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Abstract: Deep eutectic solvents (DES) are compounds of a hydrogen bond donor (HBD) and a
hydrogen bond acceptor (HBA) that contain a depressed melting point compared to their individual
constituents. DES have been studied for their use as carbon capture media and biogas upgrading.
However, contaminants’ presence in biogas might affect the carbon capture by DES. In this study,
conductor-like screening model for real solvents (COSMO-RS) was used to determine the effect of
temperature, pressure, and selective contaminants on five DES’ namely, choline chloride-urea, choline
chloride-ethylene glycol, tetra butyl ammonium chloride-ethylene glycol, tetra butyl ammonium
bromide-decanoic acid, and tetra octyl ammonium chloride-decanoic acid. Impurities studied in this
paper are hydrogen sulfide, ammonia, water, nitrogen, octamethyltrisiloxane, and decamethylcy-
clopentasiloxane. At infinite dilution, CO2 solubility dependence upon temperature in each DES
was examined by means of Henry’s Law constants. Next, the systems were modeled from infinite
dilution to equilibrium using the modified Raoults’ Law, where CO2 solubility dependence upon
pressure was examined. Finally, solubility of CO2 and CH4 in the various DES were explored with
the presence of varying mole percent of selective contaminants. Among the parameters studied, it
was found that the HBD of the solvent is the most determinant factor for the effectiveness of CO2

solubility. Other factors affecting the solubility are alkyl chain length of the HBA, the associated
halogen, and the resulting polarity of the DES. It was also found that choline chloride-urea is the
most selective to CO2, but has the lowest CO2 solubility, and is the most polar among other solvents.
On the other hand, tetraoctylammonium chloride-decanoic acid is the least selective, has the highest
maximum CO2 solubility, is the least polar, and is the least affected by its environment.

Keywords: biogas; carbon capture; deep eutectic solvents; Henry’s Law; Raoult’s Law; selectiv-
ity; solubility

1. Introduction

Anaerobic digestion (AD) is the process of breaking down organic substances in
anoxic conditions by bacteria [1]. Organic macro-molecules such as fats, carbohydrates,
and proteins are digested into micro-molecules during AD, which results in a nutrient-rich
solid for plants (fertilizer) and biogas [2]. This process occurs naturally in landfills, but also
in a controlled environment in equipment called anaerobic digestors. The feedstock for
AD are materials that are otherwise considered waste, such as agricultural waste, manure,
organic waste from animal processing plants, food waste, and many others [3,4]. The
growing adoption of AD offers a new approach to these waste streams which supports
a recycle economy that increases market efficiency and bolsters the renewable energy
industry as the globe shifts towards green fuel.

During AD, several reactions occur, but the process can be categorized into four
stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. During hydrolysis,
long-chain polymers like cellulose are hydrolyzed into fermentable forms like glucose.
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Acidogenesis and acetogenesis are characterized by the generation of hydrogen gas and
carbon dioxide from monomers and glucose. The final stage, methanogenesis, is the
stage where most of the methane is produced. Apart from CH4 and CO2, several other
impurities are formed dependent upon the feed, such as ammonia, hydrogen sulfide, water,
nitrogen, and siloxanes. The presence of CO2 and the impurities lower the overall energy
content of the biogas and can cause premature failure of point-of-use equipment [5]. For
these reasons, carbon capture and biogas upgrading are often required prior to biogas
application. Currently, biogas upgrading is conventionally performed through amine-based
ionic liquid absorption or water scrubbing [6]. Ionic liquid (IL) amine-based absorption
is desirable due to the solvents having a high selectivity for CO2 over CH4, which can
achieve ~99% CH4 purity [6–9]. However, the high viscosity, high cost, and toxicity of
these solvents suggest the need for an alternative [9–11]. Water scrubbing has a high
efficiency (~97% CH4 purity achieved), but it has been associated with bacterial growth
issues, massive water consumption, and its necessity for additional processes in series to
remove feed impurities [6,9]. Other processes have also been developed for CO2 removal,
such as solid sorbents. These solid-based sorbents are found to have a large range of CO2
capacity that reach up to 80 weight percent but have high operating temperatures that
exceed 500 ◦C [12,13]. However, due to the low combustive properties of some impurities,
low-temperature solid adsorbents like zeolites are the only feasible option, which have
significantly lower capacities [14,15].

