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Abstract: Power-distribution grids consist of assets such as transformers, cables, and switches, of
which the proper utilization is essential for the provision of a secure and reliable power supply
to end customers. Distribution-system operators (DSOs) are responsible for the operation and
maintenance of these assets. Due to the increased use of renewable sources such as wind and solar,
grid assets are prone to operation conditions outside safe boundaries, such as overloading, large
voltage unbalance, and a rise in voltage. At present, distribution grids are poorly monitored by DSOs,
and the above-mentioned problems may thereby go unnoticed until the failure of a critical asset
occurs. The deployment of smart meters in distribution grids has enabled measurements of grid
variables such as power, current, and voltage. However, their measurements are used only for billing
purposes, and not for monitoring and improving the operating condition of distribution grids. In
this paper, a state-estimation algorithm is proposed that utilizes smart-meter data for offline analysis,
and estimates the loading of grid assets and power losses. Single- and three-phase state-estimation
algorithms are compared through simulation studies on a real-life low-voltage distribution grid
using measured smart-meter data. The three-phase state-estimation algorithm based on the nonlinear
weighted least-squares method was found to be more accurate in estimating cable loading and line
power losses. The proposed method is useful for DSOs to analyze power flows in their distribution
grids and take necessary actions such as grid upgrades or the rerouting of power flows.

Keywords: advanced metering infrastructure; distribution-system state estimation; grid observabil-
ity; weighted least-squares method

1. Introduction

In electric power systems, distribution grids play a major role in supplying electric-
ity to end customers. The responsible entities for their operation and management are
distribution-grid operators (DSOs). The increasing rate of the integration of renewable-
source-based power generators, which have a distributed nature, caused a major change in
the operation of distribution grids [1]. From a passive, unidirectional power-consumption
mode, distribution grids are becoming active due to the presence of photovoltaic (PV), wind,
and electric vehicles [2]. Due to the integration of renewable sources, distribution grids are
experiencing unprecedented challenges such as voltage rise, reverse power flows, and the
short-term overloading of cables and transformers. Inverter-based renewable-power gener-
ation and nonlinear loads present at distribution grids may increase harmonic distortion to
unacceptable levels, which can increase grid power losses. Higher-order current harmonics
are the main source of capacitive cable losses. The impact of harmonics on grid power
losses was assessed in [3]. The presence of harmonics can have destructive impact on grid
components, including distribution transformers. A study on the impact of grid harmonics
on a substation transformer can be found in [4]. Monitoring and automation functionalities
in distribution grids, especially at low-voltage (LV) grids, are very limited at present. A
typical small or medium-sized DSO has more than 2000 secondary substations spread over
a large geographical area. Grid assets, including substation transformers and cables, are
not monitored on a regular basis due to a lack of adequate measurement infrastructures.
DSO personnel typically carry out breakdown maintenance in the case of cable failures,
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short circuits, or the tripping of circuit breakers. However, due to the aforementioned
green-energy transition in distribution grids, advanced asset-management techniques
based on data analytics are required to maintain the reliability of a power supply.

The high penetration of renewable sources in distribution grids may cause grid
congestion [5,6]. For example, power outputs from PV systems may overload a few
cables and cause overvoltages for a short period of time, especially during noon when
PV generation is at its peak, and load consumption is low [7,8]. Short-term congestion
may go unnoticed if grid power flows are not continuously monitored, and proper control
measures are not undertaken [9]. Grid assets that are operated under stressed conditions
may prematurely fail, leading to an increase in DSO operating expenditure. Several
countries realized that the implementation of smart grids is the cornerstone of the green-
energy transition leading to a low-carbon economy [10]. The implementation of advanced
energy-management systems by DSOs requires the continuous monitoring of grid assets
and their better utilization [11,12]. At present, DSOs are not fully aware of grid power
losses and the loading of grid assets such as cables and substation transformers. Typically,
DSOs approximately compute grid power losses by subtracting the sum of net power
consumption from total supplied power from the substation transformer. However, loss
estimation may not be accurate due to, for example, measurement errors and nontechnical
losses [13]. The loading of cables and substation transformers could be computed by using
measurement data and solving power-flow equations using the Newton–Raphson method.
Nevertheless, errors could be high due to uncertainty in grid topology and parameters,
measurement errors, cable aging, and power theft.

