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Abstract: This paper presents a comparison of different time- and frequency-domain solvers for
the steady-state simulation of the eddy current phenomena, due to the motion of a permanent
magnet array, occurring in the soft-magnetic stator core of electrical machines that exhibits nonlinear
material characteristics. Three different dynamic solvers are implemented in the framework of
the isogeometric analysis, namely the traditional time-stepping backward-Euler technique, the
space-time Galerkin approach, and the harmonic balance method, which operates in the frequency
domain. Two-dimensional electrical machine benchmarks, consisting of both slotless and slotted
stator core, are considered to establish the accuracy, convergence, and computational efficiency of the
presented solvers.
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1. Introduction

In order to obtain the steady-state solution of nonlinear eddy current problems, electro-
dynamic solvers are needed to describe the periodic temporal evolution of the eddy current
phenomena. Concerning the temporal discretization, the time-stepping approach, which
is a finite difference method in time, constitutes the standard for transient finite-element
simulations, with for instance the so-called θ-methods [1]. However, these methods present
certain limitations, such as the choice of an appropriate time-step value and a heavy compu-
tational effort to reach the steady-state solution. Recently, new solvers have been presented,
such as the space-time Galerkin method [2,3], which extrudes the spatial geometry along
a new dimension, which represents the time. This enables a smooth and direct solution
to dynamic systems, such as eddy current problems, using the favorable properties of the
isogeometric analysis (IGA) in both space and time. If the temporal excitation and response
signals of the system exhibit specific characteristics, such as periodic variations, alternating
time-frequency solvers, such as the harmonic balance method, have been proposed to
efficiently solve the system through its temporal Fourier coefficients [4,5]. For motion
coupling, time-stepping approaches often rely on the locked-step method while frequency
domain approaches employ sliding-surface or moving-band techniques [6,7].

In this paper, all three approaches for electrodynamics modeling, i.e., time-stepping
techniques, space-time Galerkin method, and harmonic balance method, are researched in
the framework of IGA, on motional eddy current benchmarks, and without considering
any motion coupling. Furthermore, the advantages of the harmonic balance method are
investigated for nonlinear motional eddy current problems, in terms of accuracy, stability,
and computational efficiency, compared to the other dynamic approaches. The convergence
of the harmonic balance method has not yet been demonstrated in the literature and
is therefore analyzed in detail. Advanced schemes are presented that enable adaptive
mesh refinements as well as novel progressive harmonic-content refinements, which both
improve the convergence rate and computational efficiency.
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2. Modeling

First, the framework of isogeometric analysis is introduced. The B-spline basis func-
tions are defined for their use in geometry and solution discretization. The variational
formulations of the magnetic problems are introduced including the Newton–Raphson
method for taking the nonlinear material characteristics into account. The principle of three
different dynamic solvers are detailed, i.e., the time-stepping technique, the space-time
Galerkin approach, and the harmonic balance method, as exemplified in Figure 1. They
constitute respectively: discrete, continuous, and modal time-discretizations of the dynamic
motional eddy-current problem, which can be seen as 2.5D, 3D, and 2D methods, for the
considered slotless and slotted benchmarks in 2D space, where 2.5D refers to a temporal
sequence of 2D spatial simulations, 3D relies on a complete discretization of the space-time
cylinder, and 2D only necessitates to resolve Fourier coefficients for reconstructing the
time-harmonic evolution.
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Figure 1. Schematic representations of (a) the time-stepping technique, (b) the space-time approach, and (c) the harmonic
balance method. The color code for the different regions is explained in Section 2.6.

2.1. Isogeometric Analysis

The isogeometric analysis provides a powerful framework for the spatial discretization
of partial differential equations (PDEs) arising in physics, such as solid mechanics, fluid
dynamics, or electromagnetics [8]. Piecewise polynomials, B-splines, are considered as
basis functions for the solution of the PDEs as well as for shape and geometry discretization.
This class of numerical method integrates both mesh and polynomial degree refinements,
which are useful to resolve geometrical and physical singularities as well as local features.
The advantages compared to the traditional finite element method are an exact geometrical
description and a smooth solution due to the higher continuity of the basis functions.

