc], Pox, and Par are correlated positively and
clearly to strongly with Aloy, Alar, Fear, Naar, Mgar, Caar. For all data, there are furthermore
positive correlations of Pgicy, Pox and Par with Feox (weak) and Kagr (weak to clear; Figure 9).

Second, we mostly found weak positive correlations of Pgricy, Pox, and Pagr with the sediments’
OM content.

5. Discussion

5.1. Evaluation of Climate Data: Discharge and Precipitation

The trends of air temperature and monthly precipitation showed uncommonly warm and dry
conditions in the Antrift catchment in 2018 and 2019 (Figure 2). These years could be termed ‘extreme’,
regardless of the general trend for precipitation to decrease on average by 68 mm per decade in
Hesse [22,72]. Despite the long-term drought, increased heat and low flow conditions, individual
higher to heavy precipitation events occurred during the investigation period, whose rainfall intensity
might have enabled soil erosion [68,74]. However, a high potential for causing soil erosion can only be
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attributed to the storm event on 20 May 2019, which exceeded a daily precipitation sum of 70 mm,
and could hence be termed an extreme rainfall event [68,74,75]. Such extreme weather conditions are
assumed to increase in frequency under climate change [16].

Climate forecasts (e.g., IPCC, HLNUG) predict an increase of annual mean temperature,
heat extremes, drought periods, and heavy precipitation events [25,26,76]. We documented all
these factors during our investigation period. Therefore, our data are likely to draw a picture of water
quality impairment under climate change.

5.2. Water Quality Assessment

5.2.1. Water Temperature

In general, water temperature is correlated with air temperature. An increase in air temperature
through climate change leads to increasing water temperatures [16]. In addition, water temperature
is a main factor controlling chemical and physical properties of aquatic ecosystems (e.g., pH,
diffusion rates) [2,14]. The water temperature within the Antrift reservoir and its tributaries
ranged between the lower and upper thresholds for good ecological status during our investigation
period. Although a moderate increase of air temperature from winter to summer was detected
(see Supplementary Materials), the influence of climate change and a long-term increase of water
temperature could not be investigated, because this study considers a 10-month period only. However,
along-term increase in water temperature is documented for rivers and lakes by other studies and can be
assumed for the Antrift catchment under aggravated climate change conditions [5,77]. Deviations from
the moderate annual increase of water temperatures from spring to summer occurred only due to heavy
rainfall events (e.g., a thunderstorm in May 2019). Moreover, minor differences were observed due to
spatial variation between lower water temperatures at sampling sites shaded by riparian vegetation
(e.g., headwaters, the main river) and higher temperatures in the unshaded Antrift reservoir.

Water temperature and sufficient nutrient concentrations stimulate algal growth [1]. To do so,
temperatures were too low (<20 °C to 23.0 °C) at the beginning of our measurement period [77,78].
Climate change is projected to increase the persistence of high water temperatures—especially in
shallow lakes—and thus lead to extended eutrophication periods and algal blooms [2,16,17]. However,
Richardson et al. (2019) observed factors limiting total phytoplankton growth and fostering the
decrease of harmful cyanobacteria in nutrient-rich environments. Thus, climate change effects on algae
blooms might be more complex than commonly assumed [79].

In our study, temperatures have been favorable for algal growth since June 2019. On 5 June 2019,
an incipient bloom of blue-green algae was observed, leading to a widespread green-brown algal
carpet on the water surface of the Antrift reservoir in August 2019 (see Supplementary Materials).
At the Antrift main river and the headwaters, no such visible water quality impairment was observed,
probably due to more riparian shading and higher flow velocity [80,81].

5.2.2. pH

On 5 November 2018, pH in the Antrift catchment was relatively low (Figure 5b), probably
as a result of the bacterial degradation of the 2018 algae bloom [1,15]. During the winter period,
pH oscillated around the lower threshold (7.5 pH) for good ecological quality. Beginning in April 2019,
pH rose to a more alkaline level [2]. The high fluctuation (i.e., range) of pH is typical for increasing
eutrophication appearances [1,82,83]. At that time, we observed increased biomass formation in the
reservoir. A second decrease of pH in connection with biomass increase was not observed, because our
investigation period ended in August 2019.