Deep eutectic solvents (DES) are a relatively new material that is being studied as
a carbon capture media [16–18]. DES are made from a hydrogen bond donor (HBD)
and a hydrogen bond acceptor (HBA) [16,19]. The melting point of DES is decreased
significantly compared to individual HBA and HBD due to charge delocalization from
hydrogen bonding [20–22]. Studies have proven DES to exhibit desirable traits for use as
a CO2 absorbent, such as thermal stability, tunability, reversibility, and reasonable CO2
solubility [14,17,23], with Zhang et al. [15] reporting a 1:1 mol CO2 per mol solvent solubility
ratio [24], Bi et al. [25] reporting a 0.25 g/g of CO2 per solvent solubility, and Ren et al. [25]
reporting 0.4 mol CO2 per mol solvent solubility. The literature often uses experimental
methods to develop CO2 capture on DES. However, the use of computational software with
highly accurate determinations may make the down-selection of DES easier. Therefore,
conductor-like screening model for real solvents (COSMO-RS), which is a thermodynamic
property prediction software that relies on the generation of sigma profiles rather than
databases of functional group interactions, was used in this study. COSMO has been used
by several authors to model CO2 capture, such as Song et al. [26], who was able to screen a
database containing thousands of HBD and HBA combinations for potential CO2-capturing
solvents. Of the various DES, quaternary ammonium salts have garnered a significant
amount of attention for their ability to solvate CO2 [18,27]. The accuracy of COSMO was
also studied by Liu et al. [28] by testing hundreds of DES for CO2 absorption, and they
found a maximum of 10.3% error after tuning the program across the studied samples.
Several studies have been performed on the solubility of CO2 in DES [22,29], however, to
the best of the authors’ knowledge, none was conducted on understanding how various
impurities in biogas affect the carbon capture by DES. This knowledge is essential to design
an absorption system for biogas upgrading since solubility and selectivity of a solvent
can be adversely affected by contaminants, especially when accounting for accumulation
during repeated use.

This study focuses on evaluating the affinity various DES have for selected contam-
inants and how their presence in various amounts affects the affinity for CO2 in these
solvents. This will be performed using COSMO by first modeling the DES and contam-
inants not found in the software library, then generating thermophysical properties of
Henry’s Law constants and activity. Selectivity of CO2 over CH4 and solubility of CO2
changes in a selected group of DES were studied here for both infinite dilution and partial
pressure at various temperature ranges. Finally, effects of impurities ranging from 0 to
5 mole % on CO2 solubility in various DES were evaluated.
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2. Materials and Methods
2.1. Composition of Biogas

The standard percent ranges of biogas composition used in this study have been listed
in Table 1. The variance of the composition depends upon several factors surrounding
the AD process, such as temperature, retention time, kinetics, and feed stock composi-
tion [30]. Table 1 shows the components studied with their respective abbreviations for the
investigation and their industrial compositions.

Table 1. Pre-treatment biogas components and composition for studied molecules.

Molecule Abbreviation Composition Volume % PPM References

Hydrogen Sulfide H2S 0–2 0–10,000 [31,32]
Ammonia NH3 0–1 0–100 [31,33]
Nitrogen N2 0–15 - [31]

Water H2O 5–10 - [32]
Propanone Acetone - 0–15 [34]

Octamethyltrisiloxane Octa - 0–41.35 [35]
Decamethylcyclopentasiloxane Deca - 0–5.17 [33]

Carbon Dioxide CO2 15–47 - [31]
Methane CH4 35–70 - [31]

2.2. Deep Eutectic Solvents

Table 2 lists the five common DES considered for this study, including choline chloride-
urea, choline chloride-ethylene glycol, tetra butyl ammonium chloride-ethylene glycol, tetra
butyl ammonium bromide-decanoic acid, and tetra octyl ammonium chloride-decanoic
acid, along with their components and component mixing ratios. The solvents studied
are termed quaternary ammonium salts due to the structure of the HBD. The quater-
nary ammonium salts are relatively cheap, safe for the environment, and naturally de-
rived [16,36,37]. The specific solvents were chosen as an attempt to represent a large range
of their class by means of carbon chain length of the quaternary ammonium salts and
commonly paired HBDs.

