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Abstract: The present study pertains to assessing the heavy metal (Cd, Cr, Co, Cu, Pb, and Zn) con-
tents of untreated and treated effluents of two textile industries and agricultural soil samples in the
vicinity of these industries located in Ludhiana, Punjab (India). The genotoxicity of the effluents sam-
ples was estimated using Allium cepa root chromosomal aberration assay. The exposure of Allium cepa
roots to untreated effluents from both industries resulted in the reduction of mitotic index (MI) and
increase in chromosomal aberrations in the root tip meristematic cells when compared to those that
were exposed to the treated effluents indicating the significant genotoxic potential of untreated efflu-
ents. Risk characterization of soil sample was carried out by calculating the potential ecological and
human health risks of heavy metals. The hazard index was observed to be less than 1, indicating there
was no potential health risk of heavy metals in soil samples. Furthermore, bioaccumulation potential
studies on plant species grown in the vicinity of these industries have shown that bioaccumulation
factor (BAF) varied as Ricinus communis L. > Chenopodium album L. > Cannabis sativa L. with Co and
Pb having maximum and minimum values, respectively.

Keywords: health risk assessment; Allium cepa root chromosomal aberration assay; bioaccumulation;
genotoxicity; heavy metals; industrial effluents

1. Introduction

Numerous obnoxious chemical agents continuously enter our environment due to
various industrial, domestic, and other human activities. These chemicals have the ten-
dency to pose threats to the survival of living beings, ultimately endangering the ecological
balance [1–3]. The water pollution index on account of inorganic chemicals is considered
to be one of the major indicators of environmental pollution, which has accelerated in
past decades due to various anthropogenic activities, especially, agricultural practices and
the discharges of effluents from industries into the natural water bodies. [4]. The release
of huge quantities of treated, as well as untreated municipal wastes, to aquatic bodies
has also become a problem in different developing countries [5]. Wastewater irrigation
has been documented to cause the accumulation of heavy metals in agricultural soils and
plants [6–9].

The contamination of water bodies due to genotoxic compounds like heavy metals
and pesticides has been widely documented [10–12]. The presence of various unidentified
and noxious toxicants possessing potential carcinogenicity has been widely demonstrated
in various genotoxicity studies [13,14]. The reports on genotoxicity studies of various

Soil Syst. 2021, 5, 63. https://doi.org/10.3390/soilsystems5040063 https://www.mdpi.com/journal/soilsystems

https://www.mdpi.com/journal/soilsystems
https://www.mdpi.com
https://orcid.org/0000-0003-4882-1556
https://orcid.org/0000-0002-6224-8680
https://doi.org/10.3390/soilsystems5040063
https://doi.org/10.3390/soilsystems5040063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/soilsystems5040063
https://www.mdpi.com/journal/soilsystems
https://www.mdpi.com/article/10.3390/soilsystems5040063?type=check_update&version=2


Soil Syst. 2021, 5, 63 2 of 22

industrial wastewaters and other effluents have globally raised concern over the genotoxic
and carcinogenic hazards of the contaminants present in the samples [1]. Since the chemical
characterization alone cannot provide sufficient knowledge on their genotoxicity and
potential hazard, different bioassays have been used to explore the same. Many bioassays
have been effectively used to assess the genotoxicity of complex wastewaters and a number
of bacterial and plant-based assays have been developed for the estimation of the genotoxic
potential of water samples. Among these, the Allium cepa test takes a prominent position
because it has a low chromosome number and large size of chromosomes [15].

Soil is an essential resource for sustaining two basic human necessities, that is, pro-
duction of sufficient food and a clean environment by adsorbing different contaminants.
However, certain plants grown on polluted land can uptake contaminants like heavy metals
either as ions through their root system or by absorption through foliage, and they get
accumulated in different plant parts such as in roots, stems, leaves, fruits, and grains [16].
Heavy metal contamination of soils is a very serious issue that has contributed significantly
to the contamination of various food crops [3,17,18]. Although heavy metals exist in soils
in natural concentrations (significantly low) deriving from parent rock materials, these
trace amounts do not pose any harm to human health. However, anthropogenic inputs of
wastewaters from various sources along with the dumped waste can significantly increase
the heavy metal concentrations in soil [19,20]. Excessive levels of heavy metals in agricul-
tural soils not only lead to the disorders of soil functions and crop growth but also, poses
serious risks to human health by accumulating in food crops [21–24].

Potential human health risk (non-carcinogenic and carcinogenic) assessment has been
recognized as an efficient tool for assessing risks of various pollutants in the environment
and is essential for making decisions regarding regulations concerning pollution reduction
in urban soil and minimizing human exposure to toxic pollutants [25–27]. Considering the
ecological threats posed by contaminants in textile industry effluents, the present study
was conducted to assess the effluents (treated and untreated) from two textile industries
situated in Punjab, India for heavy metal contents, physico-chemical characteristics, and
genotoxicity following the Allium cepa root chromosomal aberration assay. Heavy metal
estimation and ecological risk assessment of the agricultural soil in the vicinity of these
industries were also conducted. The study further focused on the evaluation of heavy metal
bioaccumulation in three plant species viz., Cannabis sativa L., Ricinus communis L., and
Chenopodium album growing in the vicinity of these industries, as well as the application of
various pollution indices to determine the pollution level of analyzed heavy metals in the
soil of study area.

2. Material and Methods
2.1. Collection of Samples
2.1.1. Textile Industrial Effluents

Untreated and treated effluents originating from two textile industries (Textile Industry
A and Textile Industry B) being discharged into the Sutlej river, Ludhiana, Punjab, India,
were selected for toxicity assessments. In the present study, the effluent samples from both
textile industries were collected during March 2017. Effluent samples from the respective
industries were collected in triplicate in clean bottles, brought to the laboratory, and
stored at 4 ◦C until further analysis. The samples were coded as shown in Table 1. The
physico-chemical analysis of the collected samples was carried out following standard
protocols [28,29].

Table 1. Description of sample codes.

S. No. Sample Code Description of Sample

1. AU Untreated effluent sample collected from textile industry A
2. AT Treated effluent sample collected from textile industry A
3. BU Untreated effluent sample collected from textile industry B
4. BT Treated effluent sample collected from textile industry B
5. SA Soil sample collected from an agricultural field in the vicinity of industries A and B
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2.1.2. Soil Sample

Soil samples in triplicate were taken from agricultural fields in the vicinity of the
industries. For the collection of soil samples, the soil was dug to the depth of 20 cm [30].
Soil was collected from 4–5 parts of the field viz., east, west, north, south, and center and
pooled to constitute the sample of the particular field. Approx. area of the agricultural
field was 1000 sq. mts and situated 500 meters away from the main industrial units. Soil
samples were stored in clean and airtight polyethylene bags. Soil samples were dried in
the laboratory, cleaned by removing visible traces of leaves and other waste materials,
homogenized, and sieved through a size 2 mm sieve for heavy metal analysis.

