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Abstract: The limited availability of soil phosphorus to plants under salinity stress is a major constraint
for crop production in saline soils, which could be alleviated by improving mycorrhizal and soil
microbial interactions. This study investigated the effects of Funneliformis mosseae (Fm) inoculation
on phosphorus (P) availability to Sorghum bicolor, and alkaline phosphatase (ALP) activity and
gene abundance (phoD) in a P-deficient naturally saline soil. A greenhouse study was conducted
in order to compare the experimental treatments of Fm inoculated vs. control plants grown in
saline soil with and without (sterilized soil) native microbial community. A separate hyphosphere
(root-free) compartment was constructed within the mycorrhizosphere and amended with phosphate.
After four weeks of transplanting, shoot, roots, mycorrhizosphere, and hyphosphere samples were
collected and analyzed for soil and plant P concentrations, root colonization, and abundance of
ALP and phoD. The results showed significantly higher colonization in Fm-inoculated treatments
compared to uninoculated. Plant available P concentrations, phoD gene abundance and ALP activity
were significantly reduced (p < 0.05) in sterilized-hyphosphere as compared to unsterilized in both
Fm-inoculated and uninoculated treatments. Inoculation with Fm significantly increased the plant
P uptake (p < 0.05) when compared to uninoculated treatments, but only in the plants gown in
unsterile mycorrhizosphere. It can be concluded that inoculation of Fm increased root colonization
and the uptake of P by sorghum plant in saline soil and native microbial community interactions were
critical for increasing bioavailable P concentrations. These beneficial interactions between plants,
mycorrhizae, and native microbes should be considered for soil fertility management in saline soils.

Keywords: AMF inoculation; root colonization in salinity stress; AMF-microbe interactions;
P availability

1. Introduction

Saline soils occur on more than 10% of Earth’s land surface [1], impacting agriculture productivity
worldwide [1,2]. Under salinity stress, phosphorus availability to plants is severely impacted due to
the poor solubility of phosphate minerals and complexation and/or precipitation of phosphates with
Ca+2 and Mg+2 [3]. An increasing number of studies have clearly demonstrated that plants depend
on symbiotic associations with microflora to acquire sparingly soluble P-minerals [4]. Arbuscular
mycorrhizal fungi are at the center of these symbiotic associations with most plants [5]. However,
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salt stress has been noted to diminish these symbiotic associations, which may further contribute to
lower P availability under saline conditions [6].

Applying AMF species to improve symbiotic interactions is one of the potential avenues for
addressing P-availability problems in saline soils [7]. The application of plant beneficial microbes,
such as AMF, have proven to be effective in improving plant growth [8,9], especially under salt
stress where the abundance of AMF is generally low [10]. Such enhancement of plant growth
has been attributed to the production of phytohormones [11], improvements in N-fixation [12],
and P-solubilization [13,14] by plant growth promoting rhizobacteria (PGPR), and improved soil
structure and water uptake [15], P uptake [16,17], and increased K+/Na+ plant ratio [17,18] by AMF.
However, many reports suggest that AMF inoculation does not always result in beneficial effects and
higher yields in crops [19]. It is argued that the beneficial effects of AMF may also depend on their
interactions with plants and other microbes [20], which needs to be clearly understood to improve
beneficial effects of AMF [21].

It is well known that AMF are obligate biotrophs [10], i.e., they depend on host plant roots for
growth and multiplication. However, it is not clear to what extent the AMF-plant interactions also
depend on their interactions with other microflora to influence a specific function, such as phosphorus
availability. Recent reports suggest that the beneficial effects of AMF inoculants are dependent on
tripartite symbiotic interactions between plants, mycorrhizae, and other microbes in the rhizosphere or
hyphosphere [22]. The rhizosphere is defined as the soil zone that is influenced by plant roots, whereas
hyphosphere refers to the soil zone under the influence of mycorrhizal hyphae (and other microbes),
but not roots (together, these two zones are called mycorrhizosphere) [23]. An increasing number of
studies provide evidence on the role of rhizosphere bacteria in plant-AMF symbiosis and the need for
considering these tripartite associations for better understanding of their functions [24].