Table 2. Selected deep eutectic solvents for biogas upgrading and their abbreviations.

DES Abbreviation HBA HBD Molar Ratio Molar Mass (g/g mol)

N8888Br:Decanoic Acid N8Br:DA N8888Br Decanoic Acid 1:3 1019.08
N4444Br:Decanoic Acid N4Br:DA N4444Br Decanoic Acid 1:3 839.15

N4444Cl:Ethylene Glycol N4Cl:EG N4444Cl Ethylene Glycol 1:3 464.11
ChCl:Ethylene glycol ChCl:EG ChCl Ethylene Glycol 1:3 325.83

ChCl:Urea ChCl:U ChCl Urea 1:2 259.74

2.3. COSMO Simulation

COSMO is a quantum modeling software that determines thermodynamic properties
using density functional theory (DFT). To determine the thermodynamic properties, the
HBAs and HBDs are modeled using TurboMoleX software. The impurities are selected
from the COSMO library. HBAs and HBDs are then mathematically evaluated for their
natural geometrical lowest energy state and conformers. COSMO was then used for all
thermophysical property calculations. TurboMoleX® was used to generate all molecular
sigma profiles, conformers, and data not already found in the included database. TZVP
(tri-zeta-valence-polarized) settings were used with default numerical grid of m3 and BP86
functions. COSMOThermX® was used for all thermodynamic property calculations. These
properties were used to calculate sigma profile of the molecules, where charge density
is plotted with charge of the molecule. Here, the molecule is differentiated into charge
density segments, with each segment representing areas with charge density ranging from
−0.3 to +0.3 e/Å2. The charge density segments are plotted to form the sigma profiles.
The data from the sigma profiles are used to model microscopic molecular surface charge
interactions between analytes, then a statistical thermodynamic procedure is carried out to



Clean Technol. 2021, 3 493

derive macroscopic thermodynamic properties from the generated information [38]. The
base values generated are chemical potentials of the systems’ constituents, these are then
applied to thermodynamic calculations of Henry’s Law coefficient and activity coefficients.
Determination of the solubility and selectivity of the systems was carried out by COSMO-
RS, whose results are based upon the chemical potential generated by COSMO-RS.

3. Results and Discussion
3.1. Sigma Profiles of DES’s, Polar, and Non-Polar Molecules

A sigma profile is a distribution function that relates the surface area of a molecule to
the charge density of the surface [39]. In this study, sigma profiles are used to understand
the electrostatic interactions between DES and selected polar and nonpolar molecules.
The sigma profiles explain the trends of solubility and selectivity for a DES-based extrac-
tion. To generate these profiles, COSMO creates incremental segments of the studied
molecule, which are then organized based upon surface charge density. The area under
these sigma profile curves gives the total surface area of the studied molecule. Peaks
between ±0.0082 e/Å2 charge density indicate that the molecule readily undergoes van
der Waals interactions [39,40]. Peaks outside of this range indicate hydrogen bonding as
the preferred interaction due to polarity [40].

Sigma profiles are useful for determining how molecules will interact in a solvent-
solute system. From a range of sigma profiles, appropriate solvents may be identified for a
given molecule based on how the charge densities between the two profiles align. A highly
polar solvent that has significant charge density in the HBA region (−0.0082 e/Å2) could
be expected to have a high affinity for a solute that shows a significant charge density in
the HBD region (+0.0082 e/Å2). The same is true for two molecules that have significant
charge densities in the non-polar region of the sigma profile (±0.0082 e/Å2). This logic
can be used to determine if an impurity will have a lesser or higher affinity than a solute,
giving rise to competition for the solvents’ binding sites.

In Figure 1, the sigma profiles of each DES are displayed. The order of the solvents
from the most to the least polar and, therefore, most available for hydrogen bonding to
least available, are as follows: ChCl:U > ChCl:EG > N4Cl:EG > N4Br:DA > N8Br:DA. The
peaks between 0.015 and 0.002 e/Å2 are from the halogens associated with each solvent. It
is observed that by changing the HBD groups as with the tetrabutylammonium variants,
the sigma structure is significantly altered, which lends to the notion of DES properties
being highly tunable [16,41].
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Figure 1. Sigma potential profiles of DES with respect to charge density.