2.1.3. Plant Samples

Since there was no crop grown at the time of sampling in the agricultural field,
the plant samples (leaves) of three wildly growing plant species viz. Cannabis sativa L.
(Cannabaceae), Chenopodium album L. (Amaranthaceae), and Ricinus communis L. (Euphor-
biaceae) on the boundaries of agricultural fields in the vicinity of industries were collected
to explore their heavy metal bioaccumulation potential. The leaves were thoroughly
washed using tap water followed by distilled water, oven-dried at 70 ◦C, grounded to
a fine powder by pestle mortar, and stored in airtight polyethylene bags at 4 ◦C until
further analysis.

2.2. Physico-Chemical Characteristics of Industrial Effluents and Soil

The soil extract (1:5 w/v) was prepared by adding 20 g of the collected soil sample in
100 mL of distilled water. This solution was kept in a mechanical shaker for 12 hours at
room temperature and filtered through Whatman No. 1 filter paper [31]. The filtrate was
termed soil extract and was used for further analysis of the physico-chemical parameters
(pH, electrical conductivity, calcium, sodium, and magnesium). Total organic carbon of
the soil was estimated using the dry combustion method [32]. A core measuring cylinder
(100 ML) was used for bulk density (BD) estimation [33]. Soil texture was determined by
the sieving and sedimentation method [34]. On the basis of size, different particles of soil
were grouped as: sand: 0.5–2.00 mm; silt: 0.002–0.5 mm; clay: <0.002 mm. The analysis
of the physico-chemical parameters (pH, temperature, total solids (TS), total dissolved
solids (TDS), total suspended solids (TSS), total hardness, alkalinity, calcium, chloride,
magnesium, sodium, and phosphate) of effluent samples was carried out following the
standard protocols of the American Public Health Association [35,36]. The sodium content
of both effluents and soil samples was measured using a Flame Photometer (Model-128;
Make: Systronics). The pH of each effluent was measured using a pH meter (Model: µ pH
system 361; Make: Systronics).

2.3. Heavy Metal Estimation

Heavy metal contents in collected samples were determined using the flame atomic ab-
sorption spectrophotometer (AAS) (Agilent 240 FS AA model), at variable/recommended
wavelength of 228.80 nm for cadmium, 240.70 nm for chromium, 357.90 nm for cobalt,
324.80 nm for copper, 217.0 nm for lead, and 213.90 nm for zinc. Limits of detection (µg/L)
for different metals were cadmium (1.5), cobalt (3), chromium (5), copper (1.2), lead (7),
and zinc (1.6). The airflow rate was maintained at 13.50 L/min for all heavy metal deter-
minations. The acetylene flow rate was set at 2.00 L/min for Cd, Co, Cu, Pb, and Zn, and
at 2.90 L/min for Cr estimations while the lamp currents were set at 4.00 mA, 7.00 mA,
7.00 mA, 4.00 mA, 10.00 mA, and 5.00 mA for determination of Cd, Co, Cr, Cu, Pb, and Zn,
respectively. All the glassware was thoroughly washed and oven-dried before use. Double
distilled water and analytical grade reagents were used during the whole experiment. The
standard solutions (1000 mg/L) of Agilent made for different metals were used to prepare
solutions of varying concentrations as 0.5, 1, 1.5 (mg/L) for cadmium and zinc; 5, 10,
15 (mg/L) for chromium, lead, nickel, and cobalt; and 1, 3, 5 (mg/L) for copper using the
serial dilution method. The accuracy (>95%) of the instrument was maintained throughout
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the experiment by thorough washing. For which, after every 10 sample readings, the
standards were run to observe the accuracy of the instrument. Soil samples were digested
using aqua regia, that is, a mixture of one part concentrated nitric (HNO3) and three parts
hydrochloric acid (HCl) following the method described by the authors of [37] with minor
modifications. For this purpose, 1 g of finely ground soil sample was digested slowly
with aqua regia on a hot plate in a fume hood till white fumes appeared, indicating the
complete digestion of the soil sample. Plant sample digestion was carried out using a
tri-acid mixture, that is, five parts of nitric acid (HNO3) and one part of both perchloric
(HClO4) and sulfuric acid (H2SO4) as prescribed by Allen [38]. Only concentrated acids
were used for both types of digestion. The digested soil and plant samples were filtered
using Whatman No.1 filter paper and diluted with double distilled water up to a final
volume of 50 mL.

2.4. Metal Bioaccumulation Factor (BAF)

In order to assess the accumulation of heavy metals from the soil in the agricul-
tural fields in the vicinity of the industries into the three plant species (Cannabis sativa L.,
Chenopodium album L. and Ricinus communis L.), the bioaccumulation factor (BAF) was
calculated. The bioaccumulation factor is commonly used to study the fate of different
environmental contaminants in plants [39]. Ali et al. [40] documented that BAF is the ratio
of the concentration of heavy metals in the crop to that in the soil. Accordingly, BAF was
calculated using the following equation.

BAF = Cplant/Csoil (1)

where, Cplant stands for concentrations of heavy metal in plant leaves and Csoil stands for
concentrations of heavy metal in soil.

2.5. Genotoxicity Assessment

The genotoxicity of both untreated and treated industrial effluents was determined
using the Allium cepa root chromosomal aberration assay [41–43]. After the removal
of primary roots of freshly purchased onion bulbs, bulbs were placed on Couplin jars
containing distilled water (negative control) and industrial effluents for 48–72 h for rooting.
The Couplin jars were kept in a BOD (Biochemical Oxygen Demand) incubator at 25 ± 2 ◦C
until roots grew. Care was taken to fill the coupling jars with exposure media on a daily
basis so that the onion bulbs were emersed in solution and the root primordia were under
continuous exposure to the treatment. Distilled water was used as a negative control
during the study. The onion bulbs after treatment were thoroughly washed. The root
tips were plucked with forceps and put in a solution of glacial acetic acid and Ethanol
in the ratio of 1:3 (Farmer’s fluid). The root tips were squashed in aceto-orcein stain to
prepare slides. At least five slides consisting of approximately 500 dividing cells were
examined under a light microscope to calculate mitotic index (MI) and to score different
types of aberrations for each sample. The chromosomal aberrations were categorized into
physiological (outcomes of spindle inhibition) and clastogenic (formed due to damage of
DNA) based on the descriptions given earlier [42,44].

