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Abstract: The objective of this study was to estimate multiple soil property local regression models,
confirm the accuracy of the predicted values using visible near-infrared subsurface diffuse reflectance
spectra collected by a mobile proximal soil sensor, and show that digital soil maps predicted by
multiple soil property local regression models are able to visualize empirical knowledge of the grower.
The parent materials in the experimental fields were light clay, clay loam, and sandy clay loam.
The study was conducted in Saitama Prefecture, Japan. To develop local regression models for the
30 chemical and 4 physical properties, a total of 231 samples were collected; to evaluate accuracy
of prediction, 65 samples were collected. The local regression models were developed using 2nd
derivative pretreatment by the Savitzky–Golay algorithm and partial least squares regression. The
local regression models were evaluated using the coefficient of determination (R2), residual prediction
deviation (RPD), range error ratio (RER), and the ratio of prediction error to interquartile range
(RPIQ). The R2 accuracy of the 34 local regression models was 0.81 or higher. In the predicted values
for 65 unknown samples, the local regression models could ‘distinguish between high and low’ for 3
of the 34 soil properties, but were ‘not useful’ as absolute quantitative values for the other 31 soil
properties. However, it was confirmed that the predicted values followed the transition in measured
values, and thus that the developed 34 regression models could be used for generating digital soil
maps based on relative quantitative values. The grower changed the ridge direction in the field from
east–west to north–south just looking at the digital soil maps.

Keywords: mobile proximal sensor; local regression model; spectroscopy; partial least squares
regression; chemometrics

1. Introduction

Proximal soil sensing (PSS), coupled with GNSS (global navigation satellite system) and visible and
near-infrared (VNIR) spectroscopy, is a promising approach for detailed characterization of spatial soil
heterogeneity. Given that none of the existing on-the-go soil sensors can provide all the soil information
required for precision agriculture (including sustainable farming, environmental load reduction, and
risk management), the combination of spectroscopy and chemometrics offers a reasonable alternative
for characterizing soil composition [1]. In particular, using PSS in agricultural fields can dramatically
enhance this technique by enabling innovative approaches based on appropriate field understanding
which characterize local soil and environmental conditions in space and time, improving the efficiency
of production to minimize environmental side effects and maximize farm incomes by increasing crop
quality and/or yield [2].

Conventional PSS can facilitate the measurement and monitoring of the soil’s chemical [3,4],
physical [5], and biological [6] attributes to better understand their dynamics and interactions with
the environment, while at the same time revealing their broader spatial heterogeneity through
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digital soil mapping. In addition, when high accuracy prediction values for soil properties related
to environmental risks are obtained by PSS, they can be used to effectively monitor methanogen
in paddy fields, as well as soil organic carbon, and offer a sound foundation for the adoption of
optimal agronomic practices that also enable carbon sequestration and reduction in greenhouse gas
emissions. Thus, sensing by PSS can help us to better articulate the potential of agricultural soil to
meet the world’s needs with regard to soil regeneration, soil contamination monitoring, food security,
global climate change, and environmental sustainability, enabling the design and implementation of
innovative management practices and the efficient pursuit of sustainable development goals (SDGs).
To effectively pursue environmental conservation and sustainable agriculture, a better understanding
of soil, based on high spatial-resolution information, is needed. In precision agriculture, also required is
simultaneous detection of soil fertility (for crop production) and soil contamination, and environmental
monitoring. Thus, the need for timely and accurate multiple soil property information is greater now
than ever before.

VNIR spectroscopy is one means of enabling rapid, non-destructive, straightforward, and
comparatively inexpensive determination of the relative quantitative value of multiple soil properties.
One advantage of VNIR spectroscopy is that a single spectral dataset enables the simultaneous
characterization of various soil properties using regression models. Numerous agricultural
spectroscopic methods measure the diffuse reflectance spectra of oven-dried soil in the laboratory.
In such cases, however, it is necessary to collect soil samples from the target field, oven-dry and
sieve them (usually in a 2-mm sieve), and finally dispose of the remaining soil, and there has been
little advancement in this process [7–16]. However, these laboratory measurements using VNIR
spectroscopy enable highly accurate predictions of multiple soil properties.

In order to improve the conventional measurement methodology, and to determine the relative
quantitative values within a given field and between fields, a number of mobile proximal soil sensors
have been developed by researchers which are capable of simultaneously recording subsurface diffuse
reflectance spectra and global positioning data for digital soil mapping [17–21]. Current mobile soil
sensors may have lower accuracy in prediction values than laboratory measurement values, but still
provide benefits due to their intense spatial visualization. Therefore, there is ongoing research and
development based on in-situ field measurement using on-the-go PSS, in areas such as variable-rate
fertilization, the relationship between yield and environmental load, soil fertility, soil pollution,
etc. [22–25]. In most of the previous studies, researchers focused on few soil properties they would like
to estimate and created soil maps for variable rate fertilizer using PSS predicted values. Therefore,
researchers have found it difficult to provide soil property information required by growers. The
grower’s requests were that if the spatial variability between and within fields could be understandable
by using several soil maps, and if that variability was confirmed by the grower’s experience, it could be
used for farm management. Furthermore, in actual farm management, crops are cultivated for various
purposes (e.g., organic farming, carbon farming, high quality crops, biodiversity, and environmental
conservation), making digital soil maps depicting multiple soil properties even more valuable. In our
previous studies [26–30], the development of regression models for several soil properties used in soil
management was incomplete. Consequently, we desired to provide growers with digital soil maps of
all soil properties for soil diagnostics. The aims of this study, then, were to:

(i) estimate local regression models for multiple soil properties, using subsurface field-moist soil
diffuse reflectance spectra;

(ii) evaluate the accuracy of predicted values for unknown samples (as both absolute and relative
quantitative values);

(iii) demonstrate the effectiveness of newly-developed digital soil map software for our proximal soil
sensor, which can generate digital soil maps immediately after measurement in agricultural fields;

(iv) describe an instance of decision making by a grower using such digital soil maps.
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In this study, a total of 34 local regression models for 30 chemical and 4 physical properties
were estimated by 2nd derivative pretreatment and partial least squares regression coupled with
full cross-validation.

2. Materials and Methods

2.1. Mobile Proximal Sensor

A mobile proximal soil sensor (model SAS3000, Shibuya Seiki Co., Ltd., Ehime Pref., Japan) was
used to measure visible and near-infrared subsurface diffuse reflectance spectra (VNIR-SDRS) in
agricultural fields. The SAS3000 records several types of data simultaneously, to provide high-resolution
soil maps of agricultural fields. It is composed of an operational touch monitor, soil penetrator drive
switch, display monitor, GNSS antenna (model GA530, Nikon-Trimble Co., Ltd., Tokyo, Japan), DGPS
(differential global positioning system) receiver (model SPS351, Nikon-Trimble Co., Ltd., Tokyo, Japan),
and control box (Figure 1). The electrical power for the SAS3000 was supplied by a gasoline inverter
generator (EU-16i, Honda Motor Co., Ltd., Minato-ku, Tokyo, Japan). An oil control valve in the tractor
is connected to the hydraulic power system of the SAS3000, and is used to drive the chisel unit into
the subsurface. The core devices of the SAS3000 for measuring the VNIR-SDRS include a tungsten
halogen lamp (JCR15V 150W AL, Fuji Electric Lamp Industrial Co., Ltd., Tokyo, Japan), visible range
spectrophotometer (C10083CAH, 320 to 1000 nm, 1 nm interval; Hamamatsu Photonics K. K., Shizuoka
Pref., Japan), and near infrared range spectrophotometer (C9406GC, 900 to 1700 nm, 7 nm interval,
Hamamatsu Photonics K. K., Shizuoka Pref., Japan). The SAS3000 was designed to collect subsurface
VNIR-SDRS at depths of 0.05 to 0.30 m (with 0.05 m intervals) from the soil flattener to the soil surface,
created by the double-tire of the SAS3000, which is adjusted by a gauge on the double-tire. In this
study, the soil flattener depth was set at 0.15 m. The VNIR-SDRS measurement was recorded at 3 s
intervals with a tractor speed of 0.28 m s−1.
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Figure 1. The study’s mobile proximal soil sensor (SAS300).

