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Abstract: Lignocellulosic biomass feedstocks are promising alternatives to fossil fuels for meeting
raw material needs of processing industries and helping transit from a linear to a circular economy
and thereby meet the global sustainability criteria. The sugar platform route in the biochemical
conversion process is one of the promising and extensively studied methods, which consists of four
major conversion steps: pretreatment, hydrolysis, fermentation, and product purification. Each of
these conversion steps has multiple challenges. Among them, the challenges associated with the
pretreatment are the most significant for the overall process because this is the most expensive step
in the sugar platform route and it significantly affects the efficiency of all subsequent steps on the
sustainable valorization of each biomass component. However, the development of a universal
pretreatment method to cater to all types of feedstock is nearly impossible due to the substantial
variations in compositions and structures of biopolymers among these feedstocks. In this review, we
have discussed some promising pretreatment methods, their processing and chemicals requirements,
and the effect of biomass composition on deconstruction efficiencies. In addition, the global biomass
resources availability and process intensification ideas for the lignocellulosic-based chemical industry
have been discussed from a circularity and sustainability standpoint.
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1. Global Biobased Products Scenario: Feedstock Availability and Sustainability

The global pandemic and disruptions to global manufacturing hubs have severely
affected the status quo of the established chemical industry. It is clearly evident that the
industry will have to re-engineer, re-position and innovate to stay relevant and to retain
the close to 4 trillion USD in global revenue. For this to happen, sustainability, decar-
bonization, process intensification and circularity concepts are to be strictly followed and
implemented [1]. To challenge and augment the chemical industry, processing of renewable
resources to biobased-chemicals and biofuels is the way forward provided sustainable
financing and business valuation are entertained [2]. Particularly, transportation fuels and
climate change are topics of keen discussion in both the political and scientific communities
throughout the world. A gradual decrease in global petroleum reserves leading to their
depletion in the near future requires a search for sustainable alternatives to fossil fuels. In
addition, increasing conflict in most oil-producing countries has further worsened the fuels
crisis, particularly for non-oil-producing countries [3]. The international energy crises in
1973 quadrupled United States (US) oil prices from USD 4.50 to USD 22.50 per barrel and
caused significant damage to the US economy. This forced the US government to search for
alternative sources of energy, including corn ethanol production [4]. The US is the largest
fuel ethanol producer (58% of global production), followed by Brazil (25%), Europe (6%),
China (3%) and Canada (2%) [5]. In 2016, the US produced about 15 billion gallons of
biofuel along with 42 million metric tons (MMT) of high protein animal feed [2]. Current
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approaches to production of bio-based fuels and chemicals using food-based feedstocks
are inadequate to replace petroleum products without affecting the global food supply.
Lignocellulosic biomass feedstocks are a sustainable and low-cost alternative to the current
food-based feedstocks [6].

Sustainability of the lignocellulosic-based biofuels and biochemical industries should
be evaluated using three criteria: economic, environmental, and social factors [2,7]. Life
cycle assessment (LCA) of biofuels has been extensively studied to evaluate their sustain-
ability; however, LCA primarily focuses on the environmental and economic impact of
biofuels with limited attention toward social aspects. The functional units of LCA of the
biofuels from biomass are net energy balance and greenhouse gas (GHG) emission [8].
For bioeconomy sustainability, the biorefining program and feedstock production must be
designed with the participation of local and rural communities to address their societal
needs [9]. The major driving factors for growing interest in lignocellulosic-based fuels and
chemicals production are energy security, environmental concerns due to increasing GHG
emission, economic development and job creation in rural areas [6,7].

The U.S. Department of Energy performed extensive studies on the national biomass
resource availability, called the Billion-Ton Study, which was first published in 2005, and
updated in 2011 and 2016. These reports are the landmark resource for US biorefinery
stakeholders, which evaluated the fundamental question whether the land resources in
the US can sustainably produce biomass feedstocks for biorefineries. The latest series
of the report published in 2016 performed the broad assessment of biomass resources
and included algae and municipal solid waste resources for the first time. It also had
more detailed analysis of dedicated energy crops and transportation cost of biomass
to the biorefinery. The report is in two volumes: the first volume contains economic
availability of feedstocks under specified maker scenarios, cost of production, harvesting
and transportation of these feedstocks; whereas the second volume contains environmental
sustainability effect of select scenarios. The study estimated that at the price of USD 60/dry
ton at the roadside, 1.2 and 1.5 billion dry tons of biomass will be available by 2040 under
base-case and high-yield scenario, respectively [10,11].

The global lignocellulosic biomass production is estimated to be around 146 billion
tons per year; a small part of it is currently being used for biofuels and biochemical
production [12]. Current global land use to grow biofuels feedstocks is only 25 million
hectares, which is 0.19% of world’s total land area [7]. The estimated global production of
four major crops residues—corn stover, rice straw, wheat straw, and sorghum stover in 2011
were 1413, 1084, 1056, and 81 million tons, respectively. Forest residues were estimated at
274 million tons in 2011 but are projected to be the major feedstock for future biorefineries
with estimated production of 6 billion tons per year by 2050. In addition, municipal solid
waste is available in large quantities, and can also be a potential feedstock for biorefinery
operations. The estimated global municipal solid waste in 2011 was 1.3 billion tons, which
has expected to be 2.6 billion tons per year by 2025 [13]. Therefore, the global biomass
potential indicates that the feedstock availability is not the key issue to produce enough
bio-based products that can substantially replace fossil-fuel resources.

