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Abstract: Measuring soil texture and soil organic matter (SOM) is essential given the way they
affect the availability of crop nutrients and water during the growing season. Among the different
proximal soil sensing (PSS) technologies, diffuse reflectance spectroscopy (DRS) has been deployed
to conduct rapid soil measurements in situ. This technique is indirect and, therefore, requires site-
and data-specific calibration. The quality of soil spectra is affected by the level of soil preparation
and can be accessed through the repeatability (precision) and predictability (accuracy) of unbiased
measurements and their combinations. The aim of this research was twofold: First, to develop
a novel method to improve data processing, focusing on the reproducibility of individual soil
reflectance spectral elements of the visible and near-infrared (vis–NIR) kind, obtained using a
commercial portable soil profiling tool, and their direct link with a selected set of soil attributes.
Second, to assess both the precision and accuracy of the vis–NIR hyperspectral soil reflectance
measurements and their derivatives, while predicting the percentages of sand, clay and SOM
content, in situ as well as in laboratory conditions. Nineteen locations in three agricultural fields
were identified to represent an extensive range of soils, varying from sand to clay loam. All
measurements were repeated three times and a ratio spread over error (RSE) was used as the
main indicator of the ability of each spectral parameter to distinguish among field locations with
different soil attributes. Both simple linear regression (SLR) and partial least squares regression
(PLSR) models were used to define the predictability of % SOM, % sand, and % clay. The results
indicated that when using a SLR, the standard error of prediction (SEP) for sand was about 10–12%,
with no significant difference between in situ and ex situ measurements. The percentage of clay,
on the other hand, had 3–4% SEP and 1–2% measurement precision (MP), indicating both the
reproducibility of the spectra and the ability of a SLR to accurately predict clay. The SEP for SOM
was only a quarter lower than the standard deviation of laboratory measurements, indicating
that SLR is not an appropriate model for this soil property for the given set of soils. In addition,
the MPs of around 2–4% indicated relatively strong spectra reproducibility, which indicated the
need for more expanded models. This was apparent since the SEP of PLSR was always 2–3 times
smaller than that of SLR. However, the relatively small number of test locations limited the ability
to develop widely applicable calibration models. The most important finding in this study is that
the majority of vis–NIR spectral measurements were sufficiently reproducible to be considered
for distinguishing among diverse soil samples, while certain parts of the spectra indicate the
capability to achieve this at α = 0.05. Therefore, the innovative methodology of evaluating both the
precision and accuracy of DRS measurements will help future developers evaluate the robustness
and applicability of any PSS instrument.

Keywords: proximal soil sensing; diffuse reflectance spectroscopy; visible and near-infrared spectra;
measurement precision and accuracy
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1. Introduction

Soil texture and soil organic matter (SOM) affect plant nutrient availability. Measuring
these properties using conventional laboratory methods is laborious and time consum-
ing [1,2]. Wherever possible, the use of proximal soil sensing (PSS) is expected to replace
conventional laboratory methods to help reduce time- and labor-intense operations during
soil sampling and analysis [3,4]. Among different PSS technologies, diffuse reflectance
spectroscopy (DRS) has been deployed to conduct rapid soil measurements in laboratories
and in situ. DRS is an indirect analytical technique [5] that was proposed as an alternative
to laboratory tests that would allow for relatively inexpensive and rapid measurements of
soil properties.

A soil spectroscopic system is based on the sample’s absorption of electromagnetic
radiation at wavelengths in the ranges of 100–400 nm (UV), 400–700 nm (vis), 700–2500
nm (NIR and SWIR regions), and 2500–25,000 nm (mid-IR) [6]. Soriano-Disla et al. [7]
reviewed a number of studies that simultaneously determined different soil attributes
using this method. For example, the authors of [8] simultaneously determined soil organic
carbon (SOC), moisture, and total nitrogen (TN) using NIR spectroscopy. The authors of [9]
simultaneously determined pH, clay, silt, sand, SOC content and cation exchange capacity
using mid-IR.

Similarly, numerous studies support the use of diffuse reflectance spectroscopy to
simultaneously assess various soil properties in the laboratory as well as directly in the
field [10–34]. The Veris® P4000 (Veris Technologies, Inc., Salina, KS, USA) is an example
of a ruggedized hyperspectral instrument developed to obtain vis–NIR spectra at multi-
ple depths within the soil profile. The data obtained from similar instrument was used
previously to predict soil phosphorus, soil texture and SOM content [35,36]. In addition,
the authors of [37] showed the potential use of similar probing instruments to produce
three-dimensional digital soil maps of agricultural fields, by integrating multiple proximal
sensor data obtained from different sensing methods.