Sigma profiles of non-polar gases can be seen in Figure 2. For the non-polar gases, the
key difference in the sigma profiles of the molecules is the charge density distribution of
CO2 vs. N2 vs. CH4. N2 and CH4 have most of their area concentrated around the zero-
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x-axis compared to CO2. CO2 is considered a non-polar gas, since the distribution of the
charges for CO2 are weighted between ±0.0082 e/Å2. However, CO2 can be influenced by
its environment to make it behave more like a polar molecule and participate in hydrogen
bonding or behave more like a non-polar molecule and participate in van der Waals
interactions. The potential for this behavior can be seen in the sigma profile as the charge
density is concentrated closely to the ±0.0082 e/Å2 boundary. It is also understood that
CO2 contains two polar bonds, but the linear structure of the molecule creates a net-zero
dipole moment. However, in a polar environment such as CO2 in water, it behaves as an
acid gas.
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Figure 2. Sigma potential profiles of non-polar molecules with respect to charge density.

Regarding polar gases, only gases reported as impurities of biogas are selected for this
study. There exist large variations in profiles among this group, as seen in Figure 3. The
most notable impurity is water, which reaches the farthest among the other gases on the
charge density and is relatively symmetric, which concludes its adaptability in assuming
the roles as a Lewis acid or base. Acetone has a large peak near the 0 e/Å2 yet behaves
as a Lewis base due to the considerable peak beyond 0.01 e/Å2. H2S is relatively evenly
dispersed along the x-axis, suggesting it can participate in both van der Waals interactions
and hydrogen bonding depending upon its environment. SO2 is heavily concentrated
around the boundaries of ±0.0082 e/Å2, and as such, would be expected to have lower
solubility among the less polar DES. Ammonia is a weak base, and this is indicated in
the large peaks near the HBA region (−0.0082 e/Å2) but is capable of hydrogen donating
interactions, as seen in the trailing area in the positive region of the plot as it extends to
nearly 0.03 e/Å2.
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Figure 3. Sigma potential profiles of polar molecules with respect to charge density.

As discussed previously, CO2 can be influenced by its environment to partake in
hydrogen bonding or van der Waals interactions. Due to this and the generated sigma
profiles, it stands to reason that a DES containing significant amounts of a polar or non-
polar contaminant may change the level of solubility of CO2 within that system. For
example, when considering the relatively polar profile of ChCl:U, it could be reasoned that
if it were to accumulate strong polar molecules like water then the effect of hydrogen bond
affinity for CO2 would be enhanced. Thus, resulting in a higher selectivity for CO2 than
CH4 in this particular solvent.

3.2. Selectivity for CO2 over CH4 by DES in Infinite Dilution

Considering the valuable product of biogas upgrading is methane, the selectivity of a
solvent to solvate is of significant importance. The selectivity of CO2 over CH4 was first
studied for various DES at infinite dilution by Henry’s Law calculations and presented in
Figure 4. Henry’s Law constants are used to study the solubility of CO2 vs. CH4 for a pure
DES regarding the first molecules of gas and how they selectively enter the DES and are
only valid at low concentrations of gases in the DES. At room temperature and at infinite
dilution, the largest selectivity of 4.7 can be observed in ChCl:U. Here, approximately
4.7 moles of CO2 are expected to be absorbed per mole of CH4. The least selective solvent
in this model is N8Br:DA at approximately 1.75. The remaining solvents show a slight
trend up from N8Br:DA. The data follows a rational trend of selectivity to size, with the
smallest DES molecular constituents displaying the highest selectivity. However, this does
not explain the dramatic increase in selectivity between ChCl:EG and ChCl:U, considering
they are nearly the same mass (Table 2) and considering the selectivity is molar-based.
This behavior could be explained from sigma profiles. Figure 1 shows ChCl:U as being
the most likely to participate in hydrogen bonding of the five solvents and N8Br:DA as
most likely to participate in van der Waals interactions. As previously mentioned, CO2
can become polarized in a polar environment, which makes it much more likely to bind
with ChCl:U than methane. In a relatively non-polar environment like N8Br:DA, both
molecules will behave non-polar and bind closer to a 1:1 ratio. The values for simulated
vs. experimental solubilities of CO2 in ChCl:U at 5.6 MPa and 303.15 K are reported as
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5.7 and 3.56 (mol/kg), respectively. The difference was reported to be caused by poorly
optimized DES structures [42]. Xie et al. and Ji et al. report experimental solubilities
of CO2 in ChCl:U at 308.2 K and 0.651 and 0.678 p/MPa respectively, as 0.05 and 0.045
mole fraction, respectively. The solubility parameters were studied in this paper at a
highest-pressure condition of 0.6 MPa and 25 ◦C, and for ChCl:U, the solubility of CO2 at
these conditions is 0.074. The discrepancies between experimental and calculated values
could be attributed by the limitations of COSMO to fully model all solvation phenomena
that occur, such as hole theory, induced polarity of solutes, and induced conformers of
analytes. The selectivity appears to be mostly influenced by the polarity of the DES at
room temperature. Similar observation was found in the literature, where Slupek et al. [10]
compared the sigma profiles of their studied DES with solutes and determined that the
overlapping regions between the two plots suggested interaction compatibility.
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Figure 4. Selectivity of CO2 vs. CH4 at STP and infinite dilution calculated from Henry’s Law
coefficients for each DES.