Some studies suggest that several hyphosphere microbes are responsible for producing
phosphatases for solubilizing phosphate minerals [25–27]. However, it is not clear whether AMF
can also solubilize phosphate minerals or organic-P complexes, independently or in association
with hyphosphere microbes [28,29]. These knowledge gaps must be addressed in order to decipher
mechanistic interactions of introduced AMF species with native microbes, and their implications
on P bioavailability to plants. Current knowledge on phosphatases in the rhizosphere is mostly
based on culture-dependent methods [30,31], which do not provide a comprehensive assessment.
Recent advances in culture-independent methods for studying phosphatase-encoding genes can be
applied for comprehensively assessing beneficial interactions in rhizosphere [32]. For example, alkaline
phosphatase (ALP) activity has been shown to strongly correlate with phoD bacterial gene abundance
in agricultural soil [33] and also in stressed conditions, such as in saline soils [34]. However, knowledge
regarding the effects of AMF interactions with native microflora on plant growth in salt-stressed soils
is limited. Some reports on co-inoculation with single or a few species of PGPR and AMF exist, but
these have mostly been conducted under artificial salinity [35–37].

We hypothesized that supplementing an AMF species through inoculation would increase
root colonization and P uptake by plants under salinity stress. We further hypothesized that the
indigenous saline soil microbial community is essential for increasing P availability in the hyphosphere.
The objectives of this study were to determine the AMF inoculation effects on root colonization and
P concentrations in plant shoot, and to quantify plant-available P concentrations, phosphatase gene
abundance and ALP activity in the hyphosphere, as affected by native microflora in a saline soil.

2. Materials and methods

2.1. Soil

Surface soil (top 0–30 cm) was collected near the Texas A&M AgriLife Research & Extension
Center at Pecos in Reeves County, Texas, USA (Coordinates: 31◦22’45.8”N 103◦37’32.4”W). The soils in
this region are naturally saline and moderately alkaline. The soil series was a Dalby clay and classified
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as Fine, smectitic, frigid Oxyaquic Vertic Hapludalfs (NRCS, USDA. Web Soil Survey). No vegetative
cover or recent agricultural practices were present at the site where the soil was collected. Table 1 lists
the characteristics of the collected soil sample. The soil texture was determined by a hydrometer [38],
and the percent organic matter content was determined by the wet oxidation method [39]. Soil pH
(in H2O), EC (saturated paste extract), and soil P (Mehlich-3) were determined by the Soil, Water,
and Forage Testing Laboratory in the Department of Soil and Crop Sciences, Texas A&M University.

Table 1. Characteristics of the Dalby clay soil used in this study.

Parameter Value

pH 8.5
EC (saturated extract, dS/m) 6.32

P (Mehlich-3, mg/kg)
Nitrate-N (mg/kg)
Potassium (mg/kg)

45
26

614
Organic matter content (%) 0.34

Clay (%) 46.7
Silt (%) 20.7

Sand (%) 32.6

2.2. AMF Inoculum and Plant Host

The AMF species used in this experiment was Funneliformis mosseae (Fm), (collected form
an alkaline soil), obtained from INVAM (International Vesicular Arbuscular Mycorrhizal collection
facility, University of West Virginia, accession code UT101) as whole inoculum containing different AMF
propagules (soil with spores [average of 109 spores/gram inoculum], infected root pieces, and hyphae).
We selected several AMF species, including Fm based on their performance in saline soils [40,41].
We used Fm for this study, as it produced higher root colonization when compared to other AMF
species in our prior study [42]. Sorghum bicolor was used as the plant host in this experiment, since it is
a moderately salt tolerant plant, which is commonly used as a mycorrhizal host [6], and it is suitable
for the EC level of this experimental soil.