5.2.3. Dissolved Oxygen

Despite the three-week interval between measurements, two trends in DO were observed. First,
both algae blooms (end phase in November 2018, build-up in June 2019) were correlated with low DO
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concentrations. The minimum DO concentrations were measured during the end of the 2018 algae
bloom, probably resulting from oxygen depletion through the intensified bacterial degradation of
biomass [1,84,85]. Hence, after the winter increase, DO concentrations decreased again after August
2019, when the 2019 algae bloom had already built up for at least two months. Second, increases in DO
coincided with increases in precipitation and discharge after the long drought phase in the second half
of 2018. Increasing flow velocity leads to a higher level of DO in the surface waters [13,86]. Hence,
during winter and spring 2019, DO stayed above the threshold for good ecological status.

The spatial differentiation of DO concentrations reflects the water temperature differences between
the reservoir, the main river, and the headwaters [87]. Higher DO concentrations occurred at the
headwater stations on single dates, probably as a result of higher flow velocity and shading by
riparian vegetation (see Supplementary Materials). Still, during the 2019 algae bloom, the lowest
DO concentrations were measured in the headwaters, most likely because of low flow rates and low
velocity [88,89]. This indicates a higher vulnerability of the headwaters for water quality impairment
under climate change (e.g., due to prolonged low flow conditions).

5.2.4. Total Phosphorus

Our data confirm that the Antrift reservoir is eutrophicated according to the EU Water Framework
Directive. High TP concentrations occurred throughout our investigation period (Figure 5). However,
TP concentrations indicating poor ecological quality were measured only from November to December
2018, and sporadically (event-driven) in February and May 2019. On the one hand, the high TP
concentrations between November and December 2018 can be explained by low flow rates and a low
nutrient dilution in the water column [16]. On the other hand, this period marks the end phase of the
2018 algae bloom with low DO concentrations and pH.

The average TP concentrations decreased continuously until January 2019. This can be attributed
to the increase in precipitation and flow rates within the Antrift catchment. Even with the relaxation
of the eutrophication situation during winter 2018, the median TP concentrations stayed close to the
lower threshold of eutrophic conditions (except for single outliers; Figure 5d). After the autumnal
decrease, TP concentrations varied slightly for the rest of the studied period.

Since July 2019, there was a strong negative correlation of TP concentrations with water temperature
(rsp = —0.66; p = 0.01). On 5 June 2019, the water temperature reached the 20 °C-threshold favorable
for algae growth. As a consequence, the TP concentrations decreased, suggesting a consumption of P.
This decrease of TP is corroborated by our field observations of increasing algal growth, which was
also documented in other case studies [67,90].

With regard to our sampling stations, some conclusions can be drawn regarding potential P
sources. We found no increase in TP concentrations with increasing percentage of agricultural land use
or settlements [65,91,92]. Interestingly, TP concentrations are somewhat lower in the headwater stations
than in the main river and reservoir, but they are still within the range of eutrophic nutritional status.

The reservoir and both stream classes are clearly different in hydrology and morphology. However,
no significant difference in stream morphology is assumed between the headwaters and the main
river [67]. Generally, our TP data mostly depict no clear differences between the three types of surface
water bodies. Thus, not only is the Antrift reservoir eutrophicated, but all the investigated water bodies
in the catchment, even the headwaters, are. This indicates that agriculture (erosion, surface runoff)
and settlements (point sources) should not be termed the major factors for causing eutrophication
in the Antrift catchment. Because the headwater station GOE is situated in a forest region, high TP
concentrations also occur in areas without erosion risk and point sources (see Supplementary Materials).
Hence, there seem to be further, so far unnoticed, sources for P losses from soil to water.