Despite the availability of large lignocellulosic biomass resources, bio-based products
are yet to be commercially viable compared with petroleum-based products primarily
due to expensive and inefficient bioconversion technologies [2]. In addition, the biomass
feedstocks, especially agricultural residues, are seasonably available. Therefore, each biore-
finery should be capable of utilizing multiple feedstocks comprising annual and perennial
biomass and should have appropriate feedstock handling and storage capability for the
continuous operation of the plants [14]. Therefore, process integration and intensification
to develop cost effective and green biomass conversion technologies that utilizes all com-
ponents of lignocellulosic biomass to produce fuels, chemical, and power is vital for the
transition of the current fossil-fuel economy to a sustainable bioeconomy [2,15].

The continued success of the petrochemical industry is due to their ability to effectively
utilize every derivative of crude oil after cracking to produce a plethora of low-cost indus-
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trial chemicals, monomers and materials [2]. The petroleum-derived chemicals’ market is
less than 10% of crude oil, but significantly contributes to the overall profitability of petro-
chemical industries [16]. A biorefinery concept analogous to that of a petroleum refinery
must be developed to utilize multiple feedstocks for the betterment of overall economics
and sustainability. To complement this concept, the sustainable biorefinery should focus on
high-volume and low-valued biofuels production to meet the green energy demand and
low-volume and high-valued bio-based chemicals production for the economic viability of
the industry [2].

2. Conversion of Lignocellulose Biomass to Fuels and Chemicals

Basically, there are two primary routes for the conversion of lignocellulosic biomass to
biofuels and biochemicals: (1) biochemical conversion, and (2) thermochemical conversion,
as shown in Figure 1. The biochemical conversion technologies utilize microorganisms
or other biocatalysts to convert biomass to several biofuels and biochemicals, including
bioethanol, biobutanol, 2,3-butanediol, biodiesel, and biogas [6]. Thermochemical con-
version technologies utilize heat and chemical catalysts to convert biomass to valuable
secondary energy/fuel sources [12,17].

Figure 1. Conversion routes for lignocellulosic biomass feedstocks to bio-based products [6,12,17].

Each biomass conversion route has many inherent strengths and weaknesses; the
appropriate conversion route is determined by many factors, including feedstock types,
availability of technology, need for specialized enzymes and robust microbes for conversion,
and energy requirements. The highlighted path of the biochemical conversion route is the
most relevant and studied process and is called the sugar platform route; this review has
focused on this platform for a meaningful discussion and insights related to lignocellulosic
biomass conversion.

In the sugar platform route, lignocellulosic biomass is deconstructed using appropriate
pretreatment method followed by enzymatic hydrolysis to release monomer sugars from
carbohydrate polymers (cellulose and hemicellulose). The released sugars are fermented
to desired biofuels or biochemicals using specific microbial culture [14,18]. Integrated
biorefinery comprises four major sections for the conversion of biomass to fuels and
chemicals through the sugar platform route: feedstocks handling and storage, pretreatment,
hydrolysis, and fermentation and product recovery, as shown in Figure 2 [19]. Several
factors affect the efficiencies of each section of this biomass conversion process and each of
these steps is associated with several challenges [3,20]; among them pretreatment is not
only the most energy-intensive single step but also affects the efficiencies of the subsequent
conversion processes [2,21–24].
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Figure 2. Integrated lignocellulosic biomass conversion through sugar platform route. The shaded portion shows the
potential paths to valorize under-utilized streams of the process [6,19,25].

3. Lignocellulosic Biomass Pretreatment

The primary objective of the pretreatment process is to deconstruct the complex
biomass structure comprising lignin, hemicellulose, and cellulose so that each biopoly-
mer can be effectively utilized to produce fuels, chemicals and power [5,26]. Each step
of biomass processing, including pretreatment, hydrolysis and fermentation, have many
challenges that need to be overcome for commercial viability of lignocellulosic-based biore-
fineries. Among these processes, pretreatment is considered the central unit operation,
which significantly affects the effectiveness of all other subsequent steps of biomass pro-
cessing [6,27]. Montague et al. [21] estimated that if dilute acid pretreatment is used before
enzymatic hydrolysis, the capital investment for pretreatment is 17% of the total capital
investment (USD 19 million out of USD 113 million) and incurs the highest investment
of a single step for bioethanol production from corn stover. Humbird et al. [23] proposed
an improved two-step acid pretreatment with some process modifications and estimated
that capital investment for biomass pretreatment is around 13% of total capital investment
(USD 30 million out of USD 232 million). The lower percentage of pretreatment cost in the
study by Humbird et al. [23] compared with the earlier study by Montague et al. [21] was
due to an increase in capital cost for wastewater treatment. Similarly, Yang & Wyman [22]
reported that the pretreatment alone incurs 18% of total investment for cellulosic ethanol
production. These studies indicated that development of a cost-effective pretreatment
method is vital for lignocellulose-based biorefineries. In addition, lignocellulosic-based
biorefinery currently focuses on cellulose-derived sugars; the lignin stream is combusted
as boiler fuel, which is a very low-value application of the energy-rich hetero-polymer [6].
Lignin comprises 40% of lignocellulosic biomass by energy even though it is only 15 to 30%
by weight [28]. Therefore, lignin valorization is critical for the sustainability of biorefining
industries, which in turn is related to the appropriate pretreatment method to extract good
quality biomass lignin [19].