2.3. Experimental Design and Growth Conditions

The experimental design in this experiment was a 2 × 2 × 2 factorial completely randomized
design with three replicates (three pots) for each treatment. This experiment was conducted using two
compartment microcosms (inner (I) hyphosphere and outer (O) rhizosphere compartments) separated
with 25 µm nylon mesh (LAB PACK, Sefar Inc., Buffalo, NY, USA) to allow hyphal penetration, but not
roots (Figure 1). The hyphosphere compartment was a mini rectangular box (4.5-cm long, 2.5-cm wide,
1.5-cm height) (The Container Store Inc, Coppell, TX, USA) containing 12.5 g soil/box (2 boxes/pot,
placed at depth of 5 cm, each box facing the root system). The rhizosphere compartment was a small
square nursery pot (6.5-cm diameter, 9-cm long, 280-mL volume) containing 235 g soil. The soil in
compartments had four sterilization treatments: both inner (hyphosphere) and outer (rhizosphere)
compartments sterilized (IS-OS), inner sterilized and outer unsterilized (IS-OU), inner unsterilized
and outer sterilized (IU-OS), and both unsterilized (IU-OU). The soils were sterilized by autoclaving
for 1 hr at 121 ◦C three times, on three consecutive days. Soil in the rhizosphere (outer) compartment
was amended with NH4NO3 at 50 mg N/kg soil. The hyphosphere compartments were amended
with 200 mg P/kg soil as Na-phytate (Santa Cruz Biotechnology, Santa Cruz, CA, USA) as organic P
(Po) and 200 mg P/kg soil rock phosphate as inorganic P (Pi). The plant seeds were sterilized with
10% sodium hypochlorite for 20 min., rinsed five times with sterile water, and the germinated in plug
tray cells (cell size 7/8” deep and 9/16” wide, Harris Seeds Inc., Rochester, NY, USA) containing 2 g
inoculum (either Fm or no-Fm control inoculum) and 2 g sterile low P sandy soil to promote AMF
infection. After 12 days, seedlings with attached soils from the tray cells were transplanted to the
designed pots of this experiment. The plants were grown for 42 days after transplanting in a growth
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chamber at 25 ◦C day/21 ◦C night, 16 h/8 h light/dark, 60% humidity, and 500 µmol/m2/s light intensity,
and watered every other day to 85% water holding capacity (determined based on maximum water
holding capacity) [43] while using sterilized distilled water.
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2.4. Root Staining and AMF Colonization

Microcosms were terminated at approximately 42 days after transplanting. The plants were gently
removed from the pots and shoot were separated from the root system. Shoots were placed in an oven
at 60 ◦C for 48 h, and then stored for later analysis. The roots were gently removed from soil and
washed under tap water, and then stained with trypan blue using a modified procedure of Phillips and
Hayman [44]. Briefly, the roots were placed in tissue cassettes (Fischer Scientific Inc., Hampton, NH,
USA) and then submerged in pre-boiled 10% KOH for 10 min. to remove cytoplasmic content of root
cells. Cassettes were then washed 5X with tap water and submerged in 2% HCl for 30 min., followed
by 5X washing with tap water. The cassettes were then submerged in pre-boiled 0.05% trypan blue
solution (water, glycerin, lactic acid in 1:1:1 (v/v/v)) for 5 min. The cassettes were then washed 5X
with tap water and stored at 4 ◦C for 3–5 days immersed in distilled water in order to remove excess
stain. The percentage of AMF colonization was then determined while using the gridline intersect
method [45].

2.5. Soil Extractable P and Plant Shoot P Concentration

The top surface layer (~2 mm) of the hyphosphere compartments was removed and discarded in
order to reduce biases and possible exchange of microbes and nutrients between the rhizosphere and
hyphosphere compartments. The remaining soil from the hyphosphere compartments of each pot (two
compartments) were then mixed to have one homogenized hyphosphere soil sample/pot and stored at
−80 ◦C for later molecular and enzyme assays. A portion of the soil samples (all three replicates for
individual treatments) from the hyphosphere compartments (stored at −80 ◦C) and dried plant shoots
were submitted to the Soil, Water, and Forage Testing laboratory at Texas A&M University (College
Station, TX, USA) in order to measure extractable P in soil (Mehlich-III) and determine P concentration
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in plant shoot tissue while using inductively coupled plasma mass spectrometry equipped with
a charge coupled device (SPECTRO Analytical Instruments, Kleve, Germany).

2.6. Phosphatase Gene Quantitation in Hyphosphere Soil

Soil DNA was extracted from 0.5 g of the frozen hyphosphere soil samples while using a PowerSoil
DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA) following the manufacturer’s
instructions. After extraction, all of the DNA samples were quantified to detect DNA quality while
using a Nanodrop ND-1000 spectrophotometer (Thermo-Fisher Scientific Inc., Wilmington, DE, USA).

Quantitative real-time PCR (qPCR) was used to quantify the abundances of microbial phoD
(alkaline phosphatase), total bacterial 16S rRNA, total AMF 18S rRNA, and total fungal internal
transcribed spacer (ITS) gene targets in hyphosphere soil (root-free soil). Each qPCR run was setup to
include appropriate quality controls (positive, negative, no template controls, check gBlock standards,
and spikes). The gBlock standards and quality control details are outlined in Table S1 and Table S2,
respectively. Table S3 outlines the primers (obtained from Integrated DNA Technologies Inc. Collierville,
IA, USA), qPCR conditions, and references used. Amplifications of DNA was performed while using
Rotor-Gene SYBR® Green qPCR kit, with gene abundance measured using Rotor-Gene Q Software
version 2.3.1.49 (QIAGEN, Hilden, Germany).