Advanced smart-metering infrastructures and the automation of controllable assets
such as transformers and switches are being implemented to cope with the increasing
demand for monitoring and controling distribution grids. Smart meters are currently being
deployed, replacing conventional energy meters as part of the digitalization of electrical
infrastructures; they can measure various electrical quantities along with customers’ energy
consumption. In Europe, smart meters are almost 100% deployed in Nordic countries [14].
At present, those smart meters are used for billing purposes, but there is a growing interest
among DSOs to utilize data from smart meters for smart grid applications, including
asset management. From customer premises, smart-meter data are collected in data
concentrators located at LV substations, and are available to DSOs via dedicated head-end
servers. It usually takes about 6 hours or more to obtain data from all smart meters under
a given data concentrator to the DSO control center in a typical LV distribution grid if
meshed radio-frequency (RF) communication networks are used [15]. Smart meters, if
needed, can measure various electrical quantities such as voltage, current, and power
consumption and generation in all three phases [16]. Smart meters can record data at a
high time resolution (typically 15 min) [15].

Measurements from smart meters installed at customer premises can be used for a
variety of applications in active distribution grids. For example, smart-meter data can be
utilized for the analysis of power flows in cables. A review of applications of smart-meter
data, and their methodologies and challenges can be found in [17]. In [18], data from smart
meters were utilized to estimate the line parameters of distribution grids. Distribution-
system state-estimation (DSSE) algorithms can make use of smart-meter data for the real-
time monitoring and control of distribution grids, as discussed in [19]. DSSE algorithms
are an important tool and enabler of smart grid applications, as illustrated in [20–24].
Using data from a few smart meters and pseudomeasurements in the rest of the nodes,
the near real-time monitoring of LV distribution grids is possible, as discussed in [25,26].
Smart-meter data can also be used for computing nontechnical losses, as demonstrated
in [27].

DSOs can implement DSSE algorithms using energy readings and additional measure-
ments from smart meters, which makes the monitoring and maintenance of grid assets
comparatively easy, thus improving the reliability of the grid operation. It also enables
DSOs to be proactive in making grid upgrades, if necessary. In our previous paper [26],
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a single-phase DSSE algorithm based on the nonlinear weighted least-squares (NWLS)
method was proposed that uses smart-meter data for the near real-time monitoring of LV
grids. Compared to near real-time monitoring application, the purpose of asset manage-
ment is to accurately estimate grid energy losses and the loading of grid assets (transformer
and cables). The above-mentioned estimation can be carried out offline once per day or
week, and it is assumed that energy readings from all smart meters are available. Addi-
tional measurements, such as of voltage at the end nodes, may also be used as inputs to
the DSSE algorithm. These additional measurements improve the accuracy of the DSSE
algorithm, as illustrated in the simulation cases presented in our previous paper [26].