Since the use of spectroscopic technique to predict the quantities of soil properties is in-
direct, it is important to develop calibration models using data-specific pedo-transformation
models against measurements obtained according to standardized laboratory protocols [3].
Depending on the linear and nonlinear data types, a variety of simple to complex calibra-
tion models were studied by various researchers through the performance of multivariate
data analysis, e.g., principal component regression (PCR) [16], partial least squares regres-
sion (PLSR) [38], artificial neural networks (ANN) [39,40], and support vector machines
(SVM) [41], to name a few.

However, a good calibration model can be developed only when a good set of data
is obtained from the vis–NIR instrument. This is especially the case when soil is made
up of heterogeneous material; the quality of soil spectra can be affected by the level
of soil preparation. Generally spectral measurements need to be accurate and precise
representations of the targeted material (soil in this case). However, there are a variety of
factors that affect the quality of spectral measurements obtained using vis–NIR instruments
in both the laboratory and in the field; for example, viewing geometry, orientation of
measurement, spectral averaging and calibration of the spectral data [42–44]. In addition
to this environment, excess water content in soil, and excess soil aggregates and debris can
also influence the data collection procedure [38]. The sampling process is also known to
influence measurement uncertainty [45].

Therefore, it is clear that the data acquisition and processing may influence the perfor-
mance of the calibration models [46–49].

To help improve data acquisition procedures in DRS, it is important to understand
the random fluctuation of soil spectra and their derivatives from one scan to the next. As
with any measurement, the quality of soil spectra obtained using DRS while predicting
any soil attribute can be evaluated using precision and accuracy. Precision (reproducibility)
and accuracy (predictability) are considered to be very important characteristics of a given
measurement system [50,51]. Where accuracy is not a quantity and precision has a much
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more complex meaning, both can be described as the difference of the instrument reading
to the standard, and the degree of random variations in the instrument’s output while
measuring a constant or similar objects (the same soil in the case of the research discussed
in this paper) under specified conditions [52]. Other way around inaccuracy may also be
defined as combining both bias and imprecision. Where bias is another quantitative term
describing the difference between the average of measurements made on the same object
(same soil in the case of this research) and its true value [53].

As is illustrated in Figure 1, repeated measurements of soil spectra for a given soil
sample can significantly vary from one measurement to another. These differences can be
associated with (1) random noise within the data acquisition process that includes incon-
sistencies of the soil detector interface and (2) soil micro-variability that can occur at very
small separation distances. In practice, multiple measurements and the averaging of several
consecutive soil spectra were used to diminish the effect of random noise [54]. However,
it should be noted that certain parts of the soil spectra, as well as particular parameters
constructed using a combination of spectral data values, can be relatively repeatable from
spectrum to spectrum. It was also observed that some of these soil spectra parameters do
not vary substantially when testing the same soil, but vary considerably when using soil
samples with different attributes; therefore, they might be the best candidates to be used
for the site-specific calibration process.

Soil Syst. 2021, 5, x FOR PEER REVIEW 3 of 20 
 

 

much more complex meaning, both can be described as the difference of the instrument 

reading to the standard, and the degree of random variations in the instrument’s output 

while measuring a constant or similar objects (the same soil in the case of the research 

discussed in this paper) under specified conditions [52]. Other way around inaccuracy 

may also be defined as combining both bias and imprecision. Where bias is another quan-

titative term describing the difference between the average of measurements made on the 

same object (same soil in the case of this research) and its true value [53]. 

As is illustrated in Figure 1, repeated measurements of soil spectra for a given soil 

sample can significantly vary from one measurement to another. These differences can be 

associated with (1) random noise within the data acquisition process that includes incon-

sistencies of the soil detector interface and (2) soil micro-variability that can occur at very 

small separation distances. In practice, multiple measurements and the averaging of sev-

eral consecutive soil spectra were used to diminish the effect of random noise [54]. How-

ever, it should be noted that certain parts of the soil spectra, as well as particular parame-

ters constructed using a combination of spectral data values, can be relatively repeatable 

from spectrum to spectrum. It was also observed that some of these soil spectra parame-

ters do not vary substantially when testing the same soil, but vary considerably when 

using soil samples with different attributes; therefore, they might be the best candidates 

to be used for the site-specific calibration process. 

 

Figure 1. Differences in ex situ soil spectra when measured on the same soil sample thrice. 