The selectivity thus far has been discussed at 25 ◦C, however, temperature of the
biogas could be as high as 55 ◦C depending on mesophilic or thermophilic microorganisms.
Therefore, the effect of temperature on selectivity at infinite dilution is of practical interest.
Figure 5 has shown the effect of temperature on Henry’s Law constant, which is analogous
to selectivity. Due to the unit of the Henry constant, the lower values are associated with
higher solubility. With the increase of temperature, the Henry’s Law constant increases.
Interestingly, for the same HBA (e.g., ChCl), exceptional deviations in Henry’s Law constant
can be found for different HBD (e.g., urea versus ethylene glycol). This is probably
due to the smaller HBA chain lengths that might have a naturally smaller affinity for
CO2 [41]. However, the induced polarity phenomena have a stronger impact on the
solubility outcome. This is due to CO2 being naturally non-polar, as seen in Figure 2. Thus,
the magnitude of the dipole moment of a solvent will determine the affinity CO2 will have
for it.
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3.3. Effect of Pressure on Selectivity and Solubility of CO2 in Various DES

Selectivity of CO2 over CH4 in various DES at infinite dilution provides valuable
information on how polarity of DES and solute affect the selectivity. However, Henry’s
Law is only valid for infinite dilution, which might be misleading for carbon capture from
biogas, as CO2 concentration in biogas is often high. Therefore, Raoult’s Law might provide
more accurate information of the solubility and selectivity. In this study, modified Raoult’s
Law calculations are used to determine the maximum solubilities for a pure solvent by
studying the last molecules to enter the system at any concentration. Understanding the
effect pressure has on a system and how its constituents behave away from ideality is
crucial to its design parameters. Figure 6 investigates the last molecules entering the system
at equilibrium. It provides total saturation values for CO2 on the left axis and selectivity of
CO2 vs. CH4 on the right axis at varying partial pressures in 40% increments, since this
falls within the composition range for both CO2 and CH4, as shown in Table 1. The first
observation in this Figure 6 is the increase in solubility of CO2 with increased pressure,
regardless of solvent. The next is the same trend being seen in Figure 4 with respect to the
solvent ordering of selectivity. This trend becomes significantly more pronounced when
the system is closer to saturation. For example, the selectivity of ChCl:U at 1 bar is nearly
25 in Figure 6 compared to the Henry’s Law calculations which were 4.7 in Figure 4. A
possible explanation for this could be due to the solvent matrix becoming more of a polar
environment as the holes fill with CO2 and CH4 has to squeeze into the smaller polarized
spaces in order to occupy the solvent, which is not energetically favorable. The negative
slopes of the selectivity analysis are due to the increase in pressure, as the molecules are
forced into solvent, they become less selective. The more drastic change occurs within
ChCl:U as the influence of polarity is overcome by the force of pressure, resulting in a
non-linear relationship unlike the other less acidic solvents. The total capacity for CO2
varies significantly between pressures, and the resulting trends of the bars suggest that
the effect on the solvents also vary significantly. As discussed previously, the order of
solvents in their ability to solvate CO2 and the gaps in capacities are explained through
alkyl-chain lengths [16], HBD selection, and the resulting polarity of these combinations
with little effect from the halogens. The results here further confirm this by segregating the
solvents into 3 visible groupings regarding solubility of CO2 of N8Br:DA and N4Br:DA,
N4Cl:EG and ChCl:U, and ChCl:EG. The most significant finding from this grouping is the
relative effects on solubility between HBA chain length and associated HBD. N4Br:DA and
N8Br:DA have relatively similar capacities for CO2 that are significantly higher compared to
N4Cl:EG. N4Br:DA finds a maximum ratio of approximately 1.9 over the CO2 solubility of
N4Cl:EG, where the alkyl chain lengths are the same but the HBD are different. However,
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N8Br:DA only finds a maximum approximate ratio of 1.08 over the CO2 solubility of
N4Br:DA, which displays a difference in alkyl chain length but the same HBD.
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3.4. Effect of Impurities on CO2 Solubility in Various DES