2.7. Alkaline Phosphatase Enzyme Assay

Potential soil alkaline phosphatase (ALP) activity was measured from the frozen hyphosphere
soil (−80 ◦C) using a modified assay of Tabatabai and Bremner [46]. Briefly, 0.5 g soil in duplicate
was incubated in 0.0625 M p-nitrophenyl phosphate substrate (Sigma–Aldrich, St. Louis, MO, USA)
along with modified universal buffer solution (pH 11) at 28 ◦C in 2 mL deep-well plates. After 2 h,
the reactions were stopped with 2.5 M CaCl2 and 2.5 M NaOH. The plates were then shaken for 5
min. and centrifuged for 5 min. at 500 rpm. Using 96-well plates, the formation of p-nitrophenol
was determined colorimetrically using a Biolog Microstation Elx808BLG (BIO-TEK Instruments Inc.,
Winooski, VT, USA) spectrophotometer at 405 nm.

2.8. Statistical Analysis

All of the treatment effects were statistically analyzed using Three-Way ANOVA in SAS software
(version 9.4), while using PROC GLM procedure. Differences between treatments were obtained using
Fisher’s least-significant-difference (LSD) test at a p-value of <0.05.

3. Results

3.1. Root Colonization Effects of Experimental Treatments

As expected, the percentages of AMF root colonization (Table 2) were significantly higher
(p < 0.0001) in Fm-inoculated IS-OS and IU-OU treatments as compared to all uninoculated treatments,
while Fm-inoculated IS-OU and IU-OS were significantly higher only compared to uninoculated IS-OS
and IU-OS. However, within Fm-inoculated treatments, root colonization was significantly lower in
IS-OU and IU-OS treatments when compared to the IU-OU treatment. The highest colonization was
detected in IU-OU treatment, where none of the compartments were sterilized.
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Table 2. Impact of soil compartment sterilization on AMF colonization.

AMF Inoculum Treatment % Root Colonized by AMF

None

IS-OS 0 ± 0 e
IS-OU 2.91 ± 2.6 ecd
IU-OS 0.05 ± 0.08 e
IU-OU 1.95 ± 1.5 ed

Fm

IS-OS 25.9 ± 15.1 ba
IS-OU 15.30 ± 6.2 bc
IU-OS 14.47 ± 7.6 bcd
IU-OU 30.82 ± 10.7 a

Note: IS-OS: soil in inner (hyphosphere) and outer (rhizosphere) compartments sterilized; IS-OU: inner sterilized
and outer unsterilized; IU-OS: inner unsterilized and outer sterilized; IU-OU: both unsterilized. “None”: control
AMF inoculum. “Fm”: inoculated with Funneliformis mosseae. Data are presented as the mean ± s.d (n = 3).
Different letters indicate significant difference (p < 0.05).

3.2. Plant Available P in Hyphosphere Soil and Its Uptake by Plants

Figure 2A presents plant available-P concentrations in hyphosphere soils. Treatments with
unsterilized soil in the hyphosphere (IU-OS and IU-OU) had significantly higher P concentrations as
compared to sterilized soils (IS-OU and IS-OS) in both Fm-inoculated and uninoculated treatments.
In IS-OS treatments of both Fm-inoculated and uninoculated, P concentrations in hyphosphere
compartments were reduced by 20% and 18.7%, respectively, when compared to IU-OU. Similarly,
in IS-OU treatments of both Fm-inoculated and uninoculated, extractable P in hyphosphere
compartments was reduced by 11.8% and 10%, respectively, as compared to IU-OS. On the other
hand, inoculation with Fm significantly increased P concentrations in plant shoots as compared
to uninoculated ones in IS-OU and IU-OU treatments (Figure 2B). In contrast, inoculation with
Fm did not significantly impact plant-P uptake in IS-OS and IU-OS treatments when compared to
uninoculated ones.
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Figure 2. Impact of AMF inoculation and soil sterilization on extractable soil P and its uptake
by plants. (A): Extractable P (Mehlich-3) in hyphosphere soil. (B): P concentrations in plant shoot.
inner (hyphosphere) and outer (rhizosphere) compartments sterilized (IS-OS): soil in inner (hyphosphere)
and outer (rhizosphere) compartments sterilized; inner sterilized and outer unsterilized (IS-OU): inner
sterilized and outer unsterilized; IU-OS: inner unsterilized and outer sterilized; IU-OU: both unsterilized.
“Fm”: inoculated with Funneliformis mosseae. Data presented are mean with ± standard deviation (n = 3).
Different letters above the bars indicate significant difference between the treatments (p < 0.05).