The main objective of this research was twofold: First, to develop a novel method to 

help improve data processing, focusing on the reproducibility of individual soil reflec-

tance measurements and the transformations of the visible and near-infrared (vis–NIR) 

kind, obtained using a commercial portable soil profiling tool, and to determine their di-

rect link with a selected set of soil attributes. Second, to assess both the precision and ac-

curacy of the vis–NIR hyperspectral soil reflectance measurements and their transfor-

mations, while predicting the percentages of sand, clay and SOM content, in situ as well 

as in laboratory conditions. 

  

Figure 1. Differences in ex situ soil spectra when measured on the same soil sample thrice.

The main objective of this research was twofold: First, to develop a novel method to
help improve data processing, focusing on the reproducibility of individual soil reflectance
measurements and the transformations of the visible and near-infrared (vis–NIR) kind,
obtained using a commercial portable soil profiling tool, and to determine their direct link
with a selected set of soil attributes. Second, to assess both the precision and accuracy
of the vis–NIR hyperspectral soil reflectance measurements and their transformations,
while predicting the percentages of sand, clay and SOM content, in situ as well as in
laboratory conditions.

2. Materials and Methods
2.1. Data Collection

Three fields at McGill University Macdonald research farm (45◦24′42.2′′ N 73◦56′23.1′′W;
Sainte-Anne-de-Bellevue, QC, Canada) were used for this project. In total, nineteen loca-
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tions were selected in these fields (Figure 2) to represent diverse soil conditions ranging
from sand to clay loam. The fields had 2.5, 4.5 and 12 ha areas and crops were grown
according to a rotation involving soybean, corn (grain and silage) and alfalfa. All data were
collected in 2012 when an alfalfa/grass mix was grown in each of the three fields.
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Figure 2. Google earth view of McGill University Macdonald research farm site, illustrating sam-
pling points.

In each location, composite soil samples were obtained from the top (0–20 cm) layer
of soil. A 4 cm diameter, stainless steel auger was used to take five samples from within
a 0.5 m radius. These soil cores were mixed, air dried, and sieved through a 2 mm mesh.
Then, each sample was divided into two subsamples: one to be used for conventional
laboratory analysis and the other for ex situ vis–NIR spectral measurements.

Three categories have been established for soil particles: sand, silt, and clay [55].
These three groups are called soil separates. The three groups are divided by their particle
size. Clay particles are the smallest, while sand particles are the largest. Particle size



Soil Syst. 2021, 5, 48 5 of 19

analysis (fractions of sand, silt, and clay) as well as SOM content were evaluated for each
laboratory sample, as summarized in Table 1. The particle size analysis was conducted
using hydrometers [1] and SOM was determined using the loss-on-ignition technique [2].

Table 1. Statistical results of the percentages of sand, clay, and SOM content in 19 soils.

Statistics % Sand % Clay % SOM

Min 26 2 3.9
Median 56 9 5.8

Max 93 33 25.6
Mean 56 13 7.2

SD 18 9 4.8

The core of the Veris P4000 instrument is a combined dual type spectrophotometer op-
erating in the visible and near-infrared parts of the electromagnetic spectra (Figure 3). One
of the two spectrophotometers was USB2000 (Ocean Optics, Dunedin, FL, USA) operating
between 342 and 1023 nm with a spectral resolution of 6 nm. The other spectrophotometer
was C9914GB (Hammatsu Photonics. K.K., Tokyo, Japan), which collected data between
1070 and 2220 nm with a spectral resolution of 4 nm. The instrument included its own light
source and was capable of maintaining a constant distance between measured soil surfaces
and detectors by means of a sapphire contact probe with fibre-optic cables.
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Figure 3. Illustration of the vis–NIR soil profiling tool during laboratory measurements (sapphire window on vis–NIR
probe (a), soil sample holder (b), reference blocks (c) and soil sample (d)).

All ex situ measurements were conducted as triplicates in a different randomised
order for each replicate. A specially designed sample holder (Figure 3b) was filled with
<1 g of the soil sample and placed near the optical window of the soil profiling tool. As
was recommended in the user manual provided by the manufacturer, at the beginning
of each spectral measurement session, the instrument was calibrated by measuring the
dark current followed by the white reference measurements using the specially provided
reference blocks, as shown in Figure 3c. The instrument was re-calibrated after every
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20 samples. Soil spectra were interpolated to about 5 nm of the spectral resolution, yielding
a total of 380 data points (wavelengths) per spectrum. To minimize the instrument noise,
each spectrum was the average of 25–30 scans (~6 scans s−1). The in situ measurements
were collected using the recommended equipment setup (Figure 4) for topsoil profiles down
to 20 cm, while penetrating soil at a speed approximately 2 cm s−1. Three measurements
were conducted consecutively along a straight line that was less than 0.5 m long. The
instrument was re-calibrated in a similar manner as discussed for the ex situ measurements.
The soil spectra data collection procedures for in situ and ex situ measurements were the
same. However, in this case, the average of 50–60 scans represented soil spectra collected
at different depths from 0 to 20 cm.
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Figure 4. Illustration of the vis–NIR soil profiling tool during in situ measurements (pickup truck mounted instrument (a),
soil profiling tool (b), both spectrometers inside the enclosures (c) and repeated measurement locations (d)).