The TP trend, in combination with the trend of water temperature, pH, DO, and field observations,
indicates that, under climate change, the relaxation of water quality impairment during winter could
be shortened. Our data depict an extended duration of the 2018 algae bloom and a new worsening of
water quality in April 2019. P stocks conserved from the prior algae bloom could accelerate the next
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algal bloom in spring. This is corroborated by Richardson et al. (2019), who showed that an increase in
water temperature, sufficient nutrient levels, and hydrological conditions (e.g., intensive precipitation
after drought events) might trigger cyanobacteria growth and complex algal bloom dynamics [79].

5.3. Phosphorus Sources in the Antrift Catchment

After the only wastewater treatment plant closed in 2002, no major point sources for P inputs
remained in the Antrift catchment [93]. Erosion and surface runoff are thus expected to be the major
P sources due to the large percentage of agricultural lands (>45%) [27]. However, the local erosion
risk has been judged low in an official assessment [18,68]. Besides, vegetated buffer strips have been
established along the water courses in the catchment, even along smaller drainage channels. Moreover,
the influence of direct surface runoff and drainage must be considered minor, as a result of the very
limited proportion of sealed surfaces.

We tested the influence of possible P inputs by erosion and surface runoff, with a correlation
analysis between TP concentrations and their occurrence (i.e., number of days) after the last precipitation
event (see Section 3.5. Statistical Analyses). The cross-correlation between the time series data of
precipitation and discharge shows that precipitation events influenced the discharge trend significantly
(see Supplementary Materials). This correlation is significant for a range between 0 and +2 days after
rainfall events. Precipitation events thus had a significant impact on runoff in water bodies for a
maximum of two days after the respective event.

The Spearman correlation analyses resulted in a significant negative correlation between average
TP concentrations and the number of days since different kinds of precipitation events (Figure 8). Thus,
a larger number of days since the last precipitation event coincided with lower TP concentrations in the
water bodies. This indicates an influence of precipitation events and intensity on the TP concentrations
(e.g., erosion and surface runoff) [71,93]. However, both processes are short-term processes, with a
potential direct impact on water quality within a few minutes to hours, maximally in <2 days [68].

During our investigation period, no precipitation event occurred so shortly before a measurement
date (i.e., <2 days) that it could be attributed plausibly to erosion or surface runoff [68]. In particular,
all the potentially highly erosive higher and heavy precipitation events happened more than two days
before our measurements [68-70]. Therefore, neither point sources nor extensive erosion (with surface
runoff) can be considered as the major reasons for the all-season high P concentrations in the Antrift
catchment. Instead, our results might tentatively point to an effect of underground P translocation
(interflow-P), with a delay after precipitation events due to water infiltration and percolation [94,95].
However, our approach is limited by the relatively coarse temporal resolution of our measurements
(three weeks) [68,69].

5.4. Sediment Analyses

5.4.1. General Sediment Features

The texture of the sediments results from the typical bedrocks and substrata in the Antrift
catchment. The dominance of silt probably results from the large spatial extension of loess [29,96].
The somewhat higher clay content in the headwater area could be explained by the abundance of
basalt in this section of the catchment. By contrast, the increasing percentage of sand in the reservoir
sediments could be due to the occurrence of sandstones in the reservoir’s surroundings. The variation
we found between sediment textures of Samplings 1 and 2 generally demonstrates that sediments
are dynamic components of the soil-water-interface, which undergo constant changes by transport,
selection, and biochemical reactions [97,98]. Those processes could affect the textural composition of
the sediments.

Over our investigation period, the sediments oscillated between slightly acidic and slightly alkaline
conditions (Table 3). This general pH range can also be attributed to the dominance of alkali basalt and
loess in the Antrift catchment [96]. That pH was lower in the headwater area than in the reservoir
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is probably geochemically determined. The headwaters are surrounded by basalts, which contain
relatively many base cations (Ca, Mg, K), but even more Al/Fe (among other elements). Instead,
base cations are probably more abundant in the loess areas (main river, reservoir) [96]. Moreover,
pH could increase towards the reservoir due to the increasing concentration of leached basic cations,
with increasing flow distance through the catchment.