The nonlinear weighted least-squares (NWLS)-based three-phase state-estimation
technique was employed in [28–31] for the monitoring of distribution grids. In [28], a
three-phase state-estimation algorithm was proposed that used the aggregated smart-meter
data of several LV grids for estimating the states of a MV grid. However, the accuracy of
the proposed method compared to that of a single-phase state-estimation algorithm is not
evaluated. In [29], low-cost measurement devices instead of smart meters were used for
three-phase state estimation. As the accuracy of those meters was relatively low, data col-
lected from them could not be used for asset management. The measurement dataset used
in the work of [29] was also generated using a MATLAB program, which may not represent
real end-user consumption patterns in a real-world distribution grid. In [30], three-phase
component models of transformers, loads, lines, and distributed-generation (DG) units
were developed, and a method for generating pseudomeasurements was proposed. The
authors in [30] indicated that single-phase state-estimation methods are not applicable to
real-world distribution grids, as load unbalances are generally high. However, a detailed
comparison of the results obtained from single- and three-phase state estimation algorithm
was not provided. In [31], a three-phase state-estimation algorithm was used for the full
observability of distribution grids and for estimating line energy losses. However, the
proposed method used only substation measurements and pseudomeasurements gener-
ated from customer energy bills. The maximal error in the active power-flow estimates
reported in [31] was more than 1% due to the usage of pseudomeasurements with higher
uncertainty. Ways to improve the state estimation and satisfy the accuracy requirements of
asset-management applications were not investigated in [30,31].

The main contributions of this paper are as follows.

1. Guidelines are provided on the utilization of historical smart-meter data collected at
customer connection boxes of LV distribution grids for asset management.

2. An improved NWLS method is proposed on the basis of three-phase state estimation
(3φ DSSE) algorithm to be executed offline for the estimation of energy losses, and the
loading of lines and substation transformer.

3. The accuracy of single- and three-phase state-estimation algorithms is compared and
quantified, applied to the state estimation of a real-world LV distribution grid with
actual smart-meter measurement data.

The organization of the paper is as follows. Section 2 discusses the utilization of
smart-meter data for offline computing grid power losses and asset loading. In Section 3,
a three-phase grid model and details about the formulation of the three-phase DSSE
algorithm are given. Simulation studies of the proposed state-estimation algorithm on a
representative LV grid are outlined in Section 4. A discussion about the implementation of
DSSE in a real-life LV grid is provided in Section 5, and the paper is concluded in Section 6.

2. Asset Management Based on Offline Analysis of Smart-Meter Data

DSOs are key players for this transition, as they own and manage distribution-grid
infrastructures [32]. In order to have a return on the investment on smart grid technologies,
DSOs need insight from the collected smart-meter data, and to develop methods to keep
track of the performance and risk of the assets. Asset planning and management are becom-
ing important tasks for DSOs to deliver reliable and quality power to their customers [33].
The loading of grid assets such as substation transformers and cables is not uniform due
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to fluctuating power generation from renewable sources and power-intensive loads such
as heat pumps and electric vehicles. The loading of an asset above its thermal rating may
lead to permanent damage and cause a fire or explosion. Due to the high penetration of
Distributed energy resources (DERs) at distribution grids, current flows in lines or cables
may widely vary according to power flows leading to overloaded conditions. As a result, it
is important for DSOs to monitor the line currents and estimate their levels with respect to,
for example, the power-consumption pattern and seasonal variations [34]. Active power
losses in the grid may also vary according to season, solar radiation or wind speed, temper-
ature, and type of the day (weekend, weekdays, or holidays). One of the main objectives
of DSOs is to optimally use grid assets and implement smart grid applications such as
automatic grid reconfiguration and automatic voltage regulation. Hence, lines or cables
that are more sensitive to power variations need to be identified by analyzing variations in
power flows [8].

At present, the majority of the DSOs have not yet implemented state-estimation algo-
rithms to calculate line power losses in their distribution grids, although DSSE functionality
is envisaged by them as per [35]. A simple typically used calculation method is to sum up
the energy consumption at all customer connection points and subtract it from the energy
supplied from the substation transformer [36]. This method is formulated in Equation (1).

Eloss = Etrafo −∑ ESM, (1)

where Etrafo is the measured energy at the substation, and ∑ ESM is the sum of the energy
readings from all smart meters in that LV grid. However, the above calculation may not be
accurate due to uncertainties such as measurement errors and nontechnical losses. Smart-
meter data can be analyzed by state-estimation algorithms to reveal crucial information
about asset utilization. The 3φ DSSE can be applied on historical power-consumption
data to compute the power losses and loading of substation transformers and cables [29].
Information from such analyses can be used by DSOs to increase the hosting capacity of
the grid, defer expensive grid upgrades, and improve the power quality [17,37].