To build the B-splines basis functions, one starts to define an increasing sequence of
points in [0, 1] to form a knot vector:

Ξ = ξ1, ξ2, ..., ξn+p+1, (1)

following Cox–de-Boor’s identity [9], where n is the number of B-spline functions and p is
the degree of the polynomial, each knot ξi has the multiplicity ri. When the knots are equally
spaced, the knot vector is called uniform; otherwise, it is non-uniform. The multiplicity
counts the number of times a knot is repeated in the vector. When the multiplicity of a knot
is exactly ri = p, the basis function is C0 continuous or interpolatory at that knot. For an
open knot vector, the starting and last knots (0 and 1) are repeated p + 1 times. In general,
basis functions are αi = p− ri continuous at a knot ξi. Starting from piecewise constant
functions of degree p = 0:

Bi,0(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1,
0 otherwise.

(2)
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B-splines of higher-order can be defined recursively [9] as:

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ). (3)

B-splines are naturally extended in any dimension d, by means of the tensor product
between d univariate B-splines:

B̂i,p(x̂) = B̂i1,p1(x̂1)B̂i2,p2(x̂2)...B̂id ,pd(x̂d). (4)

Periodic B-splines of increasing degree are shown in Figure 2a–d for a uniform knot
vector. Correspondingly, periodic B-splines for a nonuniform knot vector, i.e., where the
multiplicity is controlled, are shown in Figure 2e–f. B-splines can be extended to more
complex functions, such as non-uniform rational B-splines (NURBS) as well as truncated
hierarchical B-splines or THB-splines. NURBS are useful to represent conics and are
commonly used in computer-aided design (CAD) models to represent industrial parts.
NURBS are obtained by appending weights to each B-spline basis function. THB-splines
enable residual-based adaptive refinements to be performed [10]. Furthermore, they offer
a drastic reduction of the number of degrees of freedom (dofs) and reduced support.
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Figure 2. B-spline basis of degree 0, 1, 2, 3 on an open uniform knot vector: (a) B-spline basis of degree 0, (b) B-spline basis
of degree 1, (c) B-spline basis of degree 2, and (d) B-spline basis of degree 3. B-spline basis on an open nonuniform knot
vector Ξ = [3, 1, 3, 1, 3], (e) B-spline basis of degree 2, and (f) B-spline basis of degree 3.
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The geometry has to be discretized to be IGA-compatible. Several approaches are
possible depending on the shapes, complexity of the model, and the numerical imple-
mentation. Since the tensor product construction is most often employed with IGA, the
reference element is Ω̂ = [0, 1]d, where d is the dimension. In most electromagnetic ap-
plications, different materials interact within the same domain; therefore, discontinuous
material properties and sources arise. The geometry can exhibit either nonconforming or
conforming interfaces. The latter is preferred as it yields simpler formulations. Either the
single patch or multipatch approach is possible. The single patch approach refines the
knot vector and increases the knot multiplicities to decrease the level of continuity at the
generated interfaces. The multipatch approach simply glues multiple elements with a given
continuity at the interfaces, most often C0 or C1. The multipatch approach based on NURBS
offers a flexible description of the shapes of the interfaces between patches. A schematic of
a multipatch discretization with IGA is represented in Figure 3. The parametrizations F are
indicated, which map each patch Ωk = Fk(Ω̂) of the physical domain Ω to the reference
element or computational domain Ω̂. Algebraic methods are used for the parametrization;
in particular, Coon’s patch approach [11] is used for assembling surface patches from their
boundary curves. However, other methods can be applied, such as PDE-based methods,
and methods based on convex quadratic cost functional minimization [12,13]. For geome-
tries with nonmatching boundaries, different techniques exist, such as Mortar methods [14],
or discontinuous Galerkin methods (DG) [15].
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Figure 3. Conforming multipatch isogeometric discretization schematic.