2.2. VNIR Spectra, Field-Moist Soil Collection, and Soil Analysis

The experimental sites were in rotational upland fields of taro (Colocasia esculenta (L.) Schott;
cultivar: Dodare and Hasuba) in Sayama City (SC), Tokorozawa City (TC), Kawagoe City (KC),
and Miyoshi Town (MT), Saitama Pref., Japan. To estimate local regression models for multiple soil
properties, the experiment was conducted in a total of 24 fields, of 6 growers [G1, 8 fields (total 0.94
ha); G2, 3 fields (0.45 ha); G3, 2 fields (0.41 ha); G4, 7 fields (0.74 ha); G5, 1 field (0.23 ha); G6, 3 fields
(0.35 ha); Figure 2]. A total of 231 VNIR-SDRS data and soil samples were collected at the measured
VNIR-SDRS data points after harvesting the taro yam plants in combination with tilling, from 2017
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to 2018. The parent materials in the experimental sites were distributed on light clay, clay loam, and
sandy clay loam as soil texture (Atterberg method) (Figure 3).
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City; MT: Miyoshi Town; G1: 8 fields; G2: 3 fields; G3: 2 fields; G4: 7 fields; G5: 1 field; G6: 3 fields.

Soil Syst. 2020, 4, x FOR PEER REVIEW 4 of 20 

 

to 2018. The parent materials in the experimental sites were distributed on light clay, clay loam, and 

sandy clay loam as soil texture (Atterberg method) (Figure 3). 

 

Figure 2. Location of the experimental sites. SC: Sayama City; KC: Kawagoe City; TC: Tokorozawa 

City; MT: Miyoshi Town; G1: 8 fields; G2: 3 fields; G3: 2 fields; G4: 7 fields; G5: 1 field; G6: 3 fields. 

 

Figure 3. Distribution of soil texture on 231 field-moist soil samples. 

The SAS3000 sounds an alarm at the time of each data acquisition, counts the number of data 

items, and displays the VNIR-SDRS data number on each monitor. Each time a predetermined VNIR-

SDRS data number (for example, at 20-data-number intervals in a single sensing line) was displayed 

on each monitor, a placemark stick was inserted into the soil surface beside the chisel unit, as a soil 

sampling point. After the SAS3000 had fully passed the placemark stick, we dug up the soil surface 

smoothed over by the soil flattener and packed the field-moist soil samples in sealable plastic bags, 

taking two sets of field-moist soil samples from each soil sampling point. 

In this study, we focused on 30 chemical and 4 physical properties, including soil moisture 

content (MC, weight ratio); soil organic matter (SOM, %); pH (1:2.5 water suspension); exchange 

acidity (y1); carbon-nitrogen ratio (CN); phosphate absorption coefficient (PAC); electrical 

conductivity (EC, mS cm−1); cation exchange capacity (CEC, me 100 g−1); humus rate (HR, %); total 

carbon (C-t, %); total nitrogen (N-t, %); ammonium nitrogen (N-a, mg 100 g−1); hot-water extractable 

nitrogen (N-h, mg 100 g−1); nitrate nitrogen (N-n, mg 100 g−1); available phosphorus (P-a, mg 100 g−1); 

exchangeable potassium (K, mg 100g−1); exchangeable calcium (Ca, mg 100 g−1); exchangeable sodium 

(Na, mg 100 g−1); exchangeable magnesium (Mg, mg 100 g−1); hot-water soluble boron (B-s, ppm); 

soluble copper (Cu, ppm); easily reducible manganese (Mn, ppm); soluble zinc (Zn, ppm); calcium-

Figure 3. Distribution of soil texture on 231 field-moist soil samples.

The SAS3000 sounds an alarm at the time of each data acquisition, counts the number of data items,
and displays the VNIR-SDRS data number on each monitor. Each time a predetermined VNIR-SDRS
data number (for example, at 20-data-number intervals in a single sensing line) was displayed on each
monitor, a placemark stick was inserted into the soil surface beside the chisel unit, as a soil sampling
point. After the SAS3000 had fully passed the placemark stick, we dug up the soil surface smoothed
over by the soil flattener and packed the field-moist soil samples in sealable plastic bags, taking two
sets of field-moist soil samples from each soil sampling point.

In this study, we focused on 30 chemical and 4 physical properties, including soil moisture content
(MC, weight ratio); soil organic matter (SOM, %); pH (1:2.5 water suspension); exchange acidity (y1);
carbon-nitrogen ratio (CN); phosphate absorption coefficient (PAC); electrical conductivity (EC, mS
cm−1); cation exchange capacity (CEC, me 100 g−1); humus rate (HR, %); total carbon (C-t, %); total
nitrogen (N-t, %); ammonium nitrogen (N-a, mg 100 g−1); hot-water extractable nitrogen (N-h, mg
100 g−1); nitrate nitrogen (N-n, mg 100 g−1); available phosphorus (P-a, mg 100 g−1); exchangeable
potassium (K, mg 100g−1); exchangeable calcium (Ca, mg 100 g−1); exchangeable sodium (Na, mg 100
g−1); exchangeable magnesium (Mg, mg 100 g−1); hot-water soluble boron (B-s, ppm); soluble copper
(Cu, ppm); easily reducible manganese (Mn, ppm); soluble zinc (Zn, ppm); calcium-magnesium ratio
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(CaMg, equivalence ratio; E.R.); magnesium-potassium ratio (MgK, E.R.); base saturation percentage
(BSP, %); calcium saturation percentage (CSP, %); exchangeable sodium percentage (ESP, %); available
silicate (SiO, mg 100 g−1); free iron oxide (Fe, %); dry density (DD, g cm−3); sand (S, %); silt (SL, %);
and clay (CL, %).

To estimate these local regression models for the SAS3000, two sets of 231 field-moist soil samples
and their VNIR-SDRS were collected from the total of 24 fields of the six growers, from 2017 to 2018. In
addition, in 2019, two sets of 65 field-moist soil samples and their VNIR-SDRS were collected from a
total of 10 fields of 4 of the growers (G2, G3, G4, and G5), to confirm the accuracy of predictions for
unknown samples using the respective estimated local regression models. Thus, in total, two sets of
296 field-moist soil samples and their VNIR-SDRS were collected, at the VNIR-SDRS data measurement
points, after harvesting the taro plants in combination with tilling, from 2017 to 2019. One set was
analyzed at our laboratory in Tokyo University of Agriculture and Technology (TUAT; Tokyo, Japan),
and the other at the Agricultural Product Chemical Research Laboratory of the Federation of Tokachi
Agricultural Cooperative Association (APCRL; Hokkaido, Japan) and the Oita Laboratory of Sumika
Chemical Analysis Service, Ltd. (SCAS; Oita Pref., Japan). The 296 field-moist soil samples sent to
TUAT and APCRL, respectively, were transported in a refrigerator car at less than 10 ◦C. At TUAT,
MC was determined using the oven-dry method (110 ◦C, 24 h) [31]. The samples were then stored in
sealable plastic bags at 5 ◦C until the end of MC measurement. After MC measurement, each oven-dry
soil sample was sieved through a 2 mm sieve, and these 2-mm-sieved oven-dry soil samples were used
to measure SOM by the ignition loss method, using a muffle furnace (750 ◦C, 3 h) [31]. MC and SOM
measurements were conducted three times, and the average value was adopted as a dataset for the
multivariate statistical analysis. At APCRL, the field-moist soil samples were oven-dried (60 ◦C, 24 h)
and 2-mm-sieved, to measure the following 30 soil physical and chemical properties: pH, y1, PAC,
EC, CEC, HR, CN, C-t, N-t, N-a, N-h, N-n, P-a, K, Ca, Mg, Na, B-s, Cu, Mn, Zn, CaMg, MgK, BSP,
CSP, ESP, DD, S, SL, and CL. These soil properties were assessed using the soil analysis method of the
Agricultural Research Division [32]. The 296 2-mm-sieved oven-dry soil samples left by APCRL were
sent to SCAS for analysis of SiO and Fe. The SiO solution was extracted using soil nutrient analysis
method 14 [33] and the Fe solution was extracted using soil nutrient analysis method 16.3.4 [34]. These
sample solutions were assessed with an inductivity coupled plasma optical emission spectrometer
SPS5520ICP-OES (Agilent Technologies International Japan, Ltd., Tokyo, Japan).