Effect of selected impurities on CO2 solubility of various DES at different temperatures
under 3.6 bar pressure conditions are studied by solubilities. Analysis was performed on
each DES to determine how the presence of contaminants within the feed gas, captured by
the solvent, would affect the absorptive capacity for CH4 and CO2. This was performed
on a wide range of contaminants found in Table 1 over three temperatures (25, 37, and
55 ◦C) at ambient pressure and three mole fractions of contaminant within the solvent (1, 3,
and 5 mol%). The solubilties were normalized to show the deviation from the maximum
solubility of CO2 and CH4 at DES, with no contaminants.

Of the five DES, ChCl:U is the most affected to the presence of all the impurities within
biogas, as can be seen in Table 3. With the increase of ammonia in biogas, the maximum
solubility of CO2 and CH4 increase in ChCl:U. For instance, the values for CO2 at 37 ◦C are
1.01 and 1.03 for ammonia in ChCl:U at 1 and 5 mol%, respectively. However, the presence
of all other contaminants decrease the maximum solubility of both CO2 and CH4 in ChCl:U.
All contaminants produce a change greater than 5% from the base case, with the octa and
deca siloxane compounds inciting the greatest changes. This finding is significant, as Jiang
et al. [43] report an average concentration of siloxanes in untreated biogas reaching up to
2000 mg

m3 . It is observed that change in temperature produces minimal effect on how the
impurities in ChCl:U alter the maximum solubility of CO2. Although, there is a significant
change on the solubility of CO2. For example, the presence of propanone at 5 mole percent
in CH4 shows a deviation from the baseline of 1 as the values 0.89 and 0.92 for temperatures
of 25 and 55 ◦C respectively, while the same conditions provide a range of 0.93 to 0.94
for CO2.
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Table 3. Normalized values for solubility of CO2 at various mole percentages in ChCl:U and at
varying temperatures. The values are normalized to fresh solvent solubilities of respective CO2

and CH4.

Temp (◦C) 25 37 55

Mol% 1% 3% 5% 1% 3% 5% 1% 3% 5%

H2O 1.01 0.99 0.96 1.00 0.98 0.96 1.00 0.98 0.95
CO2 - - - - - - - - -
CH4 1.00 0.96 0.92 1.00 0.95 0.91 0.99 0.95 0.91
Octa 0.92 0.84 0.76 0.99 0.82 0.76 0.96 0.83 0.78
Deca 0.91 0.81 0.74 0.99 0.80 0.75 0.95 0.81 0.78
H2S 1.01 0.98 0.95 1.00 0.98 0.95 1.00 0.97 0.95
NH3 1.03 1.01 1.03 1.01 1.02 1.03 1.01 1.02 1.03
N2 1.02 0.99 0.99 1.00 0.99 0.98 1.00 0.99 0.98

Acetone 1.01 0.97 0.94 1.00 0.96 0.93 1.00 0.96 0.93
SO2 1.00 0.97 0.92 1.00 0.96 0.92 0.99 0.95 0.92

The solvents with the HBD of ethylene glycol (in Supplementary Information
Tables S1 and S2) show a positive effect from every contaminant except H2O, H2S, and
SO2. The other contaminants show asymmetry with a weighted area around the HBA
region, whereas H2O, H2S, and SO2 are significantly more symmetrical regarding sigma
profiles. A notable difference between the two DES with these HBD groups is the response
to the contaminants at varying concentrations. At lower concentrations of the contaminants
(1 mol%), N4Cl:EG is much more affected in terms of maximum CO2 and CH4 solubility
compared to its ChCl:EG counterpart, but the opposite is true at higher concentrations.
For example, at 25 ◦C, the CO2 maximum solubility increases by 4% when octa makes
up 1 mole percent of N4Cl:EG, however there is virtually no change when these same
conditions are met for ChCl:EG as a value of 1 is reported. The trend found in ChCl:U
between the temperature change and solubility change is not present in either of these DES.