Several biomass pretreatment methods are available, including physical, chemical,
physico-chemical, and biological [29]; some of them are listed as follows:

1. Physical methods: extrusion, ball milling, wet-disc milling, microwave pretreatment.
2. Chemical methods: acid pretreatment, alkali pretreatment, organosolv pretreatment,

ozonolysis pretreatment.
3. Physico-chemical methods: steam explosion, ammonia fiber explosion, liquid hot

water, carbon dioxide explosion, wet oxidation.
4. Biological methods: white-rot fungi, brown-rot fungi, soft-rot fungi.

Some of the promising pretreatment processes are critically discussed below.

3.1. Extrusion Pretreatment

Extrusion processing is one of the promising physical pretreatment methods for
deconstruction of lignocellulosic biomass [30]. It is a widely used in snack food industries
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and in this process, material is forced through a die with desired cross-section profile. When
the material passes through the extruder, several unit operations, including heating, mixing
and shearing, take place simultaneously resulting in physical and chemical alteration.
Finally, the material experiences an abrupt expansion while exiting the die [31]. The
complex networks of biopolymers in lignocellulosic biomass is disrupted during the
extrusion process, thereby making the biomass susceptible for enzymatic action without
the production of pretreatment-induced inhibitory compounds that are detrimental to the
subsequent biomass hydrolysis and fermentation processes [32].

There are two type of extruders: single-screw extruder and twin-screw extruder, with
three types of screw elements. The (a) forward screw elements—transports bulk materials
through different pitches and lengths with minimum mixing and shearing effect; (b) knead-
ing screw elements—very slowly conveys materials forward with high mixing and shearing
effect through different stagger angles; and (c) reverse screw elements—pushes material
backward with very high mixing and shearing effect [30]. Effective biomass pretreatment
can be achieved by optimizing the appropriate screw configuration, including pitches,
lengths, stagger angles, positions and spaces. A batch-type kneader with combination of
twin-screw elements is suitable for biomass pretreatment at large scale because of excellent
temperature control, very high grinding, mixing and shearing forces, high throughputs,
and scalability [33]. In twin-screw extruders, two parallel screws with the same length
are fixed on a stationary barrel. The direction of the screw is either co-rotating or counter-
rotating. The screw speed (in rpm) and the barrel temperature are the main factors to be
optimized for a specific extruder to develop high shearing force for achieving maximum
extrusion effect while using a targeted material [34].

Poor flow of lignocellulosic material during the extrusion process is one of the major
challenges for pretreatment of lignocellulosic biomass. This frequently leads to burning
of the substrate and even blocking of the die during extrusion [35]. This problem can
be overcome by using high moisture content in the material [35,36]; adding processing
aids, like starch [36]; or cellulose affinity additives, like ethylene glycol, glycerol, and
dimethyl sulfoxide [37]. Alternatively, the biomass is soaked with an alkali solution (for
example, sodium hydroxide) prior to feeding into an extruder to overcome the poor flow
of biomass and to improve the delignification effect [38,39]. However, inconsistent results
are reported in literature for the extrusion pretreatment using cellulose affinity additives.
For example, Lee et al. [37] reported 62.4% cellulose conversion to glucose from Douglas fir
using ethylene glycol as a cellulose affinity additive; the same additive did not help much
for soybean hulls as reported by Yoo et al. [35].

Advantages:

• Easy process monitoring and control.
• No inhibitory compounds formation due to sugar degradation.
• Adaptability for process modification.
• Continuous and high throughput.
• No need for washing of pretreated biomass if extrusion is performed without

chemical addition.
• Can be combined with other methods of pretreatment for better results [40].

Limitations:

• Lack of data for economic analysis.
• Energy intensive process.
• Poor flow during continuous processing leading to burning of material [35].