2.3. Absorption Spectral Wavelength of Soil Properties

It has been confirmed that MC, HR, SiO, Fe, and CL have absorption wavelengths at 410 (SiO),
420 to 800 (Fe3+), 425 (Fe), 450 (HR), 470 (HR), 570 (HR), 620 (HR), 760 (MC), 930 (SiO), 970 (MC), 1000
(SiO), 1020 to 1070 (Fe2+), 1025 (Fe), 1075 (Fe), 1100 to 1600 (HR), 1380 to 1410 (Fe), 1390 (CL), 1400
(CL), 1420 (CL), and 1450 nm (MC) [35–48]. As the spectra measurement range of the SAS3000 was 350
to 1700 nm, it is theoretically possible to estimate regression models for all five soil properties (MC,
HR, SiO, Fe and CL) using the device. However, the partial least squares regression (PLSR) spectra
analysis range was set at 500 to 1600 nm, meaning that absorbance wavelengths of 350 to 500 nm and
1600 to 1700 nm could not be used in this analysis for regression model estimation. In addition, the
absorption wavelengths of the other 29 soil properties (29 SPs) did not fall within this 500 to 1600
nm range. Thus, to estimate the soil property regression models for these 29 SPs, it was necessary to
confirm the correlation between their measured values and those of the 5 SPs [49–51]. Specifically,
when there was sufficient (0.4 or greater) measured value correlation between the above 5 SPs and the
remaining 29 SPs, we were able to estimate regression models.

2.4. Spectra Data Processing and Partial Least Squares Regression Setting

To estimate the regression models, two spectrometer (visible and NIR range spectrophotometer)
data sets were converted to a VINR-SDRS data sets, and an absorbance spectra data sets, using the
following procedure, based on Kodaira and Shibusawa [27] and using Data Monitor Software (DMS;
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Shibuya Seiki Co., Ltd.). To transform the two spectrometer data sets to VNIR-SDRS data sets, the
former was connected at 1000 nm, coupled with equal (5-nm-interval) spacing of the wave number
resolution, with a wavelength range from 350 to 1700 nm, using the interpolation method. Then, the
VNIR-SDRS data sets were converted to absorbance spectra data sets, using white reference spectra data
(with a standard reflector: SRS-40-020; Labsphere, Inc., North Sutton, NH, USA) and dark reference
spectra data (with light shielding). The white and dark reference spectra data were recorded once in
each experimental field before commencing the VNIR-SDRS measurement [27].

Since absorbance spectra data are affected by uncertain noise (caused by factors such as the soil
particle size, moisture variability, and light scatter), pretreatment of the spectra data can often improve
the regression model accuracy, compared to using untreated absorbance spectra data. In addition, to
enhance weak signals and reduce the noise and light scatter that would affect the baseline, smoothing
and derivative mathematical pretreatment can be useful, depending on the parameter conditions.
For example, the first derivative can eliminate baseline fluctuation, and the second can eliminate
multiplicative fluctuation. In addition, the second derivative offers the following beneficial effects:

(i) the peak waveforms can be separated from the broad absorption wavelengths;
(ii) the peak wavelength values are enhanced more than with the first derivative;
(iii) the peak wavelength value corresponds to the original absorbance wavelength (the peak waveform

is inverted).

Thus, in this study, the second derivative coupled with smoothing (2DS-G) was applied [52].
MLR (multiple regression analysis), PCA (principal component analysis), PCR (principal

component regression), NN (neural network) are among the multivariate analysis methods. In
this paper, PLSR analysis [53–55] coupled with full (leave-one-out) cross-validation was applied,
because:

(i) even when there are fewer response variables than explanatory variables, it is possible to estimate
a regression model;

(ii) it enables orthogonalization between wavelength variables, to avoid multicollinearity.

2DS-G and PLSR were performed using Unscrambler Ver.9.8 software (U98, CAMO Analytics AS,
Oslo, Norway).

In the field measurement using the SAS3000, it is impossible to remove all the gravel and crop
residues, roots, creatures, etc. from the soil. Therefore, there are some outliers in absorbance spectra
data sets, and it is necessary to exclude outliers from the absorbance spectra data sets. In this study, the
selection criteria for identifying a given sample as an outlier was the largest residual variance value,
based on the residual sample variance plot in U98 after the PLSR [56,57]. This process of absorbance
spectra data outlier exclusion was repeated until the coefficient of determination (R2) of the regression
model was 0.82 or higher. In this study, we decided to exclude outliers up to a maximum of 115 samples
(roughly half of the 231 total samples). In this study, the following 2DS-G and PLSR parameters were
set using U98:

2DS-G setting was,

(i) the wavelength range used for calculation was 350 to 1700 nm;
(ii) the ‘polynomial order’ was second order;
(iii) the ‘number of smoothing points’ was 3 to 41 (only odd numbers could be selected), and the

guideline for selection was the ‘number of smoothing points’ with the highest R2.

PLSR setting was,

(i) the wavelength range used for calculation was 500 to 1600 nm, with reference to the report by
Kodaira and Shibusawa [27];



Soil Syst. 2020, 4, 40 7 of 22

(ii) the ‘number of PCs’ (principal components; i.e., the number of PLSR factors) was 20; limited to
this number, for each regression model, to prevent overfitting;

(iii) the remaining settings were default settings.

2.5. Evaluation of Regression Models and Predicted Values

The regression models and predicted values for the unknown samples were evaluated using the
following performance indicators: the R2 value, the root mean square error (RMSE), residual prediction
deviation (RPD), range error ratio (RER), and the ratio of prediction error to interquartile range (RPIQ).
Generally, a model that performs well would have large values of R2, RPD, RER, and RPIQ, and a
small RMSE value. These performance indicators were computed for each soil property according to
the following equations:

R2 = 1−

∑N
i=1(yi − ŷi)

2∑N
i=1

(
yi − yi

)2 (1)

RMSE =

√√√
1
n

N∑
i=1

(yi − ŷi)
2 (2)

RPD =
S.D.

RMSE
(3)

where yi is the measured value of the ith sample measured by conventional soil analysis, ŷi is the
predicted value of the ith sample, yi is the average of the predicted values, N is the number of
samples, and S.D. is the standard deviation of the observed soil property in the full cross-validation or
prediction dataset;

RER =
Range
RMSE

(4)

where the RER is the ratio of the range of the measured values of soil properties in the full cross-validation
set or the prediction set to the RMSE;

RPIQ =
IQ

RMSE
(5)

where IQ is the interquartile range of the observed soil property in the full cross-validation or prediction
dataset (IQ = Q3 −Q1, quantifying the spread in the central 50% of the data (Q2), with Q1 as the median
of the first half, and Q3 the median of the second half). RPD and RPIQ (ratio of performance to IQ)
are used in the spectroscopic literature to make data more comparable, accounting for the differences
in the spread of the data. Their explanatory power in terms of classifying the model performance is
the same as R2, but they are also useful for comparing datasets with different data spreads; with the
additional advantage that RPIQ can be used for skewed data [57,58].