The solvents with the HBD decanoic acid (N4Br:DA and N8Br:DA, Tables S3 and S4,
respectively) show negative effects from all contaminants except siloxanes. Here, CH4 sol-
ubility increases with the presence of octa and deca but CO2 decreases with their presence.
For these two DES, another similar trend follows regarding CO2 and CH4 solubility. The
solubility varies little with contaminant mole percent, with nearly all changes being within
2%, with the exception of H2O and ammonia for N8Br:DA and H2O, ammonia, deca, and octa
for N4Br:DA. At 1% contamination presence, the solubility of CO2 in both DES start above
1 with higher solubility and decrease with increasing percentages of contaminant. Another
trend to note is the slightly less negative effect the contaminants have upon N4Br:DA than
N8Br:DA, whose main difference is their alkyl chain length.

4. Conclusions

The results of this study contain important preliminary data regarding the imple-
mentation of DES in biogas upgrading systems. The fundamental understanding of the
solvents and their behavior under various temperatures, pressures, and influences from
contaminants show that a complex web of variables exists that must be considered when
choosing a DES for any application. It has been shown that the polarity of a solvent, its
size, and its constituents are factors contributing to solubility, but the main determinant is
the HBD selection. The significance of the varied contaminant concentrations is providing
a method to model the accumulation that occurs within recycled solvent, where not all
contaminants will be purged through the regeneration process. This study is a glimpse
into the potential lifetime of the solvent, and how each solvent will be suited for a specific
feed gas composition. The results show that the DES are affected by these contaminants in
varying degrees in order of most to least, as follows: ChCl:U, ChCl:EG, N4Cl:EG, N4Br:DA,
and N8Br:DA. This trend is the same for polarity and the reverse of alkyl chain length,
and also suggests the order in which the length of time the solvents will be able to operate
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before regeneration is necessary, from least to most. The pressure study suggests the ideal
operating environment is closer to atmospheric pressure considering selectivity but not for
solubility. The selectivity at ambient temperature and pressure (STP) and infinite dilution
are 4.7, 2.4, 2.2, 2.0, and 1.7 mol CO2/mol CH4 for ChCl:U, ChCl:EG, N4Cl:EG, N4Br:DA,
and N8Br:DA, respectively. However, the selectivity at STP and finite dilution conditions
are 25.9, 13.6, 12.3, 11.1, and 9.7 mol CO2/mol CH4. For ChCl:U, the absorbance was
decreased by the presence of deca at STP and 1, 3, and 5 mole % by 0.91, 0.81, and 0.74
respectively, from a normalized value of 1. The changes in the presence of CH4 at STP and
1, 3, and 5 mole % are 1.00, 0.96, and 0.92, respectively. These solvents have been shown to
behave differently to each other when subjected to differing environmental factors such as
temperature and pressure. All of these factors point to high tunability and complexity for
these solvents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cleantechnol3020029/s1, Table S1: Normalized values for solubility of CO2 and CH4 at various
mole percentages in ChCl: EG and at varying temperatures. The values are normalized to fresh
solvent solubilities of respective CO2 and CH4., Table S2: Normalized values for solubility of CO2
and CH4 at various mole percentages in N4Cl: EG and at varying temperatures. The values are
normalized to fresh solvent solubilities of respective CO2 and CH4., Table S3: Normalized values for
solubility of CO2 and CH4 at various mole percentages in N4Br: DA and at varying temperatures. The
values are normalized to fresh solvent solubilities of respective CO2 and CH4., Table S4: Normalized
values for solubility of CO2 and CH4 at various mole percentages in N8Br: DA and at varying
temperatures. The values are normalized to fresh solvent solubilities of respective CO2 and CH4.
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