2.2. Data Processing

As discussed previously (in Section 2.1) and as shown in Figure 5, the DRS measure-
ments were collected in triplicate on representative soil samples using the soil profiling
tool (ex situ and in situ), whereas the representative soil samples were analyzed in labora-
tories to obtain the standard measurements of the soil attributes of interest. Next, the DRS
measurements were processed to create three more data sets (four in total: Raw, Smooth,
1st SGD, and 2nd SGD). Later, to understand the random fluctuation of soil spectra within
the same samples and between different samples, the spread (SDSA) and the root mean
squared deviation (RMSD) were calculated on the DRS measurements for all four data sets.
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Simultaneously, the best SLR and PLSR models were fit on all four DRS measurement data
sets against the known standard measurements of the soil attributes of interest. Finally,
while focusing on the reproducibility of soil reflectance and its direct link with soil at-
tributes, precision- and accuracy-related components such as the ratio of spread over error
(RSE), measurement precision (MP), standard error of prediction (SEP), and coefficient of
determination (R2), respectively, were calculated. These are explained in greater detail later
in the text.
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Figure 5. Illustration of the novel data processing methodology.

All raw spectral data were processed using MATLAB 2012a (The MathWorks, Inc.
Natick, MA, USA) and ParLeS 3.1 software (University of Sydney, Sydney, Australia),
as described by [56]. All spectra exhibited a step discontinuity from 1023 to 1070 nm,
caused by the transition from one detector to another. After removing the relatively
noisy parts of the spectra at the edges of the detection ranges for each spectrophotometer
(342–409 nm, 1014–1075 nm, and 2206–2220 nm), all resultant spectra consisted of a total
of 363 measurements at different wavelengths. The spectral data were then corrected for
offset and processed using a multiplicative scattering correction (MSC) algorithm [57] and
mean centering (MC). In addition to these “raw” spectra, the following spectra treatments
were pursued: (1) 3-point Savitzky–Golay smoothing, (2) 11-point first order Savitzky–
Golay derivative (1st SGD), and (3) 11-point second order Savitzky–Golay derivative (2nd
SGD) [58].
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Among the different statistics considered for assessing the precision of spectral data,
the RSE was used:

RSE =
SDSA

RMSD
(1)

where SDSA is the standard deviation of nineteen sample mean values; RMSD is the root
mean squared deviation calculated based on three replicated measurements for each of the
nineteen samples.

SDSA =

√√√√√ n
∑

i=1
(Xi − X)2

n− 1
(2)

where n = 19 is the number of soil samples; Xi is an average measured or calculated spectra
related value for the ith sample; X is the average of all Xi values.

RMSD =

√√√√√ n
∑

i=1

m
∑

j=1

(
xij − Xi

)2

n · (m− 1)
(3)

where m = 3 is the number of replicated measurements; xij is a jth replicate of the measured
or calculated spectra-related value for the ith sample

Xi =

m
∑

j=1
xij

m
(4)

X =

n
∑

i=1
Xi

n
(5)

Similar to the frequently used ratio of prediction over deviation (RPD) [59], high
RSE means a relatively strong ability of a given measurement to distinguish different soil
samples. The use of RSE was reported earlier in [60,61] and is directly related to ANOVA F
statistics used to compare the means of repeated measurements. Based on the degrees of
freedom involved, the difference among the soil samples (means of three measurements)

can be detected at α = 0.05 when RSE is greater than 0.79 (
√

1
m Fstat). This analysis evaluates

measurement precision with the underlying hypothesis that a particular parameter that
does not change when measuring the same soil sample, and for which the change is at its
maximum when measuring different samples, should be considered reliable.

The percentages of sand, clay, and SOM were predicted by fitting SLR models on each
individual measured or treated spectral value versus these properties. A coefficient of
determination (R2) was the main indicator of the ability of a single spectral value to explain
the variability in a particular soil property. However, the standard error of prediction
(SEP) was used as a measure of the accuracy of soil property estimates obtained using each
SLR model:

ŷij = β0 + β1xij (6)

where x is the measured value of a given soil property for the ith sample; y is the predicted
value of a given soil property for the ith sample and the jth replicate; β0 (intercept) and β1
(slope) are coefficients of SLR.