Previous studies defined criteria to assess the relative fit of the regression model using performance
indicators, as following: R2 > 0.90, 0.82 < R2

≤ 0.90, 0.66 < R2
≤ 0.82, 0.50 < R2

≤ 0.66, and R2
≤ 0.5;

RPD > 3.0, 2.5 < RPD ≤ 3.0, 2.0 < RPD ≤ 2.5, 1.5 < RPD2.0, and RPD ≤ 1.5; RER > 20, 15 < RER ≤
20; 10 < RER ≤ 15, 8 < RER ≤ 10, and RER ≤ 8 [59,60]. RPIQ follows the same classification format
as RPD. In this study, based on these indicators, the regression model performance was classified
into five categories: Category A is excellent, B is good (successful for RER), C indicates approximate
quantitative prediction (moderately successful for RER), D indicates capability to distinguish between
high and low (moderately useful for RER), and E means not useful (screening for RER).

2.6. Digital Soil Mapping Software

Traditionally, ArcGIS Ver.10.0 software (ESRI Japan Co., Chiyoda-ku, Tokyo, Japan) has been
used to display digital soil maps, but parameter setting of ArcGIS is complicated and is both time
consuming and very expensive [27]. Thus, in this study, the digital soil maps were prepared using
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Soil Map Viewer (SMV, Figure 4) for the SAS3000. The generated digital soil maps are displayed with
colored dots representing the soil sensing points, meaning that no interpolation method (e.g., Inverse
Distance Weighting, Kriging) is required. The features of SMV are:

(i) classification of predicted values can be specified up to 5 levels;
(ii) the boundary line of each field is displayed (boundary position data is required);
(iii) statistics data of the mean, max, min, and coefficient of variation can be confirmed;
(iv) the absorbance spectra, the absorbance spectra after pretreatment and predicted value at each

measurement point can be confirmed;
(v) a histogram of the selected area is displayed.
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As a result, it is possible to display the 34 soil properties soil map and talk with growers on site
immediately after the measurement, and to provide a sound analytical foundation for soil management.
In particular, (iv) can support outlier determination as unusual spectra. SMV was jointly developed for
the SAS3000 by Shibuya Seiki Co., Ltd. and the authors.

2.7. Workflow of Regression Model Estimation and Digital Soil Mapping

Figure 5 shows the workflow of the regression model estimation and digital soil mapping. The
regression models are estimated by performing C, D, and E for each soil property in the workflow.
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3. Results

3.1. Evaluation and Accuracy of Local Regression Models

Table 1 shows the correlation between measured values. As the absorption wavelengths of CL, Fe,
HR, MC, and SiO (5 SPs, red character) have been confirmed to fall within the range of 500 to 1600 nm,
it is theoretically possible to estimate local regression models for these properties using PLSR. The
measured values for BSP, Ca, CaMg, CEC, CSP, C-t, Cu, DD, MgK, N-h, N-t, P-a, PAC, pH, S, SL, SOM
and y1 (18 SPs, green character) were confirmed to be in correlation with those of the 5 SPs; while
those of B-s, CN, EC, ESP, K, Mg, Na, N-a, N-n and Zn (10 SPs, blue character) were confirmed to
be in correlation with those of these 18 SPs. Consequently, it was confirmed that the 10 SPs had an
indirect correlation with the 5 SPs, through their correlation with the 18 SPs. There was no confirmed
correlation with measured values in the case of Mn. Therefore, with the exception of Mn, it was
confirmed that local regression model estimation was possible for both the 10 SPs and the 18 SPs. For
Mn, it is statistical estimate.

The accuracy of the respective local regression models estimated using PLSR is shown in Table 2.
Without outlier exclusion, the smoothing points (S.P.) of 2DS-G for the absorbance spectra with the
highest R2 were 5 to 33. The average absorbance spectra of the 231 samples, after pretreatment by
2DS-G, are shown in Figure 6. The S.P. of B-s, Fe, MC, N-t, and P-a were 30 or more, meaning that
greater noise removal was required than in the case of the other soil properties. On the other hand, the
S.P. of CSP and EC were 10 or less, suggesting that it was necessary to utilize small spectral fluctuation.
When outliers were excluded until R2 exceeded 0.82, the number of PLSR factors (F) for the local
regression models was 2 to 14, except in the case of Cu (Table 2). The accuracy of the Cu local regression
model was R2 = 0.81, and F was 15 when the maximum outlier was 115. Although F for B-s was
2, the number of correlations between measured values was 3, so the result was inferred to be ‘not
underfitting’ (Table 1). As F for y1 and DD was 14, there was concern about overfitting; however, the
result was inferred to be ‘not overfitting’, because the F selected in the previous study was 19 [61].
The local regression model R2 accuracy of full cross-validation was classified as Category C for Cu,
Category D for N-n, and Category B for the other local regression models. The accuracy of R2, RPD,
and RER for full cross-validation was 0.65 to 0.84 for R2, 1.70 to 2.50 for RPD, and 7.15 to 14.6 for RER.
In the full cross-validation RPD classification, the local regression models for BSP, CL, CEC, Cu, CSP,
DD, EC, MgK, N-a, N-h, N-n, pH, SiO, and y1 were classified as Category D. The full cross-validation
RER of CaMg, DD, EC, pH, N-a, and y1 was classified as Category E. Therefore, in order to estimate
these local regression models, it was confirmed that the range of measured values should be expanded.
Scatter plots of the three soil properties with R2 > 0.82 (B-s, C-t, HR) and the four soil properties with
low R2 (BSP, Mn, N-n, SiO) are shown in Figure 7 as examples of the scatter plots of measured values
versus predicted full cross-validation values. The three soil properties with high R2 accuracy were
distributed on the 1:1 line, but the four soil properties with low R2 accuracy were distributed away
from the 1:1 line.
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Table 1. Correlation coefficients between the measured values and between the regression coefficients of the local regression models.
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ci
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Property Correlation coefficient between measured value

BSP B-s Ca CaMg CEC CL CN CSP C-t Cu DD EC ESP Fe HR K MC

BSP — 0.20 0.94 0.67 0.59 −0.10 0.09 0.98 0.64 −0.70 −0.45 −0.24 0.06 −0.21 0.64 −0.08 −0.05
B-s 0.03 — 0.16 −0.15 0.25 0.13 0.04 0.12 0.22 −0.16 0.00 0.01 0.00 0.16 0.22 0.18 −0.16
Ca 0.31 −0.07 — 0.76 0.77 −0.19 0.11 0.96 0.76 −0.69 −0.53 −0.26 −0.04 −0.22 0.76 −0.15 0.05