We found the highest variance of pH between our sampling dates in the main river stations.
This seems plausible because the main river represents the largest part of the catchment area and hence
the most hydrologically diverse conditions [99]. Instead, the headwaters and the reservoir depict
relatively small sections of the catchment with rather controlled hydrological conditions [97,99].

That we found large OM contents is not surprising for fluvial and lacustrine sediments,
especially with eutrophication-enhanced primary productivity and the increased accumulation of
dead OM [1,5]. Our OM contents decrease from the headwaters to the reservoir, which might be due
to increased OM mineralization during summerly eutrophication and algae blooms [3]. Moreover,
this spatial differentiation of sediment OM might be related to the spatial distribution of land uses
in the Antrift catchment. The headwater areas are largely composed of forests, which produce and
transfer more OM to the adjacent water courses. The main river and reservoir stations are instead
located in agricultural (conventional farming) and grassland areas, where less OM is produced [96].

5.4.2. Sediment Phosphorus Contents

The large sediment P contents might in part result from the bedrocks in the Antrift catchment
(e.g., basalt). Besides, they could be the legacy of prior land management (especially in the agricultural
areas around the main river stations). However, the build-up of sediment is generally relatively
small and also well-controlled in the Antrift catchment since the 1990s [42]. Instead, sediment pH
might be a relevant and overarching driver of sediment P in this catchment. The mean pH levels of
the sediments were between 6.0 and 6.5. P mobility is large in this pH range [100,101] because the
solubility of P-sorbing metal oxides is relatively low (lability increases with pH), while at the same time,
P-bearing minerals precipitating with base cations are also relatively easily soluble (stability increases
with pH [96,102]). Hence, any shift of pH would foster P mobilization: Under more acidic conditions,
the P-bearing minerals of base cations would be dissolved [103,104]; under more alkaline conditions,
P would increasingly be desorbed from metal oxides [105,106]. It is a particularity of the Antrift
catchment that sediment P retention is governed by sorption to metal oxides and by precipitation
with base cations, instead of either of both. Thus, sediment P contents could be large due to the large
number of potential reaction partners. However, a decrease in pH might be most favorable for P
retention in the Antrift sediments, because metal cations are much more abundant in the sediments
than the base cations.

We found larger sediment Pgpyc) contents at the second sampling. This might result from an
increased tendency to Pp,) mobilization (i.e., conversion to Pgpyc)) under high flow conditions (high
dilution). Such conditions would cause a disequilibrium between bound P in the sediment and
dissolved P in the water column [102,107]. As equilibrium would be shifted towards bound P,
P mobilization would be enhanced to restore the equilibrium state [108,109].

The differences between the average Pqpjc) contents at both samplings suggest that the three
hydrological units might be subject to different P dynamics, especially under an acute algae bloom.
In the reservoir, Pqpc) was very low at the first sampling, possibly due to enhanced P mobilization
(i-e., loss of Pgpycy) during the 2018 algae bloom and severe DO depletion (Figure 5c). Without an acute
algae bloom, P4pic) increased significantly at the second sampling. By contrast, Pgijc) decreased in the
headwaters at the second sampling. This could be the consequence of increased P mobilization under
high flow conditions.

The Py, contents increased slightly but non-significantly on the second date. This might suggest a
tendency to P mobilization under high flow conditions, which could successively convert recalcitrant
P forms into Py [6]. Even though not statistically significant, P, increased in the headwaters and
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in the reservoir. Most likely, in the reservoir, the small Py, content at Sampling 1 resulted from the
acute algae bloom and enhanced P mobilization from the sediment. In the headwaters, the increase
in Py, might instead have resulted from successive equilibrium-driven P mobilization under high
flow conditions [6,107]. This might also explain the decrease in Py in the headwaters at the second
sampling. However, the increase in Py in the reservoir might also have resulted from a relatively small
Pyc at Sampling 1 due to the acute algae bloom with severe DO depletion.