2.6. Pollution Assessment

The degree of pollution of the agricultural soil in the studied area was evaluated by
using several indices, like the geoaccumulation index (Igeo), contamination factor (CF),
degree of contamination (Cdeg), modified degree of contamination (mCdeg), Numerow’s
pollution index (PI), pollution load index (PLI), potential ecological risk factor (ERi), and
the potential ecological risk index (RI). A brief description of these soil contamination
indices is given in Table S1.
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2.7. Human Health Risk Assessment

The model for human health risk assessment given by the United States Environmental
Protection Agency (USEPA) was used to assess the non-carcinogenic and carcinogenic
effects of environmental toxicants like heavy metals on humans. Due to behavioral and
physiological differences in this study area, people were divided into two groups, that
is, adults and children. Soil contaminants, that is, heavy metals, pose health risks to the
human body mainly by three exposure pathways, which include ingestion, inhalation,
and dermal contact. So, the carcinogenic and non-carcinogenic threat of these exposure
pathways was calculated in the present study. The methodology used in the present
study for human health risk assessment was based on the guidelines given by the US
Environmental Protection Agency [28,45–48].

2.7.1. Exposure Assessment

To calculate the human exposure dose, the average daily intake (ADI) of heavy metals
in soil for three exposure pathways (ingestion, inhalation, and dermal contact) is calculated
as follows:

Ingestion pathway:

ADIingestion =
C × IRig × EF × ED × CF

BW × AT
(2)

Inhalation pathway:

ADIinhalation =
C × IRih × EF × ED

BW × AT × PEF
(3)

Dermal contact pathway:

ADIdermal contact =
C × SA × SAF × DAF × EF × ED × CF

BW × AT
(4)

where ADIingestion, ADIinhalation, ADIdermal contact is the average daily intake (mg/kg day) via
ingestion, inhalation, and dermal contacts, respectively. C is the concentration of analyzed
heavy metals in soil samples (mg/kg); IRig is the ingestion rate (100 and 200 mg/day for
adults and children, respectively) [28,45,48]; IRih is the inhalation rate (12.8 m3/day for adults
and 7.63 m3/day for children) [28]; EF is the exposure frequency (365 days/year) [28,45];
ED is the exposure duration (30 years for adults and 6 years for children) [28]; CF is the
conversion factor for soil (10−6 kg/mg) [48]; BW is the body weight (70 and 20 kg for adults
and children, respectively) [28]; AT is the average exposed time (EF × ED) [28]; PEF is the
particulate emission factor (1.36 × 109 m3 /kg) [28]; SA is the skin exposed area for soil
(4350 and 1600 cm2 for adults and children, respectively) [28]; SAF is the skin adherence
factor (0.7 mg/cm2 for adults and 0.2 mg/cm2 for children) [28,48]; and DAF is the dermal
absorption factor (0.001) [28].

2.7.2. Non-Carcinogenic Risk Assessment

The hazard quotient (HQ) is characterized for non-carcinogenic hazards and is defined
as the average daily intake by the toxicity threshold value, which is referred to as the
chronic reference dose (RfD) in mg/kg-day of the specific heavy metal. HQ is computed as
the ratio of the average daily intake (ADI) and a reference dose (RfD). The equitation of HQ
is given as follows [28,45]:

HQ =
ADI
R f D

(5)

where HQ is the hazard quotient, ADI is the average daily intake (mg/kg day) and RfD
is the reference dose (mg/kg day) of heavy metals via ingestion, inhalation, and dermal
contact pathways. The reference dose (RfD) of studied heavy metals is shown in Table S2.
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Hazard index (HI) is a cumulative non-cancer health risk that can be evaluated by the
sum of the HQ (hazard quotient) values of various exposure pathways. It can be calculated
as the sum of non-carcinogenic hazard quotients for all contaminants [45] as follows:

HI = ∑ HQi (6)

where HQi is the non-cancer hazard quotient for the ith contaminants.
HI < 1 indicated no non-carcinogenic health, whereas HI > 1 risk indicated adverse

non-carcinogenic health risk [28,49].

2.7.3. Carcinogenic Risk Assessment

The carcinogenic risk assessment is the incremental probability of an individual devel-
oping cancer over a lifetime as a result of exposure to the potential carcinogen like heavy
metals [27,50]. Carcinogenic risk and total carcinogenic risks are determined as follows:

CR = ADI × SF (7)

TCR = ∑ CR (8)

where CR is the carcinogenic risk; ADI is the average daily intake (mg/kg day); SF is the
cancer slope factor over a lifetime (mg/kg day). The cancer slope factor (SF) of studied
heavy metals is shown in Table S2.

The values of carcinogenic risk (CR) ranging from 1 × 10−6 to 1 × 10−4 are considered
as safe limit for human health [28,45], whereas higher CR values than the limit of 1 × 10−4

cause lifetime cancer risks to the human body [45,49].

2.8. Statistical Analysis

Student’s t-test (p ≤ 0.05) was applied to find significant differences between values
of heavy metals and genotoxicity parameters like mitotic inhibition (MI), physiological
aberrations (PA), clastogenic aberrations (CA), and total aberration (TA) for untreated and
treated effluents of the same industry. Chi-square test (p ≤ 0.05) was used to calculate
the statistically significant differences between the values of genotoxicity parameters (MI,
PA, CA, and TA) for effluents and the negative control. Statistical analysis was performed
using Minitab version 14.0 (State College, PA, USA).