CaMg 0.33 −0.02 0.42 — 0.40 −0.12 0.36 0.80 0.76 −0.40 −0.29 −0.20 −0.18 −0.34 0.76 −0.43 −0.01
CEC 0.28 0.07 0.04 0.16 — −0.31 −0.10 0.58 0.56 −0.70 −0.52 −0.11 −0.10 0.05 0.56 0.14 0.25
CL 0.10 0.30 −0.23 −0.30 −0.04 — 0.30 −0.12 −0.07 0.26 0.65 0.00 0.24 −0.01 −0.07 −0.01 −0.64
CN 0.20 0.08 0.07 0.08 −0.04 0.39 — 0.18 0.36 0.16 0.19 −0.41 −0.23 −0.27 0.36 −0.60 −0.22
CSP 0.18 0.06 0.12 0.02 0.00 0.08 0.13 — 0.72 −0.65 −0.46 −0.27 −0.01 −0.27 0.72 −0.21 −0.03
C-t 0.27 0.24 0.26 0.59 0.10 −0.01 0.39 0.04 — −0.39 −0.29 −0.15 −0.19 −0.36 1.00 −0.27 −0.06
Cu −0.26 −0.36 −0.01 −0.06 −0.14 0.16 0.03 −0.01 −0.17 — 0.77 0.03 −0.08 −0.15 −0.39 −0.24 −0.19
DD 0.15 0.14 −0.26 0.06 −0.03 −0.13 0.03 −0.03 0.25 0.05 — 0.23 0.19 0.11 −0.29 0.07 −0.49
EC 0.01 0.08 −0.04 −0.03 −0.04 0.01 0.01 −0.22 0.02 −0.14 0.11 — 0.48 0.10 −0.15 0.44 −0.03
ESP 0.01 0.23 −0.07 −0.11 −0.12 0.22 −0.33 −0.04 −0.10 0.01 0.07 0.05 — 0.07 −0.19 0.32 −0.34
Fe −0.10 −0.04 −0.02 0.07 0.17 −0.41 −0.76 −0.01 −0.27 −0.07 −0.04 −0.06 −0.11 — −0.36 0.33 0.26
HR 0.23 0.13 0.35 0.28 0.18 −0.07 0.17 0.06 0.38 −0.08 0.13 0.01 −0.20 −0.07 — −0.27 −0.06
K −0.29 0.17 −0.17 −0.18 0.08 −0.26 −0.78 −0.08 −0.32 −0.02 0.04 0.00 0.10 0.78 −0.24 — −0.12

MC −0.04 −0.29 0.25 0.09 0.14 −0.41 −0.06 −0.01 −0.04 −0.05 −0.15 −0.08 −0.70 0.26 0.24 0.09 —
Mg −0.18 −0.06 −0.10 −0.27 0.05 0.18 −0.28 0.00 −0.31 −0.14 −0.20 0.04 −0.21 0.28 −0.47 0.46 0.28

MgK −0.13 −0.03 −0.03 −0.08 −0.16 0.03 0.28 −0.06 −0.02 0.09 −0.20 −0.04 0.08 −0.37 −0.07 −0.04 −0.10
Mn −0.37 0.09 −0.43 −0.42 −0.07 0.29 −0.41 −0.02 −0.31 0.10 0.08 −0.02 0.38 0.17 −0.44 0.48 −0.26
Na −0.03 0.08 0.12 0.01 −0.02 −0.03 −0.49 −0.05 −0.25 0.04 −0.20 −0.01 0.49 0.32 −0.23 0.06 −0.08
N-a −0.06 0.09 −0.07 −0.03 −0.12 0.03 −0.03 0.01 0.09 −0.09 0.16 −0.03 −0.04 0.08 −0.07 0.06 0.00
N-h 0.24 0.16 0.18 0.26 0.01 0.05 0.12 0.21 0.36 −0.01 0.33 −0.02 −0.02 −0.01 0.42 −0.40 −0.04
N-n 0.21 0.05 0.26 0.17 −0.05 −0.02 0.14 0.01 0.29 −0.02 0.29 0.07 −0.15 −0.01 0.34 −0.14 0.18
N-t 0.16 0.11 0.18 0.26 0.12 −0.10 0.15 0.17 0.29 −0.08 0.07 −0.04 −0.31 0.01 0.76 −0.37 0.35
P-a −0.42 0.15 0.16 0.14 0.07 0.19 0.37 0.21 0.24 −0.21 −0.01 0.06 0.18 −0.36 0.38 −0.38 −0.15

PAC 0.42 −0.25 0.12 0.04 0.22 −0.58 −0.56 −0.02 −0.18 −0.06 −0.24 0.00 −0.23 0.60 −0.01 0.40 0.50
pH 0.44 −0.08 0.35 0.39 0.22 −0.37 −0.25 0.12 0.12 0.04 −0.07 −0.12 0.01 0.27 0.19 0.07 0.27
S 0.12 −0.46 0.30 0.13 0.04 −0.13 0.28 −0.08 0.13 0.21 0.06 −0.06 −0.34 −0.30 0.23 −0.11 0.49

SiO 0.09 −0.13 −0.19 0.19 0.28 −0.56 −0.49 0.02 0.00 −0.08 −0.13 −0.04 −0.10 0.50 0.06 0.23 0.35
SL 0.14 0.02 0.24 0.09 −0.05 −0.16 −0.55 0.03 −0.17 −0.14 −0.26 0.03 0.66 0.28 −0.17 0.03 −0.25

SOM 0.08 0.07 0.18 0.25 0.14 −0.13 0.18 0.19 0.25 −0.01 0.03 −0.03 −0.43 0.01 0.67 −0.21 0.37
y1 −0.06 0.08 −0.06 −0.08 −0.09 0.18 0.04 0.02 0.02 0.26 0.38 0.01 0.04 0.02 −0.07 −0.16 −0.27
Zn −0.09 0.15 −0.27 −0.11 −0.14 0.29 0.23 0.12 0.02 0.26 0.15 0.00 0.14 −0.12 −0.37 0.00 −0.58

Nc 3 1 2 3 0 4 7 0 1 0 0 0 4 5 5 6 5
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Table 1. Cont.

Property Mg MgK Mn Na N-a N-h N-n N-t P-a PAC pH S SiO SL SOM y1 Zn Nc

BSP 0.10 0.11 −0.30 0.27 −0.29 0.30 −0.17 0.65 0.39 0.14 0.89 −0.02 0.23 0.13 0.43 −0.66 −0.07 12
B-s 0.47 0.14 −0.14 0.08 −0.15 0.16 −0.06 0.24 0.58 −0.23 0.11 −0.28 −0.20 0.24 0.00 −0.09 0.47 3
Ca −0.03 0.08 −0.30 0.25 −0.30 0.33 −0.15 0.77 0.34 0.23 0.89 0.05 0.26 0.12 0.56 −0.64 −0.13 12

CaMg −0.58 −0.16 −0.30 −0.01 −0.19 0.43 −0.20 0.69 0.05 0.10 0.57 0.06 0.12 0.03 0.69 −0.38 −0.33 13
CEC 0.23 0.09 −0.17 0.27 −0.17 0.24 0.06 0.63 0.30 0.38 0.73 0.15 0.36 0.06 0.40 −0.47 0.09 12
CL 0.00 −0.06 0.01 0.10 0.15 0.32 −0.14 −0.17 0.30 −0.70 −0.22 −0.85 −0.55 0.42 −0.16 0.28 0.26 6
CN −0.33 0.06 −0.16 −0.27 −0.29 0.02 −0.38 0.09 −0.07 −0.30 −0.03 −0.29 −0.27 0.20 0.29 −0.07 −0.31 2
CSP −0.10 0.06 −0.31 0.21 −0.30 0.33 −0.20 0.71 0.33 0.14 0.86 0.01 0.21 0.11 0.54 −0.64 −0.16 12
C-t −0.31 −0.09 −0.38 0.03 −0.18 0.54 −0.09 0.96 0.25 0.00 0.50 −0.01 −0.09 0.10 0.76 −0.27 −0.08 10
Cu −0.27 −0.04 0.08 −0.34 0.07 −0.27 −0.08 −0.46 −0.26 −0.41 −0.82 −0.17 −0.54 0.01 −0.27 0.56 −0.18 11
DD −0.10 −0.16 0.06 −0.02 0.33 0.33 −0.03 −0.36 0.08 −0.59 −0.50 −0.57 −0.47 0.30 −0.14 0.57 0.39 12
EC 0.04 −0.24 0.14 0.42 0.51 0.34 0.75 −0.04 −0.14 −0.01 −0.33 0.05 −0.07 −0.09 −0.04 0.52 0.16 7
ESP 0.17 −0.06 0.35 0.93 0.44 0.25 0.39 −0.13 0.11 −0.28 −0.02 −0.31 −0.20 0.28 −0.22 0.28 0.17 3
Fe 0.27 −0.03 0.25 0.08 0.10 −0.20 0.17 −0.31 0.00 0.23 −0.06 0.04 0.28 −0.06 −0.22 0.02 0.31 0
HR −0.31 −0.92 −0.38 0.03 −0.18 0.54 −0.09 0.96 0.25 0.00 0.50 −0.01 −0.09 0.10 0.76 −0.27 −0.08 11
K 0.43 −0.47 0.14 0.36 0.34 0.16 0.52 −0.10 0.27 −0.04 0.01 −0.02 −0.01 0.05 −0.38 0.16 0.53 7