3.2. Acid Pretreatment

Acid pretreatment is the most extensively studied and widely used lignocellulosic
biomass pretreatment process. The main objective of acid pretreatment process is to
hydrolyze the hemicellulose fraction of the lignocellulosic biomass [41]. In addition, most
of the biomass extractives are also solubilized during acid pretreatment process. The porous
biomass residue will be more accessible for cellulase enzyme in the subsequent process
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to hydrolyze the cellulose fraction of the biomass [26,41,42]. Therefore, the effectiveness
of this pretreatment method is usually enhanced with the increase in the proportion of
hemicellulose and extractives fractions in the biomass. Our studies demonstrated that
the total sugar yield during enzymatic hydrolysis of dilute acid pretreated biomass has a
good positive correlation (R2 = 86%) with the xylan content of raw biomass on extractive-
free basis [6,26]. The acid pretreatment process can be carried out with concentrated
acid or dilute acid; however, use of concentrated acid is not an attractive option due to
excessive sugar degradation and formation of inhibitory compounds [41,43]. In dilute
acid pretreatment process, biomass is mixed with dilute acid (<4%, v/v) and heated at a
temperature between 140 ◦C and 215 ◦C for a time duration ranging from few seconds
to several minutes [41]. Usually sulfuric acid is used; however, other organic acids, such
as formic or maleic acids were also found equally effective [42]. The National Renewable
Energy Laboratory recently designed a two-step dilute acid pretreatment method for corn
stover to minimize sugar degradation during pretreatment [23]. In this method, biomass
slurry containing 18 mg sulfuric acid/dry g biomass is heated at 158◦C for 5 min followed
by second step heating at 130 ◦C for 20–30 with 4.1 g additional acid/dry g biomass.

Advantages:

• High reaction rate to solubilize the hemicellulose fraction of biomass thereby making
the cellulose fraction accessible for cellulase enzymes [41,42].

• A method of deconstruction can be designed for biomass processing to generate
separate hemicellulose hydrolyzates (after pretreatment) and cellulose hydrolyzates
(after enzymatic hydrolysis).

• Cost saving for xylanase enzymes: Hemicellulose is extensively hydrolyzed during
pretreatment depending upon the feedstock type and processing conditions; therefore,
high-cost xylanase enzymes are not generally required for hydrolysis [27].

Limitations:

• Inhibitors, such as furfural and hydroxymethylfurfural (HMF), produced from sugar
degradation requires an additional detoxification step to make the released sugars
fermentable [43].

• Need expensive stainless-steel vessels due to the corrosive nature of acid [44].
• Additional cost for alkali to neutralize acid after pretreatment.
• Environmental concern due to excessive use of chemicals.

3.3. Alkali Pretreatment

Alkali pretreatment is another extensively studied and widely used lignocellulosic
biomass pretreatment method. This process is like acid pretreatment process, but usually
carried out at a lower temperature. While acid pretreatment solubilizes hemicellulose
fraction of the biomass, the goal of alkali pretreatment process is to solubilize lignin fraction
of the lignocellulosic biomass. Like in acid pretreatment process, alkali pretreatment
process also solubilizes most of the biomass extractives. The porous biomass residue
will be more accessible for enzymes in the subsequent process to hydrolyze the cellulose
and hemicellulose fractions of the biomass [6,26,42]. Therefore, it is generally considered
that the effectiveness of alkali pretreatment process is related to the total lignin content
in the biomass. However, our study showed a weak negative correlation (R2 = 15%)
between the lignin content in raw biomass on extractive-free basis and the sugars released
during the hydrolysis of alkali pretreated biomass, indicating that lignin structure and the
composition of different lignin monomers also significantly affect the biomass pretreatment
efficiency [6,26]. Alkalis such as sodium hydroxide (NaOH), potassium hydroxide (KOH)
and ammonium hydroxide (NH4OH) are suitable for biomass pretreatment [6,42]. NaOH
has been extensively studied since the pretreatment results in higher delignification and
deacetylation [45] and the decrease in crystallinity of cellulose due to swelling of residual
biomass during pretreatment [42].
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Advantages:

• Effective delignification [45].
• Lower sugar degradation compared to dilute acid pretreatment due to the lower

processing temperature; possible to pretreat at room temperature using longer time.
• Lignin and other extractives can be separated before enzymatic hydrolysis without loss

of carbohydrate; high possibility of getting reactive lignin for high value application [46].

Limitations:

• Excessive phenolic compounds due to lignin degradation, which are potential in-
hibitors for enzymatic hydrolysis of sugar polymers [42].

• Additional cost for hemicellulose hydrolytic enzymes in addition to
cellulase enzymes [44].

• Additional cost for acid to neutralize alkali after pretreatment.

3.4. Organosolv Pretreatment

Organosolv is a promising biomass pretreatment method, in which biomass is mixed
with a selected organic solvent, with or without additional catalyst (acid or alkali) and
heated at an appropriate temperature and time duration. Various organic solvents or sol-
vent mixtures can be used; including low boiling point solvents, such as ethanol, methanol
and acetone; high boiling point solvents, such as glycerol, ethylene glycol and tetrahy-
drofurfuryl alcohol; and other classes of organic solvents, such as organic acids, phenols,
ketones and dimethyl sulfoxide [47]. Ethanol organosolv pretreatment using acid catalyst
has been widely studied and is carried out at 90 ◦C to 120 ◦C for grasses and 155 ◦C
to 220 ◦C for woods with processing times of 25 min to 100 min; ethanol concentration
25% to 74%; and catalyst concentration 0.83% to 1.67% (v/v) [27]. Catalyst addition is not
required if the processing temperature is high (>185 ◦C) because organic acids released
from biomass act as a catalyst at that temperature [48]. Organosolv pretreatment almost
completely removes hemicellulose and extensively removes lignin, thereby leaving di-
gestible cellulose residues [47]. Studies on the change in cellulose crystallinity during
organosolv pretreatment is limited. Ni and Van Heiningen [49] reported that ethanol-water
organosolv pretreatment leads to swelling of cellulose, and the effect is inversely related to
ethanol concentration. Cellulose crystallinity is not an important factor for the digestibility
of pretreated biomass with low residual lignin content if hydrolysis is carried out for
sufficiently long periods [50]; however, productivity of sugar release is decreased.