The largest P, contents were generally found in the main river. With regard to the local
bedrocks/substrata (loess), this is possibly due to the high abundance of base cations in the water,
which can precipitate with dissolved P, especially under low flow conditions (Sampling 1) [96,109].
Moreover, the main river stations are not affected by algae-bloom-enhanced DO depletion and resulting
P mobilization from sediments. Hence, more P, might accumulate

The relatively large DPM2 and DPM3 suggest that the sediments in the Antrift catchment are
generally prone for P mobilization due to their large share of readily and moderately soluble P forms.
We found slightly larger DPM2 (+19%) and DPM3 (+19%) at the second sampling, which might point
to increased P mobilization under high flow conditions. By contrast, the small DPM2 in the reservoir
at Sampling 1 might have resulted from algae-bloom-mediated P mobilization.

To the second sampling, DPM2 decreased significantly in the headwaters. Because the lowest
pH were observed for the headwaters, there might be more reactions between P and Al/Fe, which are
favored under acidic conditions [103,104]. P associated with Al/Fe would raise sediment P, (based on
Pox) [105,106] and thus result in a smaller DPM2. Furthermore, Py,,; might have increased due to the
above-mentioned successive mobilization of Py.

For DPM3, we found no significant changes between the sampling dates and hydrological units.
However, the smallest DPM3 was found in the reservoir on the first date. This might also have resulted
from the above-stated tendency for sediment P mobilization under severe DO depletion.

5.5. Spearman Correlation Analyses of Sediments and Water Samples

Our correlation analyses resulted in different relationships between the sediment and water
parameters when all our data were combined (Figure 9) or grouped according to sampling dates
(Figures Al and A2). Hence, temporal dynamics of rather short-term processes like acute eutrophication
with an algae bloom are probably depicted more adequately as snapshots according to sampling dates
instead of sums or averages of longer timespans (e.g., yearly averages [3]).

5.5.1. Correlations with Acid and Base Metal Cations

We found overarching positive correlations of Pgycy, Pox, and Par with Alox, Alar, Fear, Naar,
Mgar, and Caag. This indicates that P bonding in the sediments is strongly governed by the acid metal
cations (especially Al), probably largely via sorption, which the strong correlations with Al point
to [102,103]. The correlations of Pgpyc), Pox, and Par with Alar and Fear might furthermore indicate
that the precipitation of Al/Fe and P-containing minerals could play a role. However, the correlations
of Pancl, Pox, and Pagr with Naagr, Mgar, and Caag indicate that mineral precipitation, either with
instantaneous (e.g., Ca-P-minerals) or with subsequent P bonding (e.g., adsorption and surface
precipitation [110,111]), might also be relevant for sediment P retention.

5.5.2. Correlations with Sediment Organic Matter

We found weak positive correlations of Pgpc), Pox, and Par with the sediments” OM content.
Because OM contains P, an increasing amount of OM also means an increase of the bound P fractions.
Furthermore, the mineralization of organic matter leads to P mobilization to the water column and
might result in an increase of TP. This is indicated by the weak negative correlation between sediment
OM and TP in the water (Figures 9, A1 and A2). However, this correlation is visible only at the second
sampling. On the first date, other eutrophication-related processes might instead have controlled TP.
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Generally, the relatively large sediment OM contents (average: 8.61 mass-%) might hamper
precipitation reactions and favor the formation of more weakly crystalline mineral phases [104,112].
This might explain why we found correlations of the P fractions with sand and silt but not with clay.