3.3. Alkaline Phosphatase Gene (phoD) and Microbial Community Abundance in the Hyphosphere

Alkaline phosphatase gene (phoD) abundances were significantly reduced in sterilized
hyphosphere when compared to unsterilized in both Fm and non-Fm-inoculated treatments (Figure 3A).
In the Fm-inoculated treatment, sterilization reduced phoD gene abundance by 78.3%, while, in the
uninoculated treatment, the abundance was reduced by 77.7%. Within unsterilized soils, phoD gene
abundance was also significantly higher in the Fm-inoculated treatments as compared to uninoculated
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treatments. No significant differences were found in the abundance of 16S rRNA and AMF 18S
rRNA genes between the sterilized and unsterilized treatments (Figure 3B,C, respectively). However,
hyphosphere fungal ITS abundance was significantly higher in unsterilized soils when compared to
sterilized ones (Figure 3D). Moreover, when comparing phoD relative proportions among the total
microbial community abundance (total of 16S rRNA and fungal ITS gene abundances), the phoD
proportions ranged from 0.30 in the uninoculated IS-OS up to 0.71 in the Fm-inoculated IU-OU
(Figure 4).
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(C): AMF 18S rRNA. (D): fungal ITS. IS-OS: soil in inner (hyphosphere) and outer (rhizosphere)
compartments sterilized; IU-OU: both soils unsterilized. “Fm”: inoculated with Funneliformis mosseae.
Data presented are mean with ± standard deviation (n = 3). Different letters above the bars indicate
significant difference between the treatments (p < 0.05).
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Figure 4. Relative proportion of phoD gene among the total microbial community abundances
(as total 16S rRNA and ITS) in hyphosphere soil. 1 = 100%. IS-OS: soil in inner (hyphosphere) and
outer (rhizosphere) compartments sterilized; IU-OU: both soils unsterilized. “Fm”: inoculated with
Funneliformis mosseae. Data presented are mean with ± standard deviation (n = 3). Different letters
above the bars indicate significant difference between the treatments (p < 0.05).
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3.4. Alkaline Phosphatase Enzyme Assay

Figure 5 shows the potential activity of soil alkaline phosphatase (ALP) from the hyphosphere
soils. The activity of ALP showed significant differences between all treatments. Soil sterilization
significantly reduced ALP activity when compared to unsterilized soils in both Fm-inoculated (reduction
by 78%) and uninoculated (reduction by 70%) treatments. Moreover, Fm inoculation resulted in
significantly less ALP activity for both unsterile and sterile soils as compared to uninoculated
ones. In sterilized soils, Fm inoculation reduced ALP activity by 76% compared to uninoculated
treatment. Similarly, in unsterilized soils, Fm inoculation reduced ALP activity by 23.8% as compared
to uninoculated treatment.
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4. Discussion

The results of this study indicated that inoculation of sorghum using a potentially salt-tolerant
AMF species, such as Fm, was effective in increasing the root colonization in a saline soil. Several reports
have indicated a similar response under artificial inoculation in saline soils [40,41,47]. One reason for
lower root colonization by native AMF may be due to lack of host compatible and competitive AMF
species [10,48]. In addition, the absence of vegetative cover where the soil was collected may have
further contributed to the lower abundance of native AMF. The results also indicated the potential
synergistic interactions between AMF and native microflora and their role in affecting percentage
of colonization, since the highest colonization under Fm inoculation was noted when both of the
compartments of rhizosphere and hyphosphere were not sterilized (although this percentage was
not significant when compared to IS-OS treatment). Studies have shown that specific soil microbes,
such as mycorrhizal helper bacteria, can promote hyphal growth and root colonization [49], and that
suppression or stimulation of AMF growth and colonization is related to microbial composition in
soils [50]. A recent report by Ordoñez et al. [51] also found that some bacterial strains strongly affect
AMF colonization inside roots and hyphae growth outside roots, and that soil microbial community
might have a role in limiting or increasing this effect, depending on the P-solubilizing microbial
species [51].