Organosolv pretreatment using high-boiling point alcohols, mostly polyhydroxy al-
cohols, is also gaining attention because the process can be performed at atmospheric
conditions. Glycerol has been extensively used for the delignification of lignocellulosic
biomass [47]. Its high boiling point (290 ◦C) favors biomass pretreatment at high tem-
perature and atmospheric pressure; the process is called atmospheric aqueous glycerol
autocatalytic organosolv pretreatment (AAGAOP) [51]. Use of low-cost crude glycerol, a
major byproduct of oleochemical industries, for biomass pretreatment is considered an
attractive economic route for biofuels and biochemicals production [52]. Oleochemical
industries produce crude glycerol at around 10% of total biodiesel production. High value
application of crude glycerol for food, pharmaceutical and cosmetic use is economically
unfeasible due to the expensive purification process [51]. The rapid growth in global
biodiesel production [53] indicated that crude glycerol will be available even in larger
quantities at lower cost in the future. However, recycling of glycerol is challenging and
energy intensive.

One of the major drawbacks of organosolv pretreatment is loss of hemicellulose in the
lignin stream, which is hard to recover as fermentable sugars due to presence of several
inhibitory compounds, such as phenolics. For the separation of all three major biopolymers
(cellulose, hemicellulose and lignin) into separate streams, Hongzhang & Liying [54]
proposed a combination of steam explosion and ethanol organosolv pretreatment. In this
method, the biomass was first pretreated by steam explosion to hydrolyze hemicellulose,
followed by ethanol organosolv pretreatment to extract lignin. The residual cellulose is
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easily hydrolyzed using cellulase enzymes to monomer sugars. However, use of multiple
steps results in the increase in operating and capital costs. Diner & Fan [55] developed a
single step alkaline organosolv pretreatment method in which various amounts of aqueous
ammonia (2% to 20% (w/w) of biomass) was added to the biomass slurry in organic solvents
and heated at desired temperature and time duration. This process led to extensive removal
of lignin without significant loss of hemicellulose. The lignin-free carbohydrate polymers
(cellulose and hemicellulose) were effectively hydrolyzed using enzymes.

Advantages:

• Extracted lignin is relatively of high purity, low molecular weight and sulfur free
making it possible for the high value application of lignin [41,47].

• All three biopolymers—cellulose, hemicellulose and lignin—can be separated into
different streams [48].

• It can be combined with other pretreatment processes for effective biomass hydrolysis.

Limitations:

• High cost of solvent: Recycling process is also energy intensive [42]. Additional
solvent is required to avoid lignin precipitation due to washing with water [47].

• Formation of inhibitory compounds, such as furfural and HMF, due to sugar degrada-
tion when acid catalyst is used [41].

• Residual solvent will be inhibitory for enzymatic hydrolysis and fermentative organisms.
• Environmental and health concerns due to the use of volatile organic liquids at high

temperature [41].

3.5. Ionic Liquid Pretreatment

This is a relatively new approach for biomass pretreatment, in which the whole
biomass is dissolved in a selected ionic liquid and the carbohydrate polymers are precipi-
tated by adding appropriate anti-solvents; thereby, separating lignin and carbohydrates.
Generally, water is used as anti-solvent, but methanol and ethanol can also be used. The
regenerated cellulose will have reduced crystallinity and hence will be more easily di-
gestible [3]. Ionic liquids are likely to form hydrogen bonds with cellulose due to the
presences of anions, such as chloride, acetate, formate, or alkylphosphonate, at higher
temperatures leading to dissolution of cellulose [56]. During the regeneration process, the
water (anti-solvent) competes with the ionic liquids to form hydrogen-bonds with cellulose,
leading to decrease in the solubility of cellulose in the ionic liquids; ultimately resulting in
precipitation [57]. The solvent properties of the ionic liquid can be adjusted by changing
desired cation and/or anion [58,59].

Advantages:

• Ionic liquids, considered as green solvent, are stable up to 300 ◦C; have extremely low
volatility with minimum environmental impact [3].

• Possible to separate each of the biopolymers—cellulose, hemicellulose and lignin.
• Ionic liquid with desirable properties can be synthesized.

Limitations:

• Cost of ionic liquids are still very high.
• Many ionic liquids are toxic to the hydrolytic enzymes and the fermenting organisms [60].
• Cost of solvent recovery is tedious and expensive.
• Difficult to handle the viscous biomass slurry with ionic liquid during pretreatment at

temperature beyond 150 ◦C [52].