SEP =

√√√√√ n
∑

i=1

m
∑

j=1

(
yi − ŷij

)2

n ·m (7)

where y is the measured value of a given soil property for the ith sample.
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While SEP indicated the total error associated with each individual measurement
and is primarily linked to the accuracy of prediction, RMSD is linked to measurement
precision. However, since RMSD is expressed in the units of spectra measurements and
related calculated parameters, measurement precision (MP) can be expressed in physical
units as follows:

MP = β1 · RMSD (8)

When comparing different spectral wavelengths and transformation techniques, it is
important to identify measurements that have the maximum RSE and the minimum RMSD,
MP, and SEP. The RMSD is an indicator of measurement reproducibility. However, without
considering the spread of values across different samples, it is impossible to conclude if
the given values are strong values to distinguish different soil samples from each other.
Therefore, the RSE is involved in electing candidates to differentiate between the samples’
levels of disregard of the prediction property. Neither RMSD nor RSE depend on the model
used to predict a given soil property.

Because of the SLR approach [62] used to test one-input soil property prediction
functions, RMSD can be expressed, in terms of the percentages of sand, clay, or SOM, as
MP. The MP estimate is then evaluated together with SEP, which is the ultimate indicator
of the predictability of soil properties. Unlike RMSD, the MP as well as the SEP can be
compared across different spectra transformation procedures as both are expressed in
physical units. From a sensor development point of view, a small RMSD and MP indicates
a stable soil–detector interface. A high RSE means that the sensor can be applied to a
particular set of soils. Finally, a small SEP (high R2 for a given set of samples) indicates the
sensor’s ability to predict the soil property of interest. The SEP is always greater than the
MP, and the greater this difference, the less uncertain the linear relationship between the
measured value and the property. Small differences between the SEP and MP indicate the
applicability of the prediction model when reliable measurement estimates are obtained. In
other words, small differences between the SEP and MP indicate the potential for improved
predictability by averaging multiple unbiased measurements, but larger differences signify
the limitations of the model and that alternative prediction methods, such as PLSR, should
be involved.

In soil spectroscopy, PLSR is one of the most widely used techniques to aggregate
measurements obtained at multiple wavelengths in a single prediction model [32–35] The
PLSR is a bilinear regression technique that extracts a small number of latent factors, which
are a combination of the independent variables, and uses these factors as a regression pro-
ducer for the dependent variables [63,64]. The PLSR analysis is normally evaluated using
the leave-one-out cross validation technique, and the RMSD, R2 and Akaike Information
Criterion (AIC), as described in [65], are the most common model performance indicators.

In this study, the orthogonalised PLSR-1 algorithm described in [66] was applied to
(1) raw spectra, (2) smoothed spectra, (3) 1st SGD spectra, (4) 2nd SGD spectra, and (5) all
the values were combined to develop calibration models using ParLeS software [56]. The
number of factors to use in each model was selected using leave-one-out cross validation.
However, due to the limited number of soil samples used (n = 19), the selected models were
not re-validated on a different set of soil samples; however, this was generally undertaken
in other reported studies. The developed models were used to estimate the performance
indicators that were comparable to MP and SEP to define the superiority of PLSR over
SLR models.

3. Results and Discussions

Statistics derived from laboratory results based on the percentages of sand, clay and
SOM contents are listed in Table 1. These results demonstrate the variability observed over
relatively small fields in terms of their texture and SOM content. It is interesting to note
that the standard deviation of % sand in this dataset is two times higher than that of % clay
and four times higher than that of % SOM.
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Average reflectance spectra of nineteen soil samples, collected both ex situ and in situ,
are shown in Figure 6. In general, the laboratory spectra exhibited higher reflectance when
compared with those from the field, which might be explained by dry versus wet soil. All
spectra showed water absorption inversions near 1400 and 1900 nm [24,38]. Less noticeable
inversions were also observed in many other parts of the spectra (1100, 1500, 1600, 1700,
and 2100 nm) which could be associated with the primary or secondary effects of various
minerals, carbonates and SOM [24,38]. Several noticeable peaks were also observed at
certain parts of the spectra, especially in the visible region, that could be associated with
soil color.
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Figure 6. Examples of vis–NIR soil spectra (ex situ (a) and in situ (b)).