Generally, P bonding increases with clay content because most of the major P sorbing particles
belong to the clay fraction (e.g., Fe/Al oxyhydroxides, OM [100,113]). However, Weihrauch (2018)
found correlations of soil P fractions with sand and silt instead of clay in a study area characterized by
weakly acidic to weakly alkaline soils [59]. The author explained this finding with the precipitation of
carbonates adsorbing P weakly in a monolayer (at low P concentration) and with the precipitation of
rather amorphous Ca-P-minerals (at higher P concentration) of larger diameter, due to the interference
with OM [112]. Moreover, P might become occluded in a recalcitrant form within Mn and Fe concretions,
which could grow with time [96,114,115]. This might explain the correlations between Por and sand
(Figures 9, A1l and A2). The correlations between sand and Pgpjc) might instead result from P sorption
and surface precipitation on calcite, the formation of easily soluble Ca-P-minerals, and/or amorphous
metal oxides [102,116]. Such a P retention in larger particles might also explain the clear negative
correlation between the sediments’ silt content and TP in the water (e.g., apatite often forms crystals in
the silt fraction [96]). Hence, sediment OM is indicated to affect sediment P contents directly as well as
indirectly by influencing the potential P bonding sites.

The above-mentioned correlations show for only the second sampling, probably due to strong
effects of eutrophication on P dynamics on the first date. However, we found a strong negative
correlation of sediment OM and pH in the water on the first date, which could have resulted from
decreasing pH with increasing OM abundance and related mineralization [88,117].

6. Conclusions

We investigated the eutrophication of the Antrift reservoir in Hesse (Germany) in the uncommonly
warm and dry years 2018/2019. Our results give an empirical preview on the development of local water
quality under climate change. They furthermore enabled us to answer crucial questions regarding the
poor ecological status of the Antrift reservoir.

Our results clarify that not only the Antrift reservoir is affected by eutrophication due to high TP
concentrations, but so is the entire catchment. The catchment TP concentrations are high throughout
the year, but apparently not due to the P sources commonly stated in eutrophication literature
(e.g., agriculture). Possibly, natural pH-driven P mobilization from catchment soils and sediments
(depending on soil moisture and flow conditions) might foster the eutrophication of the local surface
waters. This hypothesis of an “autogenous eutrophication” should be investigated further.

Conceptually, we differentiate between two kinds of constraints on TP concentrations (graphical
abstract): biological and geochemical constraints. Biological constraints are largely determined by
water temperature, pH, and nutrient availability (especially P). In the Antrift catchment, pH and TP
concentrations are favorable for algal growth throughout the year. Hence, temperature might be
the major driver of algal growth, DO depletion, and resulting sediment P mobilization in summer.
During the winter, water temperatures <20 °C prevent algal growth and DO depletion. Thus, only in
summer can biological constraints lead to algae blooms with acute DO depletion. Under such
conditions, they outweigh the geochemical constraints.

The geochemical constraints are determined by flow conditions (elemental dilution), water and
sediment pH, redox status, as well as, to a lesser degree, by the local bedrocks/substrata (supply of P,
Al, Fe, Mn, Ca, Mg, K). At low flow conditions and low dilution (summer), P might increasingly be
retained in sediments. By contrast, P is likely to be increasingly mobilized from sediments at high flow
conditions and high dilution (winter). This should be studied further.

In the Iliterature, P dissolution/remobilization from sediment mostly describes P
desorption/dissolution from sediment that has been transferred to water courses due to land use
(especially agriculture) [43,118]. For our argument, it is not relevant where the sediments come
from. Sediment P equilibrates relatively rapidly with P in the water column [6]. Hence, any P
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desorption/dissolution from P-enriched sediment from agricultural lands would likely happen quickly
after deposition [45]. Then, the sediments would be subject to the geochemical constraints in the
Antrift catchment, which generally foster a high abundance of labile sediment P and temporary P
mobilization. This would apply to any sediment, regardless of its original P load and origin regarding
land use. Hence, we are skeptical about the scientific theories of a “hysteresis” of P dissolution from
sediment, which is sometimes evoked to explain why best-management to improve water quality
practices do not succeed right away, but might need decades [43,119].