The results also indicated that native microbial communities play a critical role in improving
plant available P concentrations in the hyphopshere. This is based on the results that sterilization
significantly reduced plant available-P concentrations in hyphosphere soils (IS-OS and IS-OU) compared
to unsterilized treatments (IU-OS and IU-OU) in both Fm-inoculated and uninoculated treatments.
This finding supports our hypothesis that native communities are important for improving plant
available-P concentrations, whereas AMF was mostly responsible for transferring solubilized P to
plants, as suggested by several studies [7,27,41].
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Potential ALP enzyme activity and its gene (phoD) abundance results further validated the role of
native communities in increasing plant-available P concentrations in the hyphosphere. The relative
abundance of phoD was significantly reduced in sterilized treatments (IS-OS) in both Fm-inoculated
(by 78.3%) and uninoculated (by 77.7%) treatments when compared to unsterilized soils (IU-OU). Within
unsterilized treatments, inoculation with Fm led to significantly higher phoD gene abundance compared
to uninoculated. Subsequently, higher plant tissue P concentrations noted in the Fm-inoculated IU-OU
treatment compared to uninoculated IU-OU could be mostly due to phoD- community (bacteria and
fungi) solubilizing and mineralizing Pi/Po complexes, which was then transported by Fm to plant
roots. However, there were no differences found between Fm inoculated IS-OS and IU-OU in terms of
plant tissue P concentrations. This could be related to the one-timepoint sampling that we used in
this study. Perhaps, differences in tissue P concentrations could have been more apparent if plants
were growing for a longer period. These results support our hypothesis that AMF and indigenous
microbe interactions were synergistic and increased P availability and plant uptake. These are novel
findings suggesting that synergistic interactions between native bacteria and AMF were essential to
increase P solubilization and uptake in saline soils. It was also clear that synergistic interactions were
not limited to native AMF, but they extended to exogenously introduced AMF, which appeared to be
more efficient in colonizing and transporting solubilized P.

Similar trends were observed for ALP activity in the hyphosphere, as soil sterilization significantly
reduced ALP activity when compared to unsterilized soils in both Fm-inoculated (reduction by 78%)
and uninoculated (reduction by 70%) treatments. However, inoculation with Fm significantly reduced
ALP activity in the hyphosphere soils, contrary to the trends observed for phoD gene abundance.
It is not clear why ALP activity was higher in Fm uninoculated treatment as compared to inoculated
treatment. One reason could be root induced ALP activity in treatments without Fm inoculation that
were in need of more P uptake (due to lower tissue P concentrations). Yet, plants still need AMF to
transport P (P concentration was higher in plants with Fm inoculation). Several studies in saline soils
have demonstrated root ALP activity in response to P availability and demand by plants [35,36,52].
Furthermore, some discrepancies between gene abundance and enzyme activity is anticipated, as it is
known that some microbial species induce higher transcription rates [33]. Additionally, our qPCR
assays did not include other ALP encoded genes that have been identified in the Pho regulon, such as
phoA and phoX, as 32% of sequenced prokaryotic genomes contain at least one of these three genes [53],
although, the phoD gene has been identified as the key ALP encoded gene in soils [54]. These results
indicate the possibility of microorganisms (and/or factors) were responsible for inducing ALP activity
in the absence of extensive inoculation by AMF. Further exploration of these factors could be valuable
for inducing ALP activity when AMF inoculation is not feasible.

5. Conclusions

It can be concluded from this study that artificial inoculation of AMF significantly increased the
root colonization under saline stress. The hyphosphere microbial community was mostly responsible
for increasing plant available-P concentrations in the hyphosphere, whereas Fm inoculation was mostly
responsible for increasing P uptake. Soil extractable P, phoD gene abundance, and ALP activity were
reduced in sterile soil lacking native microflora. The results clearly showed that synergistic interactions
between AMF and the naive community can potentially increase P availability in saline soils and could
be a promising tool for soil fertility management and sustainable agriculture production in saline soils.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-8789/4/4/63/s1:
Table S1: Details of gBlock qPCR standards, dilution range had 1 order of magnitude apart between each of 5
standards; Table S2: Quality control details of the qPCR runs; Table S3: Primers and conditions used for the qPCR
assays in this study.
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