3. Results and Discussion
3.1. Physico-Chemical Characteristics of Industrial Effluents and Soil

Physico-chemical parameters of studied soil and industrial effluent samples are shown
in Table 2. The mean pH of soil, that is, 8.02 was observed to be within the permissible
limit of 6.5–8.5 and is alkaline in nature. Electrical conductivity (EC), which indicates the
soil salinity, was also found to be within the prescribed limit. The studied soil sample
had a sand content of 33.49%, silt content of 26.05%, and clay of 40.45%. The Ca, Mg
and Na contents (mg/kg) of the soil sample were observed to be 120.24, 176.64, and
343.08, respectively. pH, the most significant parameter for the assessment of water quality,
ranged from 6.67 to 8.90 and remained within the prescribed limits. Bulk density (BD)
plays a vital role in the growth of plants as high BD can decrease the root penetration
in soil. The mean bulk density (BD) of the studied soil sample was found to be 1.08.
Organic matter content plays a chief role in the fertility of agricultural soils. Total organic
carbon (TOC) in the present study was observed to be 2.22%. The pH of treated effluent
of textile industry A (AT) was observed to be acidic while all other effluent samples
showed basic pH. Dissolved calcium and magnesium in water are the two most common
minerals that determine water hardness. Total hardness (mg/L) for AU, AT, BU, and BT
was found to be 111.33, 151.33, 191.33, and 104.67, respectively. The calcium content in
effluent samples ranged between 17.90–60.65 mg/L and magnesium content was seen
in the range of 17.58–70.33mg/L. The order of chloride content (mg/L) was observed
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to be: 232.41 (AU) > 142.47 (AT) > 114.07 (BU) > 66.74 (BT). The electrical conductivity
varied from 511µS/cm to 1908.67 µS/cm. The value of total suspended solids (mg/L) was
found to be minimum for AU (106.67) and maximum for AT (585) while the content of
total dissolved solids (mg/L) was found to be minimum for AT (201.67) and maximum
for BU (3666.67). The value of alkalinity (mg/L) varied from 356.67 to 656.67; sodium
content (mg/L) from 141.08 (BU) to 333.63 (AU); and phosphate content (mg/L) from
1.48 (AT) to 2.08(BU). The value of total solids (mg/L) was found to be in the order of
BU (3893.33) > AU (3473.33) > BT (2000) > AT (786.67).

According to Paul et al. [51], the basic nature of the pH of the industrial effluents was
because of the usage of scouring and bleaching agents along with other various chemicals
like caustic soda, hydrogen peroxide, and soap while pulping the waste. Similar results
were also reported by Ramamurthy et al. [52]. Alkaline pH can have an adverse effect on
soil permeability and soil microflora [53]. Total solid (TS) levels were higher in both AU
and BU, which can lead to high turbidity of the water bodies into which these effluents
are discharged. In the present study, higher levels of total dissolved solids (TDS) indicated
high salt content in the effluents analyzed. Paul et al. [51] also reported higher values of
TDS (2264–7072 mg/L) in textile effluents. The higher values of TDS are due to the addition
of different chemicals during pulping and bleaching processes, which can have detrimental
effects on aquatic flora and fauna.

The degree of hardness becomes higher as the calcium and magnesium content in-
creases and is related to the concentration of multivalent cations dissolved in the water.
The change in alkalinity depends on carbonates and bicarbonates, which in turn depends
upon the release of CO2. The amount of total alkalinity in the effluents during the present
study ranged from 356.667 to 656.667 mg/L. The hardness of water is mainly due to the
presence of calcium and magnesium ions, and it is an important indicator of the toxic effect
of poisonous elements [54].

Table 2. Physico-chemical characteristics (Mean ± S.E.) of collected samples (textile industrial effluents and soil) from
Ludhiana, Punjab (India).

Parameter AU AT BU BT BIS Limits a Soil Soil Limits b

pH 6.67 ± 0.05 7.49 ± 0.00 * 7.43 ± 0.02 8.90 ± 0.02 * 6.5–8.5 8.02 ± 0.01 6.5–8.5
EC (µS/cm) 1908.67 ± 4.67 628.67 ± 1.86 * 1858.33 ± 1.67 511.00 ± 2.00 * - 442.5 ± 4.79 450
TDS (mg/L) 3366.33 ± 6.67 201.67 ± 1.67 * 3666.67 ± 13.33 1813.33 ± 35.28 * 500–2000 - -
TS (mg/L) 3473.33 ± 6.67 786.67 ± 13.34 * 3893.33 ± 13.33 2000.00 ± 40.00 * - - -
TSS (mg/L) 106.67 ± 6.67 585 ± 12.58 * 226.67 ± 13.33 186.67 ± 13.33 - - -
Alkalinity
(mg/L) 656.67 ± 33.34 456.67 ± 33.34 * 490.00 ± 57.74 356.67 ± 33.33 200–600 - -

Hardness
(mg/L) 111.33 ± 6.67 151.33 ± 6.67 * 191.33 ± 6.67 104.67 ± 6.67 * 200–600 - -

Calcium
(mg/L) 33.93 ± 2.67 17.90 ± 2.67 * 60.65 ± 2.67 28.59 ± 2.67 * 75–200 120.24 (mg/kg)

± 0.00 0–3500 mg/kg

Magnesium
(mg/L) 17.58 ± 4.40 70.33 ± 4.40 * 26.37 ± 7.61 21.98 ± 4.40 * 30–100 176.64 (mg/kg)

± 6.09 0–500 mg/kg

Sodium
(mg/L) 333.63 ± 1.62 308.20 ± 1.25 * 141.08 ± 0.58 262.42 ± 1.04 * - 343.08 (mg/kg)

± 3.02 0–300 mg/kg

Chloride
(mg/L) 232.41 ± 4.73 142.47 ± 4.73 * 114.07 ± 4.73 66.74 ± 0.58 * 250–1000 - -

Phosphate
(mg/L) 1.58 ± 0.03 1.48 ± 0.02 2.08 ± 0.13 1.50 ± 0.03 * - - -

Bulk density
(g/cc) - - - - - 1.08 ± 0.01 -

Sand (%) - - - - - 33.49 ± 0.72 -
Silt (%) - - - - - 26.05 ± 0.19 -
Clay (%) - - - - - 40.45 ± 0.68 -
TOC (%) - - - - - 2.22 ± 0.15 -

(AU: Untreated effluent of textile industry A; AT: Treated effluent of textile industry A; BU: Untreated effluent of textile industry B;
BT: Treated effluent of textile industry B; TOC: Total organic carbon). a BIS [55]; b Awashthi [56], * Indicates statistically significant
difference between values of parameters in untreated and treated effluents of the same industry. (Independent Student’s t-test, p ≤ 0.05).
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3.2. Heavy Metal Estimation
3.2.1. Heavy Metal Contents in Industrial Effluents

The results of a metal analysis of industrial effluents are given in Table 3. The contents
(mg/L) of Cd, Cr, Co, Cu, Pb, and Zn observed for untreated effluents of textile industry A
were 0.004, 0.06, 1.72, 0.02, 0.13, and 0.09, respectively, while the values (mg/L) of these
metals for treated effluents were below detection limit (BDL), 0.05, 1.33, 0.02, 0.11, and 0.02,
respectively. The heavy metal contents observed for untreated effluent of textile industry B
were in the order Co (1.69) > Cd (1.33) > Pb (0.14) > Zn (0.13) > Cr (0.06) > Cu (0.03), while
in the case of treated effluent, the order was Co (1.42) > Pb (0.11) > Zn (0.07) > Cr (0.06) >
Cu (0.01) > Cd (0.001). Among the heavy metals analyzed, the contents of Co were found
to be above the standard limits for the discharge of effluents from textile industries.