MC 0.05 0.20 −0.01 −0.25 −0.12 −0.39 0.05 0.00 −0.43 0.85 0.12 0.70 0.76 −0.55 0.20 −0.21 −0.30 7
Mg — 0.43 0.01 0.23 −0.07 −0.23 0.05 −0.22 0.27 0.13 0.19 −0.04 0.19 0.07 −0.40 −0.17 0.37 5

MgK −0.19 — 0.00 −0.03 −0.30 −0.32 −0.30 −0.11 −0.03 0.22 0.14 0.04 0.22 −0.01 0.00 −0.27 −0.10 3
Mn 0.41 −0.14 — 0.29 0.23 −0.20 0.23 0.01 −0.12 −0.02 −0.24 −0.08 −0.01 0.13 −0.24 0.15 0.06 0
Na 0.06 −0.05 0.32 — 0.37 0.33 0.39 0.11 0.21 −0.13 0.25 −0.24 −0.07 0.30 −0.06 0.09 0.19 2
N-a 0.06 −0.07 −0.01 −0.01 — 0.43 0.34 −0.10 −0.12 −0.15 −0.28 −0.10 −0.16 0.02 −0.04 0.69 0.21 4
N-h −0.40 −0.29 −0.24 −0.06 0.08 — 0.12 0.57 0.27 −0.29 0.24 −0.36 −0.23 0.28 0.47 0.27 0.29 6
N-n −0.14 −0.24 −0.30 −0.03 0.02 0.36 — 0.02 −0.08 0.06 −0.22 0.22 −0.02 −0.23 −0.11 0.30 0.15 2
N-t −0.37 0.00 −0.30 −0.21 −0.01 0.42 0.09 — 0.29 0.09 0.54 0.07 −0.03 0.05 0.73 −0.26 0.01 11
P-a −0.38 0.20 −0.42 0.02 −0.01 0.19 0.02 0.41 — −0.44 0.32 −0.42 −0.35 0.40 −0.12 −0.20 0.64 6

PAC 0.40 −0.18 0.08 0.05 −0.02 −0.15 −0.03 0.01 −0.33 — 0.34 0.72 0.86 −0.51 0.26 −0.37 −0.31 8
pH 0.07 −0.27 0.00 0.19 −0.08 0.11 0.13 0.19 0.02 0.45 — 0.07 0.48 0.10 0.37 −0.72 −0.02 12
S −0.10 0.11 −0.46 −0.31 −0.08 0.08 0.28 0.17 0.02 0.10 0.14 — 0.59 0.84 0.11 −0.17 −0.31 7

SiO 0.23 −0.30 0.13 0.16 −0.12 −0.01 0.12 0.05 −0.27 0.75 0.65 0.04 — −0.44 0.16 −0.43 −0.25 9
SL −0.21 −0.10 0.23 0.68 0.01 0.04 −0.15 −0.19 0.09 0.08 0.25 −0.38 0.17 — −0.02 0.02 0.26 6

SOM 0.03 −0.05 −0.25 −0.31 −0.05 0.32 0.06 0.89 0.33 0.06 0.16 0.06 0.06 −0.26 — −0.12 −0.24 10
y1 −0.16 0.01 0.05 0.01 0.08 0.20 0.07 −0.05 −0.08 −0.22 −0.16 −0.08 −0.16 −0.11 −0.03 — 0.16 10
Zn 0.00 −0.01 0.40 −0.06 0.02 0.01 −0.04 −0.34 −0.32 −0.29 −0.20 −0.33 −0.20 −0.16 −0.28 0.37 — 3

Nc 5 0 9 3 0 4 0 4 3 9 3 3 5 3 3 0 2 —

NC: Number of confirmed correlations (0.40 or higher in grey).
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Table 2. Accuracy of the 34 regression models and evaluation of the full cross-validated results.

Property N S.P. F
Range Calibration Full Cross-Validation

Min Max RMSE R2 S.D. Range RMSE R2 RPD RER

BSP 218 13 10 36.0 – 129 7.78 0.82 18.5 92.7 10.8 0.66 C 1.72 D 8.62 D
B-s 157 33 2 0.17 – 0.55 0.03 0.82 0.06 0.37 0.03 0.82 B 2.35 C 14.6 C
Ca 219 19 8 259 – 1486 131 0.82 310 1231 152 0.76 C 2.04 C 8.09 D

CaMg 224 15 7 2.39 – 20.3 2.12 0.82 5.04 17.9 2.47 0.76 C 2.05 C 7.26 E
CEC 205 13 7 29.0 – 50.6 2.02 0.82 4.77 23.2 2.52 0.72 C 1.89 D 9.23 D
CL 184 15 8 18.2 – 37.3 1.34 0.83 3.29 19.2 1.65 0.75 C 1.99 D 11.6 C
CN 178 27 6 10.7 – 13.6 0.22 0.82 0.53 2.98 0.24 0.79 C 2.20 C 12.4 C
CSP 213 7 5 28.4 – 110 8.22 0.82 19.5 81.6 9.93 0.74 C 1.96 D 8.21 D
C-t 231 15 9 2.39 – 6.57 0.26 0.90 0.84 4.18 0.35 0.83 B 2.45 C 12.1 C
Cu 116 15 5 0.24 – 0.73 0.04 0.81 0.09 0.49 0.05 0.71 C 1.86 D 10.6 C
DD 231 19 14 0.66 – 1.04 0.03 0.86 0.09 0.38 0.05 0.69 C 1.80 D 7.35 E
EC 120 5 4 0.09 – 0.18 0.01 0.82 0.02 0.09 0.01 0.67 C 1.73 D 7.70 E
ESP 173 27 6 0.06 – 0.38 0.03 0.82 0.07 0.32 0.03 0.79 C 2.16 C 10.4 C
Fe 143 31 6 4.01 – 5.33 0.12 0.82 0.29 1.33 0.14 0.78 C 2.15 C 9.75 D
HR 231 27 8 4.12 – 11.3 0.51 0.88 1.46 7.20 0.58 0.84 B 2.50 B 12.4 C
K 192 29 7 22.1 – 110 9.08 0.82 21.5 87.8 10.1 0.78 C 2.12 C 8.67 D

MC 166 31 6 35.4 – 50.4 1.27 0.82 2.99 14.9 1.38 0.79 C 2.17 C 10.8 C
Mg 183 29 7 28.9 – 114 8.12 0.83 19.5 84.6 9.20 0.78 C 2.12 C 9.20 D