3.6. Steam Explosion Pretreatment

Steam explosion pretreatment is a widely studied physiochemical pretreatment pro-
cess. In this process, the ground and preconditioned biomass is treated with saturated
steam at high temperature (160–290 ◦C) and high pressure (0.7 and 4.8 MPa) for a few
seconds to several minutes before the pressure is explosively released [27,41]. Hemicellu-
lose is extensively hydrolyzed due to the formation of acetic acid from the released acetyl



Clean Technol. 2021, 3 251

groups present in the biomass polymers; additionally, water also acts as an acid at high
temperature and further helps hemicellulose hydrolysis—a process also called autohydrol-
ysis [25]. The chemical effect of hemicellulose hydrolysis along with the physical benefit of
explosive pressure decompression leads to redistribution of lignin polymers and its partial
removal from the material [42]. This method is more effective in hardwood and herbaceous
biomass but needs addition of acid catalyst for effective pretreatment of softwood due to
the presence of lower amount of acetyl groups in softwood hemicellulose [41].

Advantages:

• No use of chemicals and hence no recycling and environmental costs.
• Relatively less dilution of released hemicellulose.
• High particle size biomass can be used, leading to significant energy savings. Size

reduction accounts to around one third of the entire pretreatment process [61].

Limitations:

• Incomplete de-construction of lignin-carbohydrate complex may lead to condensation
and precipitation of soluble lignin; thereby resulting in reduced biomass hydrolysis
efficiency [62].

• High temperature (around 270 ◦C) is the best to enhance cellulose digestibility; how-
ever, this leads to the formation of inhibitory compounds—furfural and HMF [41,63].

• Weak acids and phenolic compounds, such as acetic, formic and levulinic acids,
generated during this process are inhibitory for subsequent enzymatic hydrolysis and
fermentation [42].

3.7. Ammonia Fiber Explosion Pretreatment (AFEX)

The AFEX method is an alkaline physicochemical pretreatment process. Its processing
method is similar to that of steam explosion but operates at lower temperature. In this
process, the biomass is mixed with liquid anhydrous ammonia (0.3 to 2 kg/kg dry biomass);
cooked at 60–90 ◦C and at pressure above 3 Mpa for 10–60 min. The optimum ratio of
ammonia to biomass, and cooking temperature, pressure and time depends on the type of
lignocellulosic biomass materials. After cooking at desired conditions, the vent valve is
rapidly opened to release pressure explosively [27,64]. The sudden pressure release results
in a rapid expansion of the ammonia gas leading to swelling and physical disruption of
biopolymers as well as reduction of cellulose crystallinity. The volatile ammonia gas is
recovered for reuse and the dried solid biomass is ready for enzymatic hydrolysis [65].
The AFEX method is very effective for herbaceous crops and agricultural residues, but
relatively less effective for woody biomass. AFEX is also considered as a feasible method
for the pretreatment of herbaceous biomass to extract protein for animal feed along with
sugar generation for biofuels production [66].

Advantages:

• No formation of inhibitory compounds like furfural and HMF from sugar degradation
due to low temperature operation [42,64].

• High selectivity for delignification.
• Easy for recycling due to volatile nature of ammonia; 99% ammonia recovery is possible.
• Residual ammonia can serve as a nitrogen source for the organisms during fermentation.

Limitations:

• Excess water requirement because the phenolic fragments of lignins must be washed
to avoid inhibition during enzymatic hydrolysis and fermentation [64].

• Ammonia recycling is very costly for commercial scale processing [25].
• Inefficient for high lignin content biomass, such as softwood and newspapers waste.
• Environmental concern due to the use of volatile chemicals.

3.8. Liquid Hot Water (LHW) Pretreatment

Different terminologies are used in literature to describe this process, including solvoly-
sis, hydrothermolysis, aqueous fractionation, and aquasolv [41]. This process is comparable
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with dilute acid pretreatment without using acid [64]. In this process, biomass slurry in
water is cooked at elevated temperature (160–240 ◦C) for various time periods, depend-
ing on biomass type, to solubilize hemicellulose fraction of biomass leading to cellulose
enriched portion [41,42]. Mechanism of action is like steam explosion for hemicellulose
solubilization. Sometimes potassium hydroxide (KOH) is used to control pH from 5 to 7
during LHW pretreatment and to minimize inhibitory compound formation due to sugar
degradation [25].

Advantages:

• No use of additional chemicals.
• No need to use expensive and corrosive-resistant materials for pretreatment reactors.
• Relatively large size particles can be used leading to energy saving, which is required

for size reduction of biomass to fine particles.
• Possible to recover separately the cellulose and hemicellulose streams.
• Minimum formation of inhibitory compounds.

Limitations:

• The xylose stream is of very low concentration and hence needs an additional cost-
intensive evaporation of water operation to get appropriate sugar concentration
for fermentation.

• High cost since high pretreatment temperature is required.
• Not suitable for biomass with high-lignin content.

