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The anthropogenic loading of phosphorus (P) to water bodies continues to increase
worldwide, in many cases leading to increased eutrophication and harmful algal blooms [1].
Determining the sources of P and the biogeochemical processes responsible for this increase
is often difficult because of the complexity of inputs and pathways, which vary both in
spatial and temporal scales [2]. In order to effectively develop strategies to improve water
quality, it is essential to develop a comprehensive understanding of the relationship of
P pools with biological uptake and cycling under varied soil and water conditions. A
wide variety of processes, including changes in P speciation; transformations between
organic and inorganic species; and the transfer between biotic and abiotic forms occur
along the route from soils to open waters and to sediments until ultimate burial, and
together increase the complexity of quantifying processes, cycling, or tracing sources [3–5].
In addition, climate-change-related effects and feedback thereof often exacerbate a number
of processes, including the redox-mediated release of legacy P in sediments.

In this special issue, we invited research and review articles that address the topic of
soil P processes involving transfer and transformation across the landscape, either present-
ing novel research methods or synergy among non-traditional research fields; a review of
existing successes and failures with underlying causes; or data-driven recommendations
on the various approaches necessary to mitigate P loss and achieve the tangible goal of
improving water quality. This volume contains eight original research articles [6–13] and
two review articles [14,15].

General contribution papers covered the various aspects of basic–applied research
on mineral–P interaction and how these reactions impact P mobilization, bioavailability,
transfer [7], and speciation of P in different soil matrices using advanced analytical methods.
Some of these methods included the application of XANES [13] and field-based research
related to stream bank legacy nutrients [8]; natural and anthropogenic eutrophication, and
its relationship to climate change [12]; and the evaluation of the impact of P due to (i)
grazing systems [11], (ii) weathering and vegetation [6], and soil and manure management
practices [10]. Together, these contributions improved our current understanding of the
reactions and processes that impact P concentration, speciation, cycling, loss, and transfer
from agroecosystems.

The two review papers took a holistic approach to cover an expansive area of P
transformation processes along the cropland–riparian–stream continuum [15] and the
assessment of legacy P [14]. The first review paper provided a broader assessment of P
transformation and highlighted various approaches to improve and assess the effective-
ness of riparian buffer zones in cold climate agroecosystems and highlighted the need of
connecting hydro-biogeochemical and hydro-climatic data for the risk assessment on P
loss to open waters. The chronic issue of legacy P was highlighted [14] by synthesizing
the current knowledge of the bioaccessibility of different P forms, the transformations of
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legacy P, and by proposing research and management approaches for potentially tapping
legacy P for crop production.
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