Among all metals, Co content was observed to be high in untreated and treated efflu-
ents of both textile industries A and B as compared to the prescribed limits. All other tested
heavy metals were found to be within the permissible level. Metal contamination in textile
effluents was reported to occur because of the wide usage of chemicals, colorants, mordants,
and other additives like caustic soda, sodium carbonate, etc. during the manufacturing
processes [57]. Adinew [58] also reported that different heavy metals such as cobalt, copper,
and chromium in textile effluents were present within the dye chromophores. The presence
of heavy metals in effluents produces several adverse effects on living organisms [59].
Metals like chromium, zinc, iron, mercury, and lead were reported to pose environmental
challenges [60]. In the present study, there was a significant difference (p > 0.05) in Co, Pb,
and Zn content between untreated and treated effluents of both textile industries.
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Table 3. Heavy metal contents (Mean ± S.E.) of collected samples (effluent and soil) from Ludhiana, Punjab (India).

Heavy Metal
Content of Heavy Metals (mg/L) of Effluent Normal Acceptable

Range (USEPA)

Content of Heavy
Metals (mg/kg) in

Soil

Indian Limits
for Soil

(mg/kg) a

European Union
Standards
(mg/kg) bAU AT BU BT FAO,1985

Cadmium 0.004 ± 0.00 N.D. 0.002 ± 0.00 0.001 ± 0.00 2 0.01 1.33 ± 0.05 3–6 1
Chromium 0.06 ± 0.00 0.05 ± 0.00 * 0.06 ± 0.00 0.06 ± 0.00 2 0.10 16.43 ± 0.60 - 100

Cobalt 1.72 ± 0.00 1.33 ± 0.00 * 1.69 ± 0.00 1.42 ± 0.00 * - 0.05 214.60 ± 0.42 - 50
Copper 0.02 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 * 3 0.20 13.63 ± 1.88 135–270 100

Lead 0.13 ± 0.00 0.11 ± 0.00 * 0.14 ± 0.00 0.11 ± 0.00 * 0.1 5 57.33 ± 1.20 250–500 100
Zinc 0.09 ± 0.00 0.02 ± 0.00 * 0.13 ± 0.00 0.07 ± 0.00 * 5 2 92.52 ± 0.06 300–600 300

(AU: Untreated effluent of textile industry A; AT: Treated effluent of textile industry A; BU: Untreated effluent of textile industry B; BT: Treated effluent of textile industry B). * Indicates statistically significant
difference between values of heavy metals in untreated and treated effluents of the same industry (Independent Student’s t-test, p ≤ 0.05). a Awashthi [56]; b European Union Standards (EU) [61].
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3.2.2. Heavy Metal Contents in Soil

Table 3 shows the contents of various studied heavy metals in the soil of the agricul-
tural field collected from the vicinity of textile industries. The contents (mg/kg) of Cd,
Cr, Co, Cu, Pb, and Zn observed in samples were 1.33, 16.43, 214.60, 13.63, 57.33, and
92.52, respectively.

The chief sources of heavy metals in the roadside agricultural soils were documented
to be the parent rock material, vehicular emissions, industrial activities, and agrochemicals
like fertilizers and pesticides used for cultivation [18,62]. In the present study, soil samples
were collected from agricultural fields in the vicinity of the textile industries. In the present
study, three metals, that is, Cu, Cr, and Zn were observed to be low while Pb was higher
in comparison to heavy metal contents reported from other parts of Punjab [63,64]. Also,
Cd content was observed to be high in the present study in comparison to other parts
of the world [65–70]. Cadmium is a toxic metal that causes serious health problems to
humans, animals, and plants. Bhatti et al. [61] reported that the sources of the high levels of
cadmium in the agricultural soils of Punjab were due to the usage of various agrochemicals
like NPK (nitrogen, phosphate, potassium) fertilizers, pesticides, weedicides, etc. Industrial
activities, lead mines, farmyard manure, and sewage sludge applications, etc. are reported
to be the main sources of lead pollution in agriculture and plants [71]. Zinc pollution
in roadside soils was caused by traffic-related activities such as vehicular emissions and
weathering of crash barriers [18,72,73].

Among the different metals analyzed, the content of Co was observed to be maximum
in the soil sample analyzed during the present study. Cobalt is documented to occur
naturally in soils following two main pathways, that is, weathering of rocks comprising
of minerals and breakdown of organic matter. The major mechanism involved in cobalt
content in soil includes the anthropogenic usage of cobalt salts. Smaller amounts of cobalt
can also enter the soil from the airborne transport of particulate emissions and application
of sewage sludge onto fields. Heavy metal mobility in soil was reported to be inversely
related to the strength of adsorption by soil constituents. However, the adsorption of cobalt
to soils was reported to be rapid by Kim et al. [74]. Cobalt is reported to be one of the
beneficial elements for the growth of higher plants although there is no report available
regarding its direct role in plant metabolism [75]. However, some studies showed that
cobalt was required for nitrogen fixation by bacteria in the root nodules of plants belonging
to the leguminous family [76,77]. Cobalt has also been documented to be necessary for the
processes of stem growth, elongating the coleoptiles, and expanding leaf discs. Moreover,
cobalt reduced the peroxidase activity resulting in the breakdown of Indole acetic acid
(IAA). Application of cobalt through seed treatments improved the germination of a seed,
stand establishment, growth, yield, and quality [78]. Yet, a higher concentration of cobalt
was found to be toxic, causing chlorosis and necrosis and inhibited root growth by retarding
cell division, hindering the uptake and translocation of nutrients and water [78,79].