3.9. Biological Pretreatment

Biological pretreatment involves use of microorganisms to degrade biomass lignin
and make carbohydrate polymers susceptible for enzymatic hydrolysis. Among various
organisms capable of producing enzymes to degrade lignin and carbohydrate polymers of
biomass, white-rot, brown-rot, and soft-rot fungi are important [67]. The white-rot fungi
being the most effective for biomass pretreatment because of their enzymatic efficiency
and economy. The brown-rot fungi degrade cellulose, whereas white-rot and soft-rot
fungi degrade both lignin and cellulose [41]. The ligninolytic enzyme system of white
rot fungi primarily consists of lignin peroxidase (LiP), manganese peroxidase (MnP) and
laccase [68]. LiP and MnP are heme containing glycoproteins and laccase is a multi-
copper oxidase having four copper ions per enzyme molecule as metal clusters [69]. The
commonly used white rot fungi for lignin-degradation is Phynerochaete chrysosporium, which
produces multiple isoenzymes of lignin peroxidase and manganese peroxidase. Many
other white rot fungi produce laccase in addition to lignin and manganese peroxidase in
varying combinations. Based on enzyme production patterns, the white rot fungi could be
categorized into three groups:

v Lignin-manganese peroxidase group—P. chrysosporium and Phlebia radiate.
v Manganese peroxidase-laccase group—Dichomitus squalens and Rigidoporus lignosus.
v Lignin peroxidase-laccase group—Phlebia ochraceofulva and Junghuhnia separabilima [70].

Advantages:

• No inhibitory compounds are produced.
• The process is environmentally friendly.

Limitations:

• Very slow process; residence time is usually between 10 to 14 days [41].
• Large space is required to perform the process.
• Strict temperature control is required, leading to increased processing cost.
• Cellulose crystallinity could not be reduced [67].
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4. Variation of Composition and Structure among Biomass and Their Effect on
Pretreatment Process

Lignocellulosic biomass feedstocks have substantial variation in compositions of biopoly-
mers, which significantly affect the effectiveness of the pretreatment process. We analyzed
four grasses: switchgrass, sorghum stalk, brown midrib (bmr) sorghum stalk; corn stover;
hardwood (poplar); and softwood (Douglas fir) feedstocks in our studies [6,14,24,26]. As
shown in Figure 3, the composition of biomass not only varied among grasses, both hardwood
and softwood, but also within different grasses [6]. Increased xylan and extractive content
in the feedstock improve the pretreatment efficiency, whereas the opposite effect is found in
feedstocks having high lignin content [26].

Figure 3. Composition of different biomass feedstocks. Glucan, Xylan, total lignin and total extractives were determined by
following the protocols of NREL/TP-510-42618 and NREL/TP-510-42619 [6,71,72].

In addition to gross composition of each biopolymer, the structure of biopolymers,
especially lignin, significantly affected the pretreatment efficiency [26]. Lignin is a het-
erogenous polyphenolic polymer usually made up of three types of monomers, including
syringyl (S), guaiacyl (G) and p-hydroxyphenyl (H). In addition, a considerable amount
of p-coumarates and ferulate monomers are present in the lignin of grasses as shown
in Figure 4 [73]. The p-coumarates, ferulate and syringyl monomers are more acylated
compared with other monomers [73,74]. These monomer units are linked together by
carbon-carbon, ether or ester linkages [75]. The ether or ester linkages are more readily
cleaved than carbon-carbon linages; therefore, the biomass feedstocks containing lignin
with higher amount of ether or ester linkage have better pretreatment efficiency in most of
the processes than lignin with higher amount of carbon-carbon linkages. Similarly, biomass
digestibility increased with increasing S/G ratio, p-coumarates and ferulate content, and
proportion of acylated lignin. In general, grasses are more digestible than woody biomass
because grass lignin contains a significant amount of p-coumarates and ferulate monomers
and thereby higher proportion of ether and ester linkages than carbon-carbon linkages. The
hardwood is more digestible than softwood because of the higher S/G ratio in hardwood
lignin than in softwood lignin [24,26,75].
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Figure 4. Lignin monomer units [75].

5. Toward a Sustainable Lignocellulosic-Based Chemical Industry

The global chemical industry must deviate from the existing linear economic model
and follow the circular economy to meet the required sustainability and climate change
goals [2]. In general, sustainable manufacturing has recently gained increasing attention
to concurrently pursue economic growth, environmental protection, and societal well-
being using closed-loop material flow by adopting 6Rs principle—Reduce, Reuse, Recycle,
Recover, Redesign and Remanufacture [76,77]. Lignocellulosic biomass feedstocks are
considered a promising sustainable alternative for the petroleum-based processing indus-
tries to meet their current and future raw material needs to transit to the new sustainable
economy without significantly affecting global food supply. However, the bio-based in-
dustry is at an early stage and for them to compete with the matured and depreciated
chemical industry is an uphill task and will require a different mindset based on sustainable
business models [2]. As enumerated in this review, pretreatment of renewable biomass is
a critical unit operation and is both energy and capital intensive [20]. Efforts have been
made to consolidate the various steps involved in the biomass to bioproducts value-chain;
however, due to different operating regimes and concomitant equipment specifications for
each processing step, the consolidation has been unsuccessful. Process intensification is
the sustainable path for the biorefineries, including hybridization of unit operation, new
operating modes of production, and microengineering and microtechnology [1,77]. Some of
the promising research initiatives for the process intensification for lignocellulosic biomass
conversion include waste heat integration [78,79], microbial strain improvement for the
efficient utilization of biomass-derived sugars [80], development of microbial consortia
to integrate enzyme production, saccharification and fermentation in a single reactor [81],
enzyme recycling and high dry matter operation to generate highly concentrated sugar
streams [26,80], and combination of two or more pretreatment methods for efficient biomass
deconstruction [82]. Design of appropriate process intensification requires considerable
amount of time and efforts depending upon the process to be intensified as well as available
technologies for the process. Consequently, an appropriate process intensification method-
ology is required. Gourdon et al. [83] has proposed a methodology based on two-blocks, in
which first block focuses on equipment qualification and technology selection, whereas
second block focuses on the quality data acquisition for the proposed processes. The knowl-
edge acquired from these initial steps will be followed by simulation, optimization, process
design and equipment selection. Finally, the proposed process is validated at pilot-scale for
the proof-of concept prior to dissemination of the intensified process.