The 1φ DSSE algorithm works on the basis of positive-sequence powers and voltages;
hence, voltage or current violations above the specified limits in one or two phases may
remain unnoticed [38]. One of the best solutions is to execute a state-estimation algorithm
on each phase, yielding a three-phase DSSE algorithm that can estimate grid variables at
all three phases [30,39]. The key points of the 3φ DSSE algorithm are as follows. Inputs
to 3φ DSSE algorithm are per-phase powers and voltages compared to positive-sequence
quantities in a 1φ DSSE. The three phases are independently treated in the DSSE algorithm
without any mutual couplings, although it is possible to handle them in our proposed
model. Sensitivity analysis performed for the near real-time monitoring application re-
ported in our previous work [26] is good for the 3φ DSSE. In view of this fact, additional
measurements in the form of three-phase node voltages at the far end nodes are made
available to 3φ DSSE. The block diagram of DSSE application for asset management is
shown in Figure 1.

Offline three-
phase state 
estimation 

Historical smart meter 
energy readings

Additional historical 
measurements 

Grid parameters

Grid energy 
losses

Loading of 
cables, 

transformer

Figure 1. Block diagram of the three-phase distribution-system state estimation (DSSE) for offline
analysis of low-voltage (LV) grids.
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3. Mathematical Formulation of Grid Model and DSSE

In LV distribution grids, residential customers with single-phase-type loads are pre-
dominant, and loads may not be balanced in all three phases. Due to the connection and
type of loads (single-phase loads or loads connected between two phases), load unbalances
may not be negligible [31]. A single-phase positive-sequence model of the grid does not
take into account of the load unbalances. Hence, a three-phase grid model is formulated in
this paper as follows.

3.1. Three-Phase Model of Distribution-Grid Topology

In this paper, the following two types of elements present in a three-phase distribution
grid are modeled [40]: (i) series elements including three-phase cables and substation
transformers; and (ii) shunt elements comprising three-phase star-connected constant
power loads, and cable shunt capacitances. The schematic diagram of a three-phase line
model is shown in Figure 2.

bnv
cnv

1

2 snmY

anv

1

2 snmY

amv
bmv
cmv

1Y Znm nm


ani ami

Figure 2. Three-phase line model.

At each node n and each phase φ, let us define the phase to neutral voltage by vφ
n ,

and the current flowing out from the node by iφ
n . Let us define vectors vn = {vφ

n}φ∈Ωn

and in = {iφ
n}φ∈Ωn that collect voltages and currents at node n, respectively. Voltages and

currents in all nodes are collected in vectors i = {in}n∈N . The current at each node can be
computed from the voltage and powers as given in Equation (2).

iφ
n = (sφ

n/vφ
n)
∗ (2)

Branch currents, i.e., currents flowing in the cables can be calculated from Equation (3).

ijk = (
1
2

Ysh
jk + Z−1

jk )vj − Z−1
jk vk, (3)

where Ysh
jk is the shunt admittance of the cable, and Zjk is the series impedance between

nodes j and k. Since variable Z represents a three-phase line, it is a 3× 3 matrix consisting
of self-impedance and mutual impedance between phases, as given by (4) [41].