A spline curve is defined as a linear combination of B-splines defined in (3) and
control points:

C(ξ) =
n

∑
i=1

CiBi,p(ξ), Ci ∈ Rd, d = 2, 3, (5)

where Ci are the control points exemplified by colored squares in Figure 3. The control
net is the gird formed by the piecewise linear curves that link all the control points.
Additional weights w can be introduced to form NURBS basis functions. Similarly, B-
splines or NURBS parametrizations of multivariate geometries are created through a tensor
product of univariate curves, leading to the creation of surfaces, manifolds, and volumes.
Different algorithms have been conceived to produce refinements, transformations, and
deformations of these structures [8,9,16]. h-refinement is obtained through knot insertion
and is exemplified in Figure 3, p-refinement through degree elevation, and k-refinement is a
degree elevation followed by knot insertion. Transformations include translations, rotations,
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and scalings. Concerning deformations, modifications of coordinates, and weights of the
control points are possible. The coordinates can be either 3D Cartesian or 4D homogeneous
coordinates if the weights are included.

2.2. Spatial Discretization of Nonlinear Magnetic Problems

Considering first a magnetostatic problem in the (x, y) plane, it follows that
B = Bxex + Byey + 0ez and the magnetic vector potential A = Azez is reduced to a scalar
field. In 2D, Az is obviously independent of z, and therefore div A = 0 falls naturally.
Taking ν(x) as the magnetic permeability, Js as the imposed electrical current density in the
coil regions and Br as the remanent magnetic flux density of the permanent magnets, the
strong form in 2D is a Laplace problem that reads:

div(ν(x)grad A) = Js + ν(x)rot Br, (6)

A|ΓD = 0. (7)

The discrete solution approximation of the PDE is obtained with the Galerkin method.
The isoparametric approach is chosen, meaning that the same approximation space is taken
as the scalar Hilbert space:

Vh = H0(grad, Ω) =
{

u ∈ L2(Ω), grad u ∈ L2(Ω), u|ΓD = 0
}

, (8)

which is a subset of the bivariate B-spline grad-conforming basis functions that vanish
on the Dirichlet boundary ΓD, for both the test vh and trial uh functions. The variational
formulation of the boundary value problem reads: Find uh ∈ Vh, such that:

a(uh, vh) = b(vh) = ( f , vh), ∀ vh ∈ Vh. (9)

The solution is written as a linear combination of general B-spline basis functions ωi,
which span the approximation space Vh, such that dim Vh = Nh:

uh =
Nh

∑
j=1

αjωj. (10)

The bilinear operator for assembling the stiffness matrix entries and the inner product
for assembling the right-hand side are given by:

ai,j =
∫

Ω
ν(x) grad ωj · grad ωi dx, (11)

bi =
∫

Ω
(Js(x) ωi + ν(x)Br(x) · rot ωi) dx, (12)

where rot is the 2D curl operator, which corresponds to a 90-degree clockwise rotation of
the gradient. In 2D Cartesian, B = rot(A). In practice, for implementation purposes, the
curl can be obtained using the product between the Levi–Civita symbol ε and the field
gradient. In 2D, this antisymmetric matrix reads:

εij =

(
0 1
−1 0

)
. (13)

The entries for the right-hand side given by the integral of a general function f are
approximated numerically. The function f is tested against the basis function ωi and is
replaced by a Gaussian quadrature on Nel elements partitioning the domain Ω:

bi =
∫

Ω
f ωi dx '

Nel

∑
k=1

nk

∑
l=1

wl,k f (xl,k)ωi, (14)
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where, for each element, wl,k are the weights for the nk quadrature points of position xl,k.
The quadrature is done in the physical domain, using the appropriate mapping F, its
Jacobian, and the chain rule for composed functions. The essential boundary conditions
are imposed weakly through a lifting and L2 projection [17].

To include the effect of the nonlinear constitutive equations, i.e., the nonlinear soft-
magnetic material B-H characteristics, two methods are usually considered: the fixed-point
method (FPM) or the Newton–Raphson method (NRM). A comparison between both