In addition, lignocellulosic-based biorefinery currently focuses on cellulose-derived
sugars, and the lignin stream is combusted as boiler fuel, which is a very low-value applica-
tion of the energy-rich biopolymer. Lignin comprises around 40% of lignocellulosic biomass
by energy even though it is only 15 to 30% by weight [28]. In addition, lignin comprises of
phenolics, which could be a feedstock to make benign aromatic and specialty chemicals.
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The major roadblock for lignin valorization is not only efficient conversion of aromatics to
targeted end-products but also effective fractionation of lignin and depolymerization of the
sturdy polymer into homogeneous aromatic monomers [84]. Therefore, lignin valorization
cannot be an independent process using the waste lignin stream from biorefinery; rather,
upstream processes must be tailored with the lignin valorization research to generate a
good quality lignin stream for its high-value application [19,84]. Similar approaches should
be taken to produce high-value products from other components of biomass, including
extractives and hemicellulose [6].

We provide a schematic in Figure 5 as an example of a promising biorefinery con-
cept to produce high-value products from each biomass component coupled with a heat-
integration approach to reduce the cost of the energy-intensive biomass pretreatment
process. The proposed process has three sequential pretreatment methods at various
conditions prior to the enzymatic hydrolysis of the pretreated biomass. The combination
of the pretreatment methods and severity of each method depend on the biomass type
and availability of resources for biomass deconstruction. The proposed conditions in
each pretreatment method in this schematic are appropriate for agriculture residues with
high extractives such as bmr sorghum. The extractives are non-structural components of
biomass, including non-structural sugars, nitrogenous materials, chlorophyll, waxes, and
other phytochemicals [6,72]. From a biomass pretreatment perspective, process intensifica-
tion governs energy and chemicals minimization and optimum use of high-cost stainless
steel vessels for multiple processes. For example, in Figure 5, the multiple pretreatment
processes can be consolidated with one equipment usage with appropriate material flow
and heat exchangers network to enhance intensification. Further, if clean sugars and other
product streams are generated as a consequence of an efficient pretreatment process, ex-
tractive fermentation step can be envisioned with appropriate residual water recycling.
The primary drawback of ligno-cellulosic based chemical industry is the hauling of the
whole biomass to the processing plant whereas all they need is a clean biomass-derived
sugar stream for fermentation/bioprocessing. This hauling needlessly adds more pro-
cessing steps and generation of waste/under-valued streams at biorefineries. The best
way forward is to complete the biomass logistics and proposed pretreatment/sugar hy-
drolysis steps (Figure 5) at a consolidated biomass feedstocks facility and pump/ship
the sugar and other value-added streams to an economy of scale chemical industry. This
way, the reuse of biomass residues and recycling of process water in agricultural fields are
enhanced. Fermentation products, such as monomers and building block chemicals, are
usually biodegradable and the possibility of remanufacturing them to other materials is
feasible [14,25,85–87]. In other words, integrated bio-based chemical industry has greater
potential to realize circularity and sustainability needs of the society.

6. Conclusions

Development of efficient and economically viable pretreatment methods and thereby
valorization of each component of biomass, including extractives, cellulose, hemicellulose
and lignin is vital for the sustainable biorefinery. However, the development of a single
pretreatment method for all types of feedstocks is almost impossible due to the substantial
variation in composition of these biomass feedstocks and the mechanism of deconstruction
of the complex biomass structure. Each pretreatment method is associated with its own
strengths and limitations, which in turn depend on composition and structure of biomass.
Therefore, a combination of two or more pretreatment methods with efficient energy-
integration would be a more effective option to develop sustainable lignocellulosic-based
chemical industry. In addition, novel process intensification methods should also be
developed and implemented for all steps of biomass conversion processes, including
pretreatment, hydrolysis, fermentation and product recovery to envision a circular and
sustainable bioeconomy.
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Figure 5. Schematic of an integrated biorefinery using a combination of multiple pretreatment methods followed by a secondary
enzyme process to generate various streams and thereby valorize each component of lignocellulosic biomass. The processing
conditions proposed in the schematic may be applicable for agriculture residues with high extractives such as bmr sorghum;
however, exact conditions should be optimized for each type of biomass feedstocks [25,85]. * Hot water around 90 ◦C is
obtained from heat-exchanging with the biomass slurry after liquid-hot-water pretreatment at around 180 ◦C. ** Warm water
around 45 ◦C is obtained from heat-exchanging with the biomass slurry after alkali pretreatment at 95 ◦C.
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