Z =

zaa zab zac
zab zbb zbc
zac zbc zcc

 (4)

Currents and voltages in the above three-phase model can be expressed as follows.[
ij
ik

]
=

[
Yjk + Ysjk/2 −Yjk
−Yjk Yjk + Ysjk/2

][
vj
vk

]
(5)

AC power-flow equations that represent nodal power injections can be written as
follows [42].

pφ
j =

N

∑
k=1

3

∑
m=1
|v̄φ

j ||v̄
φ
k ||Y

φm
jk | cos (δφ

j − δ
φ
k − θ

φm
jk ) (6a)
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qφ
j =

N

∑
k=1

3

∑
m=1
|v̄φ

j ||v̄
φ
k ||Y

φm
jk | sin (δ

φ
j − δ

φ
k − θ

φm
jk ) (6b)

where φ is the corresponding phase, θjk = arg(Yjk) and δj = arg(v̄j).

3.2. Representation of Electrical Loads

In current distribution grids, ungrounded Y- and D-connected nonlinear loads are
prevalent; however, in this work, they are represented with a simple constant per-phase
PQ injection bus model.

3.3. Three-Phase State-Estimation Algorithm

Let N be the number of nodes in the LV grid. Let the three-phase node phase to neutral
voltages in phasor form be considered as state variables that are collected in vector x =[
θa θb θc va vb vc

]T of size 6N, where the subscript indicates the corresponding
phase. As node voltages (NV) in polar form are considered to be state variables, the state-
estimation algorithm is called polar NV-DSSE [39]. Let variable M denote the number of
smart meters measuring the active and reactive powers in all three phases at customer
premises represented by vector z ∈ R6M. Power measurements are related to state variables
i.e., voltage phasors by the expression in (7).

z = h(x) + ε (7)

where h(x) is a nonlinear function described in Equation (6), and variable ε represents the
random measurement noise. In this work, measurement noise was assumed to be white
with normal probability distribution p(ε) ∼ N (0, R). Measurement covariance matrix R
was assumed to be constant in this work. Let the expected measurement be expressed as
ẑ = h(x), and residual vector r is calculated as per Equation (8).

r = z− ẑ (8)

The NWLS method minimizes the sum of squares of the residuals as provided in (9).

min
x

J =
6M

∑
i=1

1
w2

i
r2

i = (z− ẑ(x))TW(z− ẑ(x)) (9)

where, W is the weighting matrix and it is defined as follows.

W =

w1 · · · 0
...

. . .
...

0 · · · w6M

 (10)

In the above matrix, diagonal elements are weights of measurements and were chosen
to be the inverse of the variances of measurement errors, i.e., wi = 1/σ2

i [43]. In other
words, weights were proportional to the accuracy of the measurements. The higher the
accuracy of the measurements (which indicates less errors in the measured values) is,
the higher the values of weights are. For example, let us consider voltage measurements
with an accuracy of 1%. Assuming that errors in voltage measurements are white noise
and Gaussian-distributed with standard deviation equal to one-third of the measurement
accuracy, then the value of weights is 90× 103 [16].

The objective function defined in Equation (9) is solved using the Gauss–Newton
method on the basis of the iterative equations provided in Equation (11).

rk = zk − h(x)k (11a)

∆xk = (HTWH)−1HTWrk (11b)
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xk+1 = xk + ∆xk (11c)

where k is the iteration index, and H is the Jacobian matrix computed from h(x). The
flowchart for the execution of the NWLS method is shown in Figure 3.

Start

Get grid topology 
&  cable 

parameters 

Compute h(xk) 
and H(xk)

max(|Δxk|)
≤ ε 

yes

Stop

no

Initialize state 
vector x0

Set iteration count 
k = 1

Compute Δxk

Increment k

xk+1 = xk + Δxk

Figure 3. Flowchart of nonlinear weighted least-squares (NWLS)-based 3φ DSSE algorithm.

According to the analysis described in [39], the polar NV DSSE takes slightly fewer
iterations on an average for convergence compared to other forms, such as branch current
DSSE, although the execution time is much higher in NV DSSE due to less sparsity in
Jacobian matrices.

4. Simulation Studies

In this section, simulation cases are presented for the estimation of cable loading and
power losses using smart-meter data measured from a representative LV grid.