Figure 7 illustrates the RSE values produced for the raw and all transformed spectra
and Table 2 summarizes the relevant statistical results. It is noticeable that transforming the
raw soil spectra into a 3-point Savitzky–Golay smooth spectrum, and the first and second
order Savitzky–Golay derivative spectra, increased the reproducibility in many parts of
the spectra. It is clear that the second SGDs had the highest relative reproducibility across
certain parts of the ex situ spectrum, while RSE for the first SGDs had the highest relative
reproducibility across certain parts of the in situ spectrum. One might expect that ex situ
measurements were more reproducible than those conducted in natural soil conditions
within a 0.5 m distance from each other. However, in both cases, first SGD yielded data
with comparable relative reproducibility in certain parts of the spectrum. In large part,
each transformed spectra had some portions with the ability to separate the means of the
three replicated measurements between different soil samples (RSE > 0.79).
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Table 2. Ratio of spread over error (RSE) comparison.

Test Transformed Factors Min Median Mean Max

Ex situ

Raw 1.69 1.76 1.81 2.18
Smooth 1.62 3.04 3.37 8.71
1st SGD 0.47 1.91 2.49 6.93
2nd SGD 0.32 0.86 1.32 10.56

In situ

Raw 1.24 1.53 1.51 1.67
Smooth 1.38 2.23 2.35 4.30
1st SGD 0.89 2.14 2.33 5.34
2nd SGD 0.52 1.59 1.70 3.88

Figure 8 illustrates the coefficients of determination versus the RSE’s, while predicting
the percentages of sand, clay, and SOM contents using SLR. Table 3 summarizes the
wavelengths and transformation methods indicating the highest level of predictability for
the soil properties of interest. Selection of these wavelengths was predominantly guided
by the coefficient of determination as the weighting between R2 and RSE is arbitrary.
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Table 3. vis–NIR wavelengths (nm) indicating the highest correlation (R2) and ratio of spread over
error (RSE) and with % sand, % clay and SOM content.

Soil Property Test Raw Smooth 1st SGD a 2nd SGD b

% sand Ex situ - - 1932, 1936, 1940 1413
In situ - - 1447, 1452, 1940, 1944 1457, 1462, 1466, 1923

% clay Ex situ - - 1936, 1940, 1944, 1948 1433, 1915, 1919, 1923
In situ - - 1931, 1936, 1940, 1944 1919, 1923

% SOM Ex situ 733, 786 712, 744 2114, 2117, 2121, 2148 -
In situ - 749, 770 - 602, 1738, 1742, 2159, 2182

a First order Savitzky–Golay derivative. b Second order Savitzky–Golay derivative.

Alternatively, Figure 9 illustrates SEP versus MP while predicting the soil properties.
All values were calculated using both the SLR and PLSR calibration models. To facilitate
the comparison, the standard deviation of soil properties (laboratory measurements) was
shown as a benchmark for SEP and the isolines represented positions in the chart with
the constant sum of MP and SEP. To assure that both error terms are small, the most
promising wavelengths and spectra transformation methods were selected as well as those
placed between two isolines, indicating the lowest sum of MP and SEP. Table 4 summarizes
these wavelengths and spectra transformation methods. Tables 5 and 6 list key model
performance indicators for each variable of prediction listed in Table 4 along with all PLSR
models. Figure 10 points out selected wavelength using the average of all raw spectra.

It was observed that wavelengths near 1900 nm (short water absorbance band) trans-
formed using either the first or second order derivative were found to be better correlated
with the percentages of sand and clay content as compared to other parts of the spectra.
Smooth and first SGD spectra corresponding to different visible wavelengths were superior
when predicting SOM content.

From Tables 5 and 6, it is obvious that PLSR results had the lowest combination of
MP and SEP with no overwhelming difference among the types of spectra transformations
involved. In most cases, PLSR that was based on second SGD spectra indicated the
best performance and the prediction soil properties did not improve when using all four
methods of spectral transformation. This was an expected observation as PLSR uses several
spectral factors and SLR just one; therefore, it is not capable of relating the difference in
sensor response to a given soil property.

As illustrated in Figure 10 (and also summarized in Tables 5 and 6), when SLR models
were applied to ex situ measurements, the best predictor wavelengths (i.e., single variable
predictor while considering the sum of both precision (MP) and accuracy (SEP)) were
found to be 1936 nm and 680 nm to correspond well with % sand and % SOM, respectively.
However, the measurements needed to be transformed into the first SGD, whereas 1924 nm
corresponded well with % clay only after transforming the measurements into the second
SGD, which was similar to the results obtained when SLR models were applied to in
situ measurements.