Copper and zinc are considered essential elements for plant nutrition, however, these
can also cause toxic effects, if their concentrations exceed the required limits [80]. Plants
mainly absorb zinc as a divalent cation, which acts either as a metal component or enzymes
or as a functional, structural, or regulatory co-factor of many enzymes [81]. Despite
being a non-essential element, cadmium can also get highly accumulated in plants as
reported by Nadian [82]. Pb being a toxic element decreases the biomass growth and
disrupts the total chlorophyll content of plants [83]. Naureen et al. [84] observed that the
concentration of heavy metals in plants varied from species to species. Another study
reported that the accumulation of selected metals varied greatly among plant species and
uptake of an element by a plant was primarily dependent on the plant species and the soil
characteristics [85]. Similar observations were also made by Rattan et al. [86]. On the other
hand, Muchuweti et al. [87] reported that the excessive accumulation of heavy metals in
soils was due to elevated levels of heavy metals in wastewater used for irrigation that led
to increased uptake of metals in crops.
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3.2.3. Heavy Metal Contents in Leaves of Plants

figfig:soilsystems-1285565-f001 shows the heavy metal contents in leaf samples of three
plants Cannabis sativa L., Chenopodium album L., and Ricinus communis L. from the study
area. The order of the heavy metals in the leaves of the three plants was observed to be
Co > Zn > Pb > Cr > Cu > Cd. However, among three plant species, the order of heavy
metal contents observed for Cd and Pb was Cannabis sativa L. > Ricinus communis L.
> Chenopodium album L.; for Cr and Zn the order was Chenopodium album L. > Ricinus
communis L. > Cannabis sativa L.; for Co the order was Ricinus communis L. > Chenopodium
album L. > Cannabis sativa L.; and for Cu it was Ricinus communis L. > Cannabis sativa L. >
Chenopodium album L.
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Figure 1. Heavy metal contents in three plant species viz., Cannabis sativa L., Ricinus communis L., and Chenopodium album L.
FAO/WHO, Adapted with permission from [56]. 2001, Indian standards: Awashthi.

In all the collected plant samples, the concentrations of different metals were observed
to be above the European permissible limits like 50 mg/kg for cobalt, 0.2 mg/kg for
cadmium, and 1 mg/kg for chromium. However, two metals and contents were determined
to be lower than the Indian standards like Cd < 1.5 mg/kg and Cr < 20 mg/kg [88,89].
The concentration of copper in all three plant species was recorded to be less than both
Indian standards of 30 mg/kg and European permissible limits of 73 mg/kg. Lead content
was found to be higher than both Indian standards (2.5 mg/kg) and European permissible
limits (0.43 mg/kg). The leaves of Ricinus communis L. and Chenopodium album L. had a
higher zinc content than the Indian standards of 50 mg/kg and lower than that of European
limits of 100 mg/kg. The content of zinc in Cannabis sativa L. was recorded to be less than
both Indian standards and European permissible limits.
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The variations of heavy metal contents in soil have a direct influence on the accu-
mulation of heavy metals in plants. However, the heavy metal accumulation in plants
also depends on the type of plant species, plant organelles, and traffic density. The plant
species included in the present study were preferred because these were wildly grown
along the boundaries of the agricultural field at the time of sampling. The contribution
of human beings to metal concentrations in the terrestrial environment has arisen mainly
from mining, smelting, and industrial activities [90].

3.3. Metal Bioaccumulation Factor (BAF)

BAF is one of the main indices that provide insight into the heavy metal uptake
capacity of plant species. In the present study, BAF values were used to estimate and
compare the extent of accumulation of various metals such as Cd, Co, Cr, Cu, Pb, and Zn
in leaves of the three plants from the soil. Figure 2 presents the BAF values for different
plant samples collected during the study. A BAF value above 1 was observed only for
cobalt (1.042) in the leaves of Ricinus communis L, which indicates a high level of metal
bioaccumulation in Ricinus communis L. The order of accumulation of heavy metals in the
leaves of Ricinus communis L. was Co (1.04) > Zn (0.56) > Cu (0.48) > Cr (0.46) > Pb (0.26) >
Cd (0.18); for Chenopodium album L. the order was Co (0.78) > Cr (0.66) > Zn (0.62) > Cu
(0.46) > Pb (0.26) > Cd (0.09); and for Cannabis sativa L. it was Co (0.73) > Cu (0.47) > Cr
(0.45) > Cd (0.31) > Pb (0.28).
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Figure 2. Bioaccumulation factor of Soil to plant.

The heavy metal accumulation examination provides very important information
about the phytoremediation potential of the plant species. Transport and accumulation
of heavy metals from soil to edible parts act as the major pathway for the entry of heavy
metals into the food chain, which ultimately leads to various harmful effects [91]. The
exposure of heavy metals to human beings leads to various health problems such as
nervous system disorder, skin ailments, stomach problems, kidney damage, bone, and
lung diseases [92–94]. The BAF of heavy metals depends upon the bioavailability of metals,
which in turn depends upon the concentration of metal in soil, its chemical forms, the
difference in uptake capability for different metals, and the growth rate of different plant
species [53,95]. Different metals are accumulated in plants at variable rates depending
on various factors such as physiology, requirements, and the metal uptake mechanism
of plants, the physico-chemical characteristics of soil such as soil texture, soil pH and
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soil organic matter, as well as quantity of heavy metals present in the soil [94,96–98].
According to the guidelines given by Baker [99], BAF values greater than 1 indicated that
the plant was an accumulator for the metal being analyzed and considered as harmful
for plant health [53,100]. It is documented that Ricinus communis has good tolerance
and phytoremediation potential for the removal of nickel (Ni) from contaminated land
areas [101,102]. In the present study also, maximum BAF values for Co were observed
in Ricinus communis L., which showed that this plant had higher metal bioaccumulation
capacity than Chenopodium album L. and Cannabis sativa L. The mechanisms of cobalt
accumulation are still not properly defined. However, there are some Cu accumulators
which have the potential for Co accumulation as well due to similar mechanisms in the
accumulation of different heavy metals [103]. Considering the Co toxicity on the targeted
cellular system of plants that can hyperaccumulate, Co has been found to be evolved in
regulating Fe homeostasis thus avoiding the accumulation of free ions that can induce
oxidative stress [104]. Wong et al. [105] reported that heavy metals in carbonate-bounded
form were more bioavailable than the presence of metal in any other fractions. Tamoutisidis
et al. [106] revealed that heavy metals were transported passively from the root system
to the shoot system through xylem vessels and were accumulated in the zones of high
transpiration rates.

3.4. Genotoxicity of Industrial Effluent

The genotoxic potential of textile industrial effluents, before and after treatment was
evaluated on the basis of percent aberrant cells. The results of genotoxic potential analysis of
effluents and distilled water (negative control) using the Allium cepa test system are shown
in Table 4. Among all physiological aberrations, delayed anaphases and stickiness were the
most frequent type of aberrations while chromatin bridges dominated among clastogenic
aberrations. Total chromosomal abnormalities in the meristematic cells of root tips of
Allium cepa exposed to untreated effluents were significantly higher as compared to those
exposed to treated effluents. The reduced mitotic index clearly indicates the cell division
reduction in the root meristematic cells, which may be due to the collaborating effects of a
complex mixture of cytotoxic chemicals like metals present in the textile industrial effluents.
The total percentage aberration including both physiological (laggards, vagrants, stickiness,
delayed anaphases, and c-mitosis) and clastogenic (chromatin bridges and chromosomal
breaks) aberrations are shown in Figure 3. The total percent aberrant cells were observed to
be 29.36% for AU, 27.48% for BU, 19.69% for AT, 16.52% for BT, and 3.84% for the negative
control. The results obtained indicate the less toxic nature of the treated effluents of both
textile industries (A and B) as compared to the untreated effluents, which can be due to the
decrease in heavy metal contents.