MgK 155 17 7 1.33 – 5.30 0.37 0.83 0.89 3.97 0.46 0.73 C 1.93 D 8.58 D
Mn 183 21 7 17.6 – 92.5 7.90 0.83 19.1 74.8 9.19 0.77 C 2.08 C 8.14 C
Na 182 17 7 1.17 – 5.02 0.36 0.82 0.86 3.85 0.42 0.76 C 2.04 C 9.08 C
N-a 199 11 8 0.31 – 5.83 0.56 0.82 1.34 5.52 0.77 0.67 C 1.73 D 7.15 E
N-h 218 23 10 2.20 – 12.2 0.82 0.82 1.96 10.0 1.01 0.74 C 1.94 D 9.95 D
N-n 151 21 10 0.21 – 1.43 0.11 0.82 0.25 1.23 0.15 0.65 D 1.70 D 8.25 D
N-t 229 33 8 0.19 – 0.49 0.03 0.83 0.06 0.30 0.03 0.79 C 2.16 C 10.3 C
P-a 151 31 5 0.62 – 54.4 5.17 0.82 12.3 53.7 5.55 0.80 C 2.21 C 9.67 D

PAC 231 13 8 1540 – 2699 79.1 0.86 215 1159 102 0.77 C 2.10 C 11.4 C
pH 212 13 7 5.52 – 7.44 0.20 0.82 0.47 1.92 0.24 0.73 C 1.92 D 7.90 E
S 165 21 5 24.4 – 52.3 1.79 0.82 4.23 28.0 2.00 0.78 C 2.12 C 14.0 C

SiO 231 13 8 56.7 – 364 17.5 0.84 43.8 307 22.7 0.73 C 1.93 D 13.6 C
SL 134 21 6 27.7 – 38.3 0.97 0.82 2.31 10.5 1.12 0.77 C 2.07 C 9.44 D

SOM 219 33 8 13.8 – 21.3 0.70 0.82 1.65 7.42 0.77 0.79 C 2.15 C 9.66 D
y1 217 23 14 0.06 – 1.19 0.10 0.84 0.26 1.13 0.15 0.67 C 1.75 D 7.70 E
Zn 165 29 5 2.24 – 13.2 0.94 0.82 2.24 11.0 1.03 0.79 C 2.18 C 10.7 C

N: Number of samples; S.P.: smoothing points; F: PLSR factor; A, B, C, D, and E: accuracy indicator categories.
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PAC showed response variable correlation with CL, Cu, DD, MC, P-a, S, SiO, and SL (Table 1).
Furthermore, PAC showed correlation between local regression model coefficients for BSP, CL, CN, Fe,
K, MC, Mg, pH, and SiO (Table 1). PAC’s response variable and local regression coefficient correlation
showed a positive correlation with MC and SiO, and a negative correlation with CL. In particular,
the correlation with 5 SPs is very important. Given these results, even if the PAC has no absorption
wavelength, it is assumed that the PAC local regression model is reliable. The same applies to the other
local regression models in Table 1. In contrast, Mn showed no correlation with the measured values of
any soil property (Table 1). However, in the local regression model coefficients, a negative correlation
was confirmed with Ca, CaMg, CN, HR, P-a, and S; a positive correlation was confirmed with Mg, K,
and Zn (Table 1). Thus, only nine coefficient correlations were confirmed, and the Mn local regression
model was assumed to be of low reliability.

3.2. Evaluation and Accuracy of Predicted Values for Unknown Samples

The accuracy of the predicted values for the 65 unknown samples, using the 34 local regression
models, is shown in Table 3. In the case of R2, RPD, and RPIQ, the local regression models for 10 soil
properties (CaMg, CL, C-t, HR, MC, N-t, PAC, S, SOM and SiO) were classified as Category C or D,
with the other 24 local regression models classified as Category E. The RER of HR, N-t, and PAC was
Category D, while the others were Category E. The RER of HR, N-t, PAC was Category D; others were
Category E. Therefore, in the overall dataset for this experiment, the predicted values for HR, N-t, and
PAC, in the 65 unknown samples, using the local regression models, were considered to ‘distinguish
between high and low’, as absolute quantitative values for each sample. The predicted values for
properties other than HR, N-t, and PAC were evaluated to be ‘not useful’ as absolute quantitative
values for each sample. To investigate why the accuracy of the predictions decreased, the transition in
the measured and predicted values for the 34 soil properties in the 65 unknown samples is shown
in Figure 8, where the two blue lines are the upper and lower predictable limits (predictable range),
the black line is the measured value, and the red line is the predicted value. Large error is confirmed
in the case of 22 soil properties (B-s, BSP, Ca, CEC, CN, CSP, Cu, EC, ESP, Fe, MC, Mg, K, MgK, Na,
N-n, P-a, PAC, pH, SL, y1, and Zn), where the unknown samples fell outside the predictable range of
the respective local regression models. This result suggests that each of these local regression models
must be re-calibrated by PLSR, using a new dataset that includes the unknown samples outside the
predictable range. The mean of the measured values (M.M.) and predicted values (M.P.), and error
percentage (E.P.), are shown in Table 3. A total of 15 properties (B-s, BSP, CEC, Cu, EC, ESP, MgK, Na,
N-a, N-h, N-n, P-a, SiO, y1, and Zn) showed an error of 10% or more, suggesting that bias adjustment is
required. On the other hand, it was visually confirmed that the predicted values followed the transition
in the measured values. Therefore, it was determined that these predicted values estimated by the local
regression models could be used for soil maps displaying relative quantitative values. In particular, in
this study, 13 soil properties (CL, CN, C-t, DD, Fe, HR, MC, N-t, PAC, S, SL, SiO, and SOM) could be
used as relative quantitative values.
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Table 3. Evaluation of the predicted values for 34 soil properties estimated using the local regression models.

Property
Prediction (N = 65)

S.D. RMSE Range IQ R2 RPD RPIQ RER M.M. M.P. E.P.(%)

BSP 22.9 25.1 105 21.1 0.08 E 0.91 E 0.84 E 4.17 E 78.7 89.6 13.9
B-s 0.15 0.14 0.76 0.14 0.41 E 1.06 E 0.99 E 5.36 E 0.45 0.38 16.1
Ca 318 360 1346 361 0.08 E 0.88 E 1.00 E 3.74 E 922 970 5.28

CaMg 3.15 3.39 11.0 5.48 0.27 E 0.93 E 1.62 D 3.25 E 9.89 9.91 0.24
CEC 4.15 7.31 19.6 5.44 0.00 E 0.57 E 0.74 E 2.67 E 46.8 41.3 11.7
CL 3.97 3.10 15.8 6.49 0.39 E 1.28 E 2.09 C 5.09 E 27.1 27.1 0.01
CN 0.50 0.44 2.46 0.46 0.34 E 1.13 E 1.03 E 5.55 E 12.7 12.6 0.45
CSP 22.0 26.1 99.6 25.8 0.05 E 0.84 E 0.99 E 3.82 E 69.5 65.9 5.11
C-t 0.79 0.51 3.93 0.72 0.65 D 1.54 D 1.41 E 7.68 E 4.69 4.47 4.55
Cu 0.49 0.55 2.05 0.23 0.06 E 0.90 E 0.42 E 3.73 E 0.49 0.32 36.1
DD 0.04 0.05 0.21 0.06 0.26 E 0.83 E 1.14 E 3.98 E 0.75 0.78 3.83
EC 0.04 0.05 0.17 0.05 0.01 E 0.82 E 0.93 E 3.47 E 0.15 0.13 16.0
ESP 0.14 0.21 0.92 0.13 0.00 E 0.65 E 0.60 E 4.34 E 0.31 0.15 50.8
Fe 0.27 0.29 1.72 0.33 0.15 E 0.95 E 1.14 E 6.01 E 4.54 4.49 1.15
HR 1.36 0.69 6.77 1.24 0.77 C 1.98 D 1.80 D 9.83 D 8.08 8.24 2.02
K 19.4 18.9 88.5 23.1 0.12 E 1.02 E 1.22 E 4.67 E 40.6 43.3 6.52