4.1. LV Grid Used for Case Studies

Figure 4 shows the schematic diagram of an LV distribution grid in Thisted, Denmark
that was used for simulation studies in this paper. This LV grid consisted of a secondary
substation with a transformer of rating 10/0.4 kV, 630 KVA, and 5 feeders. The main and
longest feeder, Feeder 5, consisted of 13 nodes and it is shown in Figure 4. The four other
feeders are represented as a lump load at the secondary side of the substation transformer.
Feeder 5 comprises 23 customers with a majority of residential and nonresidential loads
such as schools, farms, and pumping stations. Nodes represent junction boxes (JBs) at
which several customers were connected by means of private cables.

Smart-meter data collected from the above grid for a 1 year period during 2018 were
three-phase active and reactive power generation and consumption. The three-phase
active and reactive power profiles measured at all customer connection points (CCBs) are
provided as inputs to a model of the LV grid developed in the ePHASORsim module of
an OPAL-RT simulator for load flow analysis. Private cables between JBs and the CCBs
were not modeled and were ignored in all analyses in this work. The resultant three-phase
voltages and current phasors from OPAL-RT simulations were considered to be true values
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for comparison with the estimates of the 1φ and 3φ DSSE algorithms. For the 1φ DSSE
algorithm, positive-sequence voltages were computed from the true three-phase voltages
of OPAL-RT simulations for comparison.

T2T1 JB6

JB7 JB10 JB11

JB8 JB9

JB12
JB13

JB1 JB2 JB3 JB4 JB5

10/0.4 kV
630 KVA

Lumped
load

Legend

Non-residential 
load

Residential load

5.9 kW6 kW

10 kW

C01 C12
(Cable between 
JB1 and JB2)

Feeder 5

Figure 4. Representative LV grid used in simulation studies.

In this paper, three case studies were carried out to numerically validate and compare
the proposed 3φ DSSE algorithm, and they are described in the following sections. To
incorporate uncertainty in measurements, Gaussian white noise with a standard deviation
of σ = 0.03 pu was added to all smart-meter energy measurements. For the line parameters,
we considered a uniform distribution of errors with standard deviation σ = 0.028 pu,
which corresponded to a maximal variation of ±10% in the line resistances and reactances.
Simulation results in our previous paper [26] showed that, by using voltage measurements
from end nodes of the feeder, the accuracy of the DSSE algorithm can be improved. Hence,
in this paper, node voltages at end nodes JB11, JB13, and JB09 are provided as additional
inputs to the 1φ and 3φ DSSE algorithms in the study cases below. Gaussian white noise
with standard deviation of σv = 0.01 pu was added to these voltage measurements [26].

4.2. Case 1: Estimation of Node Voltages

In this case study, active and reactive powers measured at individual phases of each
customer connection point on a typical winter day are provided as inputs. Voltages at
end nodes (JB11, JB13 and JB09) are provided as additional inputs to the DSSE algorithms.
Node voltages were estimated using the 1φ and 3φ DSSE algorithms and compared. The 1φ
DSSE algorithm estimates only the positive-sequence values of the node voltages, while the
3φ DSSE algorithm estimates node voltages at individual phases. Results were compared
with the true values of three-phase voltages obtained from offline simulations using the
ePhasor RT-Lab tool and are shown in Figure 5. Figure 5a shows that the estimated three-
phase voltages of the 3φ DSSE algorithm at node JB11 closely matched their corresponding
true values.

Figure 5b shows the positive-sequence voltage profile estimated by the 1φ DSSE
algorithm. Although the maximal variation in individual phase voltages was around 9.5%,
the corresponding change in the positive-sequence voltage was just 3.5%. Hence, 3φ DSSE
algorithm is clearly more suitable for analyzing the voltage profiles of highly unbalanced
distribution grids.