Table 4. Genotoxic potential of industrial effluents collected from textile industries of Ludhiana (Punjab), India.

Parameter NC AU AT BU BT

Average TDC 494 431 608 500 668
MI (%) 44.37 ± 1.01 13.83 ± 0.13 # 22.17 ± 0.40 #,* 17.46 ± 0.21 # 24.32 ± 0.26 #,*
PA (%) 3.43 ± 0.19 26.67 ± 0.30 # 17.50 ± 0.22 #,* 26.08 ± 0.48 # 15.13 ± 0.55 #,*
CA (%) 0.41 ± 0.01 2.70 ± 0.17 # 2.19 ± 0.15 # 1.40 ± 0.20 # 1.40 ± 0.06 #

TA (%) 3.84 ± 0.19 29.37 ± 0.40 # 19.69 ± 0.36 #,* 27.48 ± 0.44 # 16.52 ± 0.59 #,*

(NC: Negative Control; (AU: Untreated effluent of textile industry A; AT: Treated effluent of textile industry A; BU: Untreated effluent of
textile industry B; BT: Treated effluent of textile industry B); TDC: Total Dividing Cells; MI: Mitotic Index; PA: Physiological Aberration; CA:
Clastogenic Aberration; TA: Total Aberration). * Indicates statistically significant difference between values of genotoxicity parameters
(MI, PA, CA, and TA) for untreated and treated effluents of same industry (Independent Student’s t-test, p ≤ 0.05). # Indicates statistically
significant difference between values of genotoxicity parameters (MI, PA, CA, and TA) for effluents and negative control (Chi square test,
p ≤ 0.05).
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Figure 3. Induction of physiological and clastogenic chromosomal aberrations in root tip cells of Allium cepa under exposure
to industrial effluents and distilled water (Negative Control). Physiological aberrations (Cm: C-mitosis; Da: Delayed
anaphase; Lg: Laggards; St: Stickiness; Vg: Vagrants; Aa: Abnormal anaphases; Am: Abnormal metaphases); Clastogenic
aberrations (Cb: Chromatin bridges; Bk: Chromosomal breaks), Sample codes (AU: Untreated effluent of textile industry A;
AT: Treated effluent of textile industry A; BU: Untreated effluent of textile industry B; BT: Treated effluent of textile industry
B); NC: Negative control.

The results observed in the present study indicate the mitogenic, as well as the
clastogenic effects of the textile effluents, which were evident from the low value of
the mitotic index (MI) and higher values of the chromosomal aberrations assay when
compared to the results obtained from treatment with negative control (distilled water).
The statistical analysis (Chi square test) also revealed that there is a significant difference
between the values of the genotoxicity parameters viz., physiological aberration (PA),
clastogenic aberration (CA), and total aberration (TA) along with mitotic index (MI) for
effluents of both textile industries (A and B) and negative control at p ≤ 0.5). Chromosomal
aberration is an important indicator for assessing the genotoxicity of textile effluents [107].
The Allium cepa root chromosomal aberration assay has been widely used for cytotoxic as
well as genotoxic mitotic studies [41,108–110]. The reduction in the values of mitotic index,
in the present study, indicated the cytotoxic effects, whereas the induction of chromosomal
and nuclear abnormalities showed genotoxic effects. Both cytotoxic and genotoxic effects
were endorsed by various environmental pollutants [44].

The higher genotoxic response of root tip cells under exposure to untreated effluent
of textile industry A as compared to untreated effluent of B industry can be attributed
to the presence of high content of Cd, Co, Na, and Cl. Some authors have reported
the cytotoxic and genotoxic effects using the Allium cepa test system following exposure
to heavy metals [111,112]. Cd has been shown to reduce the mitotic index (MI) and
enhance the induction of chromosomal aberrations, as well as micronuclei, in various
studies [113–116]. Grover and Kaur [117] studied the genotoxic potential of textile and
paper mill effluents and sewage water following the Allium cepa chromosomal aberration
assay and reported that the industrial effluents induced the formation of micronuclei
and chromosomal abnormalities in the root tip cells of Allium cepa. Genotoxicity of both
untreated and treated textile industrial effluents was evaluated using the Allium cepa test
system by Vijayalakshmidevi and Muthukumar, [118] and they observed a reduction in
the mitotic index, as well as induction of various types of chromosomal aberrations in the
root tips exposed to effluent. It is possible that some chemicals in the complex chemical
mixtures could have stimulatory effects on the mitotic process while some others might
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have mito-depressive effects [43]. Similar results were also reported for genotoxicity of
textile industrial effluents using the Allium cepa test system by other authors [42,108,119,120]
and they demonstrated the induction of chromosomal abnormalities and decrease in the
mitotic index in root tips cells treated with the effluent. Therefore, mitotic responses
observed in this study could be due to the overall collaborative effects such as additive,
antagonistic, and synergistic of the complex chemical mixtures in the effluents on the root
meristematic cells.

3.5. Pollution Assessment

The Igeo, CF, Cdeg, mCdeg, PI, PLI, ERi and RI of the agricultural soil in the present
study were calculated based on the heavy metals content in the studied soil sample. Table 5
indicates that the CF value of heavy metals in studied area was ranked as: Co (21.46) >
Cd (13.57) > Pb (2.87) > Zn (1.30) > Cu (0.55) > Cr (0.47) and the Igeo value ranked as Co
(3.84) > Cd (3.18) > Pb (0.93). Pollution levels of contamination factor (CF) were classified
as: low contamination (CF < 1), moderate contamination (CF value in the range of 1–3),
considerable contamination (CF value in the range of 3–6), and very high contamination
(CF > 6) by Taylor and Mclennan [121] and Hakanson [122]. The CF value indicated that
the soil is extremely polluted by Cd and Co, moderately polluted by Pb and Zn whereas
unpolluted by Cu and Cr. The result of Igeo showed that soil is heavily contaminated by
Cd and Co whereas uncontaminated by Cr, Cu, and Zn on the basis of the classification
given by Muller [123] and Taylor and Mclennan [121]. Considering the Cdeg values > 32,
PI values > 3, and PLI > 3, the studied soil was found to be extremely polluted with heavy
metals whereas mCdeg (6.70) value in the present study indicated that soil has a high
degree of contamination. ERi values for Cr, Cu, Pb, and Zn were observed to be below 40,
indicating low potential ecological risk from these metals whereas Cd showed considerable
potential ecological risk and Co exhibited very high potential ecological risk. In the present
work, ERi values showed that Co is the major pollutant in the area which indicates that
agricultural management is a probable cause of heavy metals accretion. The potential
ecological risk index (RI) demonstrated that the study area had considerable ecological risk
considering the RI value in the range of 300–600.