MC 6.43 4.41 29.2 7.65 0.68 C 1.46 E 1.73 D 6.62 E 46.1 45.7 0.70
Mg 23.2 26.1 121 18.7 0.02 E 0.89 E 0.71 E 4.62 E 69.1 69.3 0.34

MgK 2.03 2.31 9.40 2.15 0.03 E 0.88 E 0.93 E 4.07 E 4.56 3.41 25.2
Mn 9.02 13.3 37.9 8.94 0.01 E 0.68 E 0.67 E 2.85 E 38.9 36.2 6.99
Na 2.12 3.25 14.2 1.82 0.03 E 0.65 E 0.56 E 4.37 E 4.54 2.20 51.6
N-a 0.36 1.24 2.18 0.37 0.10 E 0.29 E 0.30 E 1.75 E 0.62 1.38 121
N-h 1.49 1.78 9.39 1.26 0.19 E 0.84 E 0.71 E 5.27 E 5.67 6.47 14.2
N-n 0.95 0.95 4.13 0.60 0.28 E 1.00 E 0.63 E 4.34 E 1.14 0.72 36.9
N-t 0.06 0.04 0.28 0.05 0.67 C 1.64 D 1.39 E 8.04 D 0.37 0.37 0.54
P-a 24.6 35.6 104 30.7 0.05 E 0.69 E 0.86 E 2.94 E 48.2 22.3 53.7

PAC 243 132 1078 314 0.78 C 1.84 D 2.38 C 8.16 D 2160 2100 2.76
pH 0.57 0.74 2.40 0.46 0.00 E 0.77 E 0.63 E 3.25 E 7.01 6.68 4.67
S 5.58 3.83 23.7 9.19 0.53 D 1.46 E 2.40 C 6.19 E 39.9 39.8 0.34

SiO 40.6 35.2 208 23.9 0.54 D 1.15 E 0.68 E 5.90 E 141 162 15.0
SL 2.76 3.22 12.3 3.66 0.00 E 0.86 E 1.14 E 3.82 E 33.0 32.4 1.95

SOM 1.42 1.14 6.79 1.50 0.53 D 1.25 E 1.31 E 5.96 E 18.1 18.7 3.20
y1 0.39 0.41 2.34 0.11 0.01 E 0.96 E 0.28 E 5.76 E 0.26 0.32 21.9
Zn 3.32 3.42 15.2 2.64 0.06 E 0.97 E 0.77 E 4.43 E 8.32 7.48 10.1

M.M.: mean of 65 samples’ measured values; M.P.: mean of 65 samples’ predicted values; E.P.: error percentage of predicted values to measured values; A, B, C, D, and E: accuracy
indicator categories.
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3.3. In-Situ Digital Soil Mapping

In precision agriculture, it is necessary to understand site-specific variability in agricultural fields,
and growers require in-situ digital soil mapping of relative quantitative values. After soil sensing by
the SAS3000, several soil property maps were provided at the field, using SMV, to a taro grower, who
then focused on the soil variability of CL, N-t, and P-a in his field (Figure 9). The soil variation among
CL, N-t, and P-a in the field was divided into eastern and western regions. At that time, the grower
noted that the variability was consistent with top soil dressing because, in the past, fresh red soil was
brought in only in the eastern region. Additionally, the growth, quality, and yield of taro also differed
between the east and west regions. In the grower’s experience, the western region contained a large
amount of gravel and small taros. To improve the variability in the yield, and the quality and efficiency
of the farm work, one scenario for precision agricultural soil management in this field might involve
site-specific fertilization through topdressing and basal dressing, top-soil dressing of the western
region, changing the ridge direction the field, etc. In fact, the grower changed the ridge direction in
the field from east-west to north-south, resulting in greater farm work efficiency (for example, top
dressing, pest control, and harvesting), with no soil improvement costs. Note that, the area without
dots in the southeastern part of the field does not indicate a breakdown of the SAS3000, but rather a
region in which taro plants were stored underground, and which was not measured.
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4. Discussion

4.1. Regression Model Accuracy and Actual Operation

With the range of prediction for each soil property, the local regression models is shown as ‘Range’
in Table 2. In the soil diagnosis of upland fields in Japan, the reference value range is 10 to 30 mg
100 g−1 for P-a (according to the Agricultural Policy Division, [62] standard). In this case, the local
regression model enables effective soil diagnosis. However, since the reference value range is 2.0 to 40
ppm for Zn, the Zn local regression model is not usable, which requires a new local regression model
for Zn, by adding a dataset with multiple Zn measured data of 13 ppm and more (e.g., 14, 15..., 40 ppm
or more). The same logic applies in the case of the other local regression models.

4.2. Performance Indicators and Regression Model

Parameters R2, RPD, RER, and RPIQ are performance indicators for evaluating the absolute
quantitative accuracy of the predicted values, and it is important to note that the criteria for defining
‘excellent’ and ‘not useful’ models using such performance indicators are rather arbitrary, and there is
no statistical basis for how these classification thresholds are determined [63]. Shree et al. [63] suggest
that it is more important for a user to evaluate a model’s performance with respect to the specific
objectives of the given study, and we concur.

4.3. Digital Soil Map for Growers

In this study, CL, N-t, and P-a soil maps were used for grower decision making. The properties of
soil maps required vary depending on the crops and varieties, the agricultural equipment available,
and the philosophy and cultivation experience of the grower. The six growers suggested that it was
important to understand the relative variability of multiple soil properties within a given field and
between fields. As a specification from growers, mobile proximal soil sensor has been required that
can provide various soil properties maps. Therefore, it is highly important, for sustainable farm
management, that a mobile soil sensing system has the ability to provide multiple soil property maps.

4.4. Potential of a Mobile Proximal Soil Sensor

The results of this study, using the SAS3000, are particularly promising in suggesting that the
method can be used for in-situ digital soil mapping, and rapidly, cheaply, and with less labor compared
to conventional laboratory measurement, and the grower’s use of the relative quantitative soil maps to
modify his crop management suggests the possibility of using the SAS3000 as information technology
for precision agriculture. As potential applications of the proposed method, the local regression models,
and SMV for digital soil mapping can be used not only for variable-rate fertilization, crop selection,
land use, and site-specific soil management, but also for effective monitoring of soil organic carbon
(e.g., SOM and C-t), and to provide a sound analytical foundation for agronomic practices that enable
carbon sequestration and reduction in greenhouse gas emissions [10,64–66].

5. Conclusions

The dataset used in this study comprised soil analysis values and VINR soil reflectance spectra,
coupled with GNSS data, from the rotational upland fields of six growers in Saitama Prefecture, Japan.
The local regression models for 30 chemical and 4 physical soil properties, which showed an R2 accuracy
greater than 0.81, were estimated using 2nd derivative pretreatment and PLSR. The evaluation of full
cross-validation, based on the R2 and RPD performance indicators, revealed no ‘excellent’ or ‘not
useful’ local regression model estimations, while six soil properties were classified as ‘screening’ by
the RER indicator. In the performance indicator-based evaluation of the predicted values of 34 soil
properties for 65 unknown samples, estimated using the local regression models, 3 of the 34 models
could ‘distinguish between high and low’, but the other 31 local regression models were ‘not useful’,
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as absolute quantitative values. The study demonstrated that local regression model-based predictions
for 13 of the 34 soil properties in the 65 unknown samples could provide relative quantitative values
for the properties, based on the comparative transition in measured values and predicted values. The
prediction error percentage (10% or less) for the 65 unknown samples confirmed that 20 soil properties
could be successfully estimated as relative quantitative values, suggesting that the proposed method
could generate useful digital soil maps displaying relative quantitative soil property values. Therefore,
we concluded that the SAS3000 digital soil mapping equipment provided relative quantitative accuracy.
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