Figure 6 shows the absolute error in the positive-sequence voltage values in the 1φ
DSSE and 3φ DSSE algorithms compared to their true values, with errors being compara-
tively less in the 3φ DSSE.
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Figure 5. Plot of grid states of (a) individual phase voltages by 3φ DSSE algorithm compared with
their true values; (b) positive-sequence voltages by 1φ DSSE algorithm.
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Figure 6. Estimated absolute errors in positive-sequence voltages at node JB11.

4.3. Case 2: Estimation of Cable Loading

In this case study, currents through the cables were calculated from the estimated
voltages of the DSSE algorithm, grid topology, and cable parameters. To calculate the cable
loading in percentage, the following relation was used.

Cable loading =
Ib
Ir
× 100, (12)

where Ib is the calculated current through the cable, and Ir is the rated current of the cable.
For instance, currents through the cable between nodes T2 and JB1, of which the rated
current is Ir = 0.27 kA, are shown in Figure 7.
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Figure 7. Estimated loading of cable C01 between nodes T2 and JB1.

From the above figure, it is evident that the peak loading of cables was different
among the three phases, which could only be estimated by a 3φ DSSE algorithm.

A comparison of the computational burden of the DSSE algorithms is shown in Table 1.

Table 1. Comparison of computational times in Case 1.

Method Average Iteration Number Average Execution Time (ms)

1φ DSSE 3.44 2.3
3φ DSSE 3.49 6.8

Table 1 shows that the average number of iterations are almost the same in both DSSE
algorithms; however, execution time was three times larger in 3φ DSSE, as state variables
were estimated in all phases. Nonetheless, longer execution time is not a drawback, as the
proposed 3φ DSSE is used in the offline analysis of smart-meter data.

4.4. Case 3: Estimation of Active Energy Losses

In this simulation case, estimated active power losses in all the cables of the rep-
resentative LV grid by the 1φ DSSE and 3φ DSSE were compared with the true values
on a typical winter day, and results are plotted in Figure 8. Energy losses are compared
in Figure 8a, errors in the loss estimation in Figure 8b, and powers supplied from the
substation transformer are plotted in the Figure 8c.

Similar to the case with estimated node voltages, 3φ DSSE performed better in esti-
mating active power losses of the grid. Power flows at the substation were less estimated
by both the 1φ and the 3φ DSSE algorithm, which resulted in them underestimating power
losses. However, 3φ DSSE algorithm provided slightly more accurate power losses because
of the treatment of power flows in individual phases.

To further assess the accuracy of the proposed 3φ DSSE algorithm, active energy losses
were computed for all three methods, namely, 1φ DSSE, 3φ DSSE, and smart-meter-reading-
based loss calculation as per Equation (1) for a full 1 year of smart-meter data. A summary
of the comparison of active energy losses is provided in Table 2.

Table 2 shows that 3φ DSSE performed better than other methods did. The 3φ DSSE
algorithm overestimated losses. As uncertainty in cable parameters was modeled as
uniform distribution that added a maximal 10% increase in cable lengths, estimated losses
by 3φ DSSE were higher than the true values. However, the accuracy of the 3φ DSSE
algorithm was better than that of other methods, and it is recommended to implement 3φ
DSSE for the calculation of grid power losses and loading condition of grid assets.
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Figure 8. Plot of (a) Estimated active power loss, (b) errors in estimated active power loss, and (c)
active power supplied from substation transformer.

Table 2. Comparison of active energy loss estimation for 1 year.