Table 5. Metal pollution indices for collected soil samples from Ludhiana, Punjab (India).

Metal Igeo CF Cdeg mCdeg PI PLI ERi RI

Cd 3.18 13.57 40.22 6.70 15.90 26.41 407.14 533.74
Cr −1.68 0.47 0.94
Co 3.84 21.46 107.3
Cu −1.46 0.55 2.73
Pb 0.93 2.87 14.33
Zn −0.203 1.30 1.30

Igeo: geoaccumulation index; CF: contamination factor; Cdeg: degree of contamination; mCdeg: modified degree of contamination;
PI: Numerow’s pollution index; PLI: pollution load index; ERi: potential ecological risk factor; RI: potential ecological risk index.

3.6. Human Health Risk Assessment

The non-carcinogenic, hazard quotient (HQ), and hazard index (HI) of analyzed heavy
metals (Cd, Cr, Co, Cu, Pb, and Zn) through three exposure pathways, that is, ingestion,
dermal contact, and inhalation for adults and children were calculated and results were
shown in Table 6. The values of HQingestion, HQdermal, and HQinhalation for all studied heavy
metals were found to be lower than 1 for both adults and children and thus indicated that
there is no obvious risk to the population. The total carcinogenic risks (TCR) were calculated
only for Cr as cancer slope factors (SF) for all three exposure pathways (ingestion, dermal
contact, and inhalation) are not available for other heavy metals. The total carcinogenic
risk value was found to be in the range of the permissible limit of 1 × 10−6 to 1 × 10−4, as
provided by USEPA [28]. The results of cancer risk were shown in Figure 4.
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Table 6. Exposure values for non-carcinogenic risks for adults and children from different exposure pathways in the
study area.

Receptor Exposure
Pathway Cd Cr Co Cu Pb Zn

Adult

ADI ingestion 1.9 × 10−6 2.347 × 10−5 3.066 × 10−4 1.947 × 10−5 8.19 × 10−5 1.322 × 10−4

ADI dermal 5.786 × 10−8 7.147 × 10−7 9.335 × 10−6 5.929 × 10−7 2.494 × 10−6 4.0246 × 10−6

AID inhalation 1.788 × 10−10 2.209 × 10−9 2.885 × 10−8 1.833 × 10−9 7.708 × 10−9 1.244 × 10−8

Total 1.958 × 10−6 2.42 × 10−5 3.159 × 10−4 2.01× 10−5 8.440 × 10−5 1.36 × 10−4

HQ ingestion 1.9 × 10−3 7.824 × 10−3 1.533 × 10−2 4.868 × 10−4 5.85 × 10−2 4.406 × 10−4

HQ dermal 5.786 × 10−3 2.382 × 10−4 5.834 × 10−4 4.941 × 10−5 4.759 × 10−3 6.708 × 10−5

HQ inhalation 1.788 × 10−7 7.724 × 10−5 5.053 × 10−3 4.582 × 10−8 2.190 × 10−6 4.147 × 10−8

HI 7.686 × 10−3 8.139 × 10−3 2.097 × 10−2 5.362 × 10−4 6.326 × 10−2 5.077 × 10−4

Children

ADI ingestion 1.33 × 10−5 1.643 × 10−4 2.146 × 10−3 1.363 × 10−4 5.733 × 10−4 9.252 × 10−4

ADI dermal 2.128 × 10−8 2.629 × 10−7 3.434 × 10−6 2.181 × 10−7 9.173 × 10−7 1.480 × 10−6

ADI inhalation 3.731 × 10−10 4.609 × 10−9 6.020 × 10−8 3.823 × 10−9 1.608 × 10−8 2.595 × 10−8

Total 1.332 × 10−5 1.64567 × 10−4 2.149 × 10−3 1.365 × 10−4 5.742 × 10−4 9.267 × 10−4

HQ ingestion 1.33 × 10−2 5.477 × 10−2 0.1073 3.408 × 10−3 0.410 3.084 × 10−3

HQ dermal 2.128 × 10−3 8.763 × 10−5 2.146 × 10−4 1.817 × 10−5 1.751 × 10−3 2.467 × 10−5

HQ inhalation 3.731 × 10−7 1.611 × 10−4 1.054 × 10−2 9.559 × 10−8 4.569 × 10−6 8.651 × 10−8

HI 1.543 × 10−2 5.502 × 10−2 0.118 3.426 × 10−3 0.411 3.109 × 10−4

(ADI: Average daily intake; HQ: Hazard quotient; HI: Hazard index).
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Figure 4. Distribution of carcinogenic risk of chromium (Cr) for adults and children in the study area. (CR; carcinogenic
risk; TCR: total carcinogenic risk).

4. Conclusions

The present study pertained to exploring the potential ecological risks of heavy
metals of textile effluents in soil samples in the vicinity of textile industries Ludhiana,
Punjab (India). The metal bioaccumulation potential of some plant species grown in its
environs was also explored. The Co content in untreated and treated effluent samples
indicated the possibility of accumulation of cobalt in agricultural soil samples and plant
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samples in the vicinity of textile industries, which is a serious matter of concern. The
genotoxicity assay showed that treated as well as untreated effluents of both industries
induced chromosomal aberrations and the percent aberrations in treated samples were
significantly lower than untreated samples. The heavy metal bioaccumulation factor
analysis showed that phytoremediation using wildly grown plants like Ricinus communis L.,
Chenopodium album L. and Cannabis sativa L., can be one of the environmentally friendly
techniques for cleaning contaminated soil environs. Furthermore, Igeo and CF revealed
that heavy metals showed no contamination to extreme contamination in the studied soil
whereas Cdeg, PI, and PLI indicated extreme pollution. The results of ERi studies indicated
that Co is the prime metal responsible for ecological threats in the study area. It is also
emphasized that bioanalytical tools such as the Allium cepa root chromosomal aberration
assay should be incorporated along with chemical analysis for evaluating the efficacy
of industrial effluent treatment plants so as to indicate the harmful consequences in the
biological systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/soilsystems5040063/soilsystems5040063/s1, Table S1: Descriptions of the soil contamination
indices used in the study, Table S2. Summary of reference doses (RfD) and slope factors (SF) of
heavy metals.
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