


Figure S1. Distance-based redundancy analysis (dbRDA) plot of 16S absolute abundance OTU data against environmental factors (Table S1) where, based on a distance-based linear model (DISTLM) sequential tests [1,2].

References

- 1. Legendre, P.; Anderson, M.J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. *Ecological monographs* **1999**, *69*, 1-24.
- 2. Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. First edition ed.; PRIMER-E: Plymouth, UK., 2008.

Figure S2. Distance-based redundancy analysis (dbRDA) plot of ITS absolute abundance OTU data against environmental factors (Table S1), based on a distance-based linear model (DISTLM) sequential tests [1,2].

References

- 1. Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. First edition ed.; PRIMER-E: Plymouth, UK., 2008.
- 2. Legendre, P.; Anderson, M.J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. *Ecological monographs* **1999**, *69*, 1-24.

Time	System	Depth (m)	DOC (mg/kg) ¹	Mineral N (µg/g) ²				P (µg P g ⁻¹	Exchangeable cations (cmol(+) kg ⁻¹)-4				pH ⁴
				NO3 ⁻	NO_{2}	\mathbf{NH}_{4^+}	Total	soil) <u>3</u>	К	Ca	Mg	Na	r
S1 Pre Oct 2015	CC	0-0.15	-	34.5	39.1	0.1	73.7	-	1.4	18.3	8.5	0.5	7.2
		0.30-0.50	-	23.2	11.7	0.0	34.9	-	0.9	18.3	9.2	1.0	7.2
		0.70-1.0	-	11.5	41.0	0.0	52.6	-	1.0	15.5	10.1	1.8	7.4
	СМ	0-0.15	-	20.9	51.4	0.0	72.3	-	1.6	17.5	8.1	0.4	7.2
		0.30-0.50	-	14.5	20.2	0.0	34.6	-	1.3	17.5	8.8	0.8	7.2
		0.70-1.0	-	6.4	4.5	0.0	10.9	-	1.1	16.0	9.9	1.6	7.3
S1 In Jan 2016	CC	0-0.15	72.4	47.0	0.0	0.0	47.0	669	-	-	-	-	-
		0.30-0.50	42.3	51.3	0.1	0.0	51.3	588	-	-	-	-	-
		0.70-1.0	22.5	25.5	0.1	3.6	29.2	629	-	-	-	-	-
	CM	0-0.15	64.0	43.1	0.0	0.0	43.1	680	-	-	-	-	-
		0.30-0.50	37.4	59.2	1.2	1.2	61.6	567	-	-	-	-	-

Table S1. Compilation of available soil characteristics and environmental parameters over the two growing seasons. Underlined superscript numbers correspond to footnote numbers.

		0.70-1.0	27.8	8.4	0.0	0.0	8.5	824	-	-	-	-	-
S2 Pre Oct 2016	CC	0-0.15	-	5.6	0.1	1.4	7.1	-	-	-	-	-	-
		0.30-0.50	-	22.3	0.0	0.2	22.5	-	-	-	-	-	-
		0.70-1.0	-	30.2	0.0	0.6	30.8	-	-	-	-	-	-
	СМ	0-0.15	-	3.1	0.2	0.5	3.8	-	-	-	-	-	-
		0.30-0.50	-	18.8	0.1	0.3	19.3	-	-	-	-	-	-
		0.70-1.0	-	19.3	0.1	0.4	19.8	-	-	-	-	-	-
S2 In Jan 2017	CC	0-0.15	84.7	9.4	0.0	3.1	12.5	-	-	-	-	-	-
		0.30-0.50	48.5	16.3	0.1	1.5	17.9	-	-	-	-	-	-
		0.70-1.0	29.6	34.3	0.0	1.7	36.0	-	-	-	-	-	-
	CM	0-0.15	80.4	29.0	0.0	1.9	30.9	-	-	-	-	-	-
		0.30-0.50	53.8	9.3	0.0	1.2	10.6	-	-	-	-	-	-
		0.70-1.0	32.4	15.1	0.1	13.0	28.2	-	-	-	-	-	-

¹Water extractable DOC, subset of data published in Osanai, et al. [1]

² Mineral N extracted in 2M KCl and analysed using a San⁺⁺ Automated Wet Chemistry Analyser (Continuous Flow Analyzer) (Skalar Analytical B.V., Netherlands).

³ Total extractable P, subset of data published in Polain, et al. [2]

⁴ Exchangeable cations extracted in alcoholic 1 M NH₄Cl solution at pH 8.5 and soil pH determined using 0.01 M CaCl₂, with methods and data published in Hulugalle, *et al.* [3]

⁵ Gravimetric Water Content (GWC) determined by drying a known mass of sample at 100 °C for 3 days until a stable weight was obtained, where soil water content (g/g) was the difference in soil weight (g) between field fresh and oven dried soils, divided by the weight of oven dried soils (g).

⁶ Irrigation volumes were retrieved from Nachimuthu, et al. [4]

² Rainfall and soil temperatures were accessed via the CottASSIST web tool developed by CSIRO [5]. Rainfall is the cumulative total for the three months prior to sampling.

References

- 1. Osanai, Y.; Knox, O.; Nachimuthu, G.; Wilson, B. Increasing soil organic carbon with maize in cotton-based cropping systems: Mechanisms and potential. *Agriculture, Ecosystems & Environment* **2020**, *299*, 106985.
- Polain, K.; Guppy, C.; Knox, O.; Lisle, L.; Wilson, B.; Osanai, Y.; Siebers, N. Determination of Agricultural Impact on Soil Microbial Activity Using δ18OP HCl and Respiration Experiments. ACS Earth and Space Chemistry 2018, 2, 683-691, doi:10.1021/acsearthspacechem.8b00021.
- 3. Hulugalle, N.; Nachimuthu, G.; Kirkby, K.; Lonergan, P.; Heimoana, V.; Watkins, M.; Finlay, L. Sowing maize as a rotation crop in irrigated cotton cropping systems in a Vertosol: effects on soil properties, greenhouse gas emissions, black root rot incidence, cotton lint yield and fibre quality. *Soil Research* **2020**, *58*, 137-150.
- 4. Nachimuthu, G.; Hulugalle, N.R.; Watkins, M.D.; Finlay, L.A.; McCorkell, B. Irrigation induced surface carbon flow in a Vertisol under furrow irrigated cotton cropping systems. *Soil and Tillage Research* **2018**, *183*, 8-18.
- 5. CSIRO. CottASSIST. Availabe online: <u>https://www.cottassist.com.au/</u> (accessed on 2018).