With regard to climate change, our data from the recent uncommonly warm years corroborate the
assumptions of others (e.g., LeMoal et al. 2019; Moss et al. 2011; Whitehead et al. 2009) that global
warming will likely foster eutrophication, as well as prolonged and spatially extended algae blooms.
Climate change might hence aggravate biological constraints in summer. In winter, however, lowered
flow conditions might instead lead to reduced P mobilization, or, in other words, to increased P retention
in the catchment sediments. However, combined effects between cyanobacteria and phytoplankton,
short-term hydrological changes, and nutrient availability in freshwater ecosystems and sediments
might complicate a clear prediction of the interaction of constraints on P mobilization/retention under
climate change [79,120,121].

To mitigate the eutrophication of the Antrift catchment, it is important to register that TP
concentrations are naturally high throughout the year. Hence, any artificial reduction of TP
concentrations (e.g., by common best-management practices) would foster geochemical P mobilization
from the sediment. As mentioned above, the Antrift catchment could theoretically self-regulate its
ecological status under natural conditions (e.g., by flushing winterly nutrient excesses downstream).
The Antrift reservoir undermines this self-regulation and creates an environment of all-year P
accumulation in the water column, which artificially fosters algae blooms in summer.

We conclude that the eutrophication (i.e., TP concentrations of 0.03-<0.1 mg TP/1) of the Antrift
catchment cannot be prevented. Still, best-management practices should be kept active (e.g., erosion
conservation) to prevent further P inputs that could aggravate eutrophication and lead to a poor
ecological state (TP concentrations >0.1 mg/l). To restrict the summertime P mobilization from the
sediment, DO concentrations should be started to be managed besides TP concentrations. Hence,
algae blooms (and resulting DO depletion) might be controlled with algicides or the introduction of
certain key species into the water bodies [1], bearing in mind the possible ecological consequences.
Furthermore, artificial aeration of the Antrift reservoir could significantly relax summerly hypoxia
and anoxia. Without hypoxia, the geochemical constraints would probably be dominant in summer
and trigger P retention in the sediments. A certain monitoring and the eventual removal of the
catchment sediments should also be considered, especially regarding sediments loaded with P in
summer. In addition, the respective material would have beneficial features for application as fertilizer
(e.g., high in carbonate and OM, pH 6-7, much labile P), if it was free of toxins, etc.

Our study indicates that—beside the known sources of P inputs—there might be currently
unknown and unregulated diffuse P sources which contribute to the high P concentrations of the
surface waters in the Antrift catchment. These sources seem to depend on the flow conditions, but are
activated >2 days after precipitation events. Hence, we hypothesize an underground P translocation
with the soil water (interflow-P) [94]. Such P sources should be investigated further so that they could
be effectively managed and restricted. Hence, our study demonstrates that freshwater eutrophication
is not yet conclusively understood despite the successes in research and practice. Challenges remain
for science and should possibly be tackled apart from the disciplinary and conceptual mainstream.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-8789/4/2/29/s1,
Figure S1: Average monthly air temperature for the climate station Alsfeld-Eifa, Figure S2: Pictures of algal bloom
in the Antrift reservoir, Figure S3: Stations of water and sediment sampling in the Antrift catchment, Figure S4:
Cross-correlation matrix of precipitation and discharge data, Table S5: Days since precipitation/discharge events
according to measurement periods.
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Appendix A

Sediment data oxalate

N Sediment data aqua regia extraction Sediment features Water sample data
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Al.ox

Figure Al. Spearman correlation of sediment and water data for Sampling 1 (5 November 2018).
p < 0.05 (green), p < 0.01 (blue) and p < 0.001 (brown), not significant (no color).

Sediment data oxalate
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Figure A2. Spearman correlation of sediment and water data for Sampling 2 (15 March 2019). p < 0.05
(green), p < 0.01 (blue) and p < 0.001 (brown), not significant (no color).
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