True Value Loss Calculation Based on (1) Single-Phase DSSE Three-Phase DSSE

Energy losses [MWh] 2.47 1.86 1.93 2.64
Absolute difference [%] - 24.82 21.75 6.66

5. Discussion

In this paper, simulation studies showed that cable loading and power losses in LV
distribution grids can be accurately estimated by the offline analysis of smart-meter data.
The capability of smart meters to measure and record individual phase voltages, currents,
and powers in four quadrants was utilized for the above-mentioned purpose. The two
variants of DSSE algorithm, namely, 1φ and 3φ DSSE, were applied to the estimation
of line currents and loss calculation, and their results were compared. Compared to a
near real-time monitoring application in which smart-meter data need to be obtained and
processed close to real time, asset-management applications could use historical smart-
meter data for analysis., e.g., past 1 day, week, or month, depending on the requirements of
the DSO. Because of the time constraint in grid monitoring applications, smart-meter data
are collected only from few smart meters at critical locations, and pseudomeasurements are
used in the rest of the nodes. However, in asset management, all collected smart-meter data
can be used for offline analysis. The computation time of the DSSE algorithm is also not of
concern. The 1φ DSSE algorithm uses a single-phase-equivalent model of the distribution
grid, which has the limitation of considering nodes with loads connected at only one or
two phases, and lines that connect only a single phase or two phases between nodes. The
above disadvantage is overcome by using three-phase modeling of the distribution grid,
which was formulated in Section 3. The 3φ DSSE algorithm uses the three-phase grid
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model and estimates grid states in individual phases. As load unbalances are common in
distribution grids due to the use of single-phase loads, the 3φ DSSE algorithm is preferrable
for the accurate estimation of line currents and power losses. From the simulation studies
in Section 4, the following were observed.

• Per-phase voltages or currents estimated by 3φ DSSE algorithm showed voltage or
current variations in the corresponding phases. However, such variations were not
observed in their positive-sequence values estimated by the 1φ DSSE algorithm.

• Using the 3φ DSSE algorithm, accuracy in the estimation of active energy losses can
be improved by a factor of three compared to the 1φ DSSE algorithm.

6. Conclusions

In this paper, the utilization of smart-meter data for the offline analysis and estimation
of node voltages, cable currents, and active energy losses was addressed. A 3φ DSSE
algorithm was proposed using the nonlinear weighted least-squares method for estimating
voltages, currents, and active power losses at each phase. Simulation studies performed
on a real-life LV distribution grid used the measured smart-meter data. Uncertainties
in the measurements and cable parameters were considered in the simulation studies.
The results of the proposed 3φ DSSE algorithm were compared with those of a 1φ DSSE
algorithm. A comparison of the positive-sequence voltages showed that, using 3φ DSSE
algorithm, estimation accuracy was improved from 0.41% to about 0.12%. Improvement
in estimation accuracy was especially higher when load unbalances were high. The cable
loading estimated by the proposed DSSE algorithm showed that the loading was uneven
among phases, for instance, the maximal loading of phase a was 47% while that of phase c
was just 25%. This information is important for DSOs to redistribute and balance loads
among phases. On the estimation of active energy losses, the proposed 3φ DSSE algorithm
had an error of 6.6% compared to the arithmetic sum of all meter measurements and the 1φ
DSSE algorithm method, in which errors in estimation were more than 20%.

Simulation results proved that the proposed method is useful for DSOs in the man-
agement of grid assets. In this paper, only the possibilities of using smart-meter data
for asset-management applications were studied. The power-quality indices of LV grids,
such as voltage total harmonic distortion (THD), were not analyzed in this work due to
the lack of data from smart-meter measurements. In our future works, power quality
will be assessed by collecting high time and frequency resolution data from smart meters.
The proposed state-estimation method can be extended to other applications, such as
grid-planning studies and fault management, and will be a part of our future works.
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Abbreviations
The following abbreviations are used in this manuscript:

CCB Customer connection box
DER Distributed energy resources
DSO Distribution system operator
DSSE Distribution-system state estimation
ICT Information and communication technologies
JB Junction box
LV Low-voltage
MAE Mean absolute error
MV Medium-voltage
NV Node voltages
NWLS Nonlinear Weighted Least Square
PMU Phasor measurement unit
pu per unit
PV Photovoltaic
RTU Remote terminal unit
THD Total harmonic distortion
1φ Single-phase
3φ Three-phase
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