Then, the best predictors’ wavelengths (i.e., single variable predictors while consid-
ering the sum of precision (MP) and accuracy (SEP) were found to be both 1940 nm and
1747 nm, which corresponded well with % clay and % SOM, respectively. However, the
measurements needed to be transformed into the first SGD, whereas 1462 nm corresponded
well with % sand only after transforming the measurements into the second SGD.

In general, the results indicate that when using a single predicting factor, the SEP
for sand was about 10–12% with no significant difference between in situ and ex situ
measurements. The MPs of around 3% indicate relatively strong spectra reproducibility,
which indicates the need for a more expanded model. This is apparent since the SEP of
PLRS was two times smaller, indicating the ability to predict sand within a margin of 4%.
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The percentage of clay, on the other hand, had 3–4% SEP and 1–2% MP, indicating both
the reproducibility of the spectra and the ability of a single spectra parameter to accurately
predict clay. In this case, PLRS also reduced the errors by two times, but only using first, or
second, order derivative spectra.

Finally, the SEP for SOM was only a quarter lower than the standard deviation
obtained in laboratory measurements [67], indicating that SLR is not an appropriate model
for this soil property for the given set of soils. PLSR reduced SEP to about 1% SOM,
which is reasonable considering the extensive spread of soil texture in this soil set. Similar
to sand and clay, minor increases in error estimates corresponding to in situ versus ex
situ measurements were much smaller than expected considering that different physical
locations within a 0.5 m distance were used each time.
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Altogether, these results are comparable with other reports pertaining to the use of DRS
for the measurement of soil texture and SOM, as previously summarized in [6,16,19,20,24]. The
relatively small number of locations means that the results for PLSR are rather optimistic
and, once the multivariate regression approach is applied, the expected results should be
between the present PLSR and the best SLR performance indicators. However, the most
important finding in this study is that the majority of spectral measurements are sufficiently
reproducible to be considered for distinguishing among diverse soil samples, while certain
parts of the spectra indicate the capability to achieve this at α = 0.05.

Table 4. vis–NIR wavelengths (nm) indicating the lowest critical error’s when predicting % sand,
% clay and SOM content.

Soil Property Test Raw Smooth 1st SGD a 2nd SGD b

% sand
Ex situ - - 1931 c, 1936 c, 1940, 1944 1413 c

In situ - - 1452, 1457, 1931,1936, 1940, 1944 1462 c, 1923

% clay
Ex situ - - 1940, 1944, 1948 1915, 1919, 1923

In situ - - 1931, 1936, 1940 c, 1944c 1923

% SOM
Ex situ 674 c, 679, 685 551, 556 c, 562, 568, 585 -

In situ - 421, 722, 728 421, 585, 590, 1747 c, 1751 1605, 1543
a First order Savitzky–Golay derivative. b Second order Savitzky–Golay derivative. c vis–NIR avelengths that are
common between in situ and ex situ measurements.

Table 5. The vis–NIR soil spectral bands which were capable of exhibiting the highest possible degree
in terms of the precision and accuracy components, when predicting % sand, % clay and SOM content
during ex situ measurements.

Soil Property Spectra Model Wavelengths, nm RSE a R2 MP b SEP c

% sand

2nd SGD d PLSR f - - - 2.96 3.78
1st SGD e SLR g 1931 4.26 0.59 3.22 11.31
1st SGD SLR 1936 4.77 0.58 2.87 11.40
2nd SGD SLR 1413 3.58 0.56 3.70 11.74
1st SGD SLR 1940 5.06 0.56 2.65 11.75
1st SGD SLR 1944 5.57 0.50 2.29 12.46

% clay

1st SGD PLSR - - - 0.63 0.73
1st SGD SLR 1944 5.57 0.87 1.59 3.33
1st SGD SLR 1940 5.06 0.87 1.74 3.35
2nd SGD SLR 1920 9.06 0.86 0.98 3.55
2nd SGD SLR 1924 10.38 0.85 0.85 3.61
2nd SGD SLR 1915 8.07 0.83 1.08 3.86

% SOM

2nd SGD PLSR - - - 0.99 1.09
1st SGD SLR 557 4.24 0.36 0.67 3.78
1st SGD SLR 551 4.86 0.35 0.59 3.79
1st SGD SLR 585 4.26 0.34 0.65 3.84
1st SGD SLR 563 4.46 0.33 0.62 3.86
Smooth SLR 685 6.70 0.31 0.40 3.92
1st SGD SLR 568 4.89 0.31 0.54 3.93
1st SGD SLR 680 7.35 0.30 0.36 3.95
Smooth SLR 674 7.67 0.29 0.34 3.99

a Ratio of Spread over error. b Measurement precision. c Standard error of prediction. d Second order Savitzky–
Golay derivative. e First order Savitzky–Golay derivative. f Partial least squares regression (PLSR) calibration
model. g Simple linear regression (PLSR) model.
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Table 6. Summary of vis–NIR factors demonstrating reproducibility, precision and accuracy during
in situ measurements.

Soil Property Spectra Model Wavelengths, nm RSE a R2 MP b SEP c

% sand

Raw PLSR f - - - 2.64 4.09
2nd SGD d SLR g 1462 1.90 0.49 4.25 10.86
1st SGD e SLR 1452 3.75 0.40 3.93 11.67
1st SGD SLR 1944 2.34 0.50 3.96 11.83
2nd SGD SLR 1924 2.17 0.39 3.35 12.06
1st SGD SLR 1940 2.74 0.56 3.54 12.13
1st SGD SLR 1936 3.30 0.58 3.31 12.33
1st SGD SLR 1457 4.31 0.36 3.50 12.35

% clay

1st SGD PLSR - - - 1.28 1.73
1st SGD SLR 1940 2.74 0.87 2.41 3.17
1st SGD SLR 1936 3.30 0.85 2.28 3.38
1st SGD SLR 1944 2.34 0.87 2.58 3.75
1st SGD SLR 1932 3.64 0.78 2.32 4.28
2nd SGD SLR 1924 2.17 0.85 2.12 4.46

% SOM

1st SGD PLSR - - - 1.31 2.05
1st SGD SLR 1747 3.07 0.00 0.86 3.46
2nd SGD SLR 1605 1.67 0.01 0.96 3.57
1st SGD SLR 1752 2.67 0.00 0.85 3.59
1st SGD SLR 1544 1.39 0.00 0.96 3.59
Smooth SLR 422 2.77 0.28 0.74 3.76
Smooth SLR 728 3.87 0.33 0.72 3.78
Smooth SLR 723 3.97 0.34 0.69 3.82
1st SGD SLR 591 4.60 0.00 0.48 3.98
1st SGD SLR 422 2.80 0.00 0.51 3.99
1st SGD SLR 585 5.07 0.00 0.52 3.99

a Ratio of Spread over error. b Measurement precision. c Standard error of prediction. d Second order Savitzky–
Golay derivative. e First order Savitzky–Golay derivative. f Partial least squares regression (PLSR) calibration
model. g Simple linear regression (PLSR) model.
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and SOM in ex situ (a) and in situ (b) measurement environments.

Since SEP was typically at least two times greater than MP, it is clear that a simplistic
SLR modeling method does not account for a substantial part of variability among different
soil samples; this might be explained by the interactions among different soil properties as
well as the fact that different soil properties cause different degrees of change in specific
spectral parameters. This would imply that a suitable prediction model should involve
multiple such parameters, yet their number should be relatively small to assure model
applicability outside a given set of soil samples. This approach is appropriate when analyz-
ing other soil properties and PSS systems geared to investigate the spatial heterogeneity of
specific soil attributes. However, the goal and the purpose of this paper was to use the sim-
plest method that focused on the reproducibility of soil reflectance spectral elements and to
assess direct relationships with soil attributes rather than model development [38–41,68].
The latter is the subject of follow-up work.
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4. Conclusions

Based on the results of this study, it can be concluded that vis–NIR spectral measure-
ments obtained using the commercially available portable equipment are compatible in
terms of precision and accuracy when they are used under laboratory conditions or in
the field, and when soil water content varies substantially. Data processing by perform-
ing smoothing, and first and second order derivative transformation, of the spectra has
increased measurement reproducibility, which enhanced the system’s ability to separate
different soil samples. This was clearly noticeable after applying the innovative RSE cal-
culation method on each individual spectra and its smooth or derivative transformations.
Naturally, this indicated the ability to predict soil properties using a simple SLR technique
that defined the difference between soil samples. From the soil attributes tested using the
SLR method, clay content was shown to be predictable using spectral data derivatives
around the short water absorption band. The prediction error was higher for sand and
unacceptably high for SOM. Use of the popular but complex PSLR technique reduced
prediction errors by between a quarter and one third, and the results were found to be com-
parable with previous studies pertaining to the use of DRS for measuring soil texture and
SOM. However, a relatively small number of soil samples require caution when inferring
results in practice. The most important finding in this study is that the majority of vis–NIR
spectral measurements are sufficiently reproducible to be considered for distinguishing
among diverse soil samples, while certain parts of the spectra indicate the capability of
achieving this at α = 0.05. The methodology for evaluating both the precision and accuracy
components of spectral measurement errors was found to be useful when assessing the
performance of a given proximal soil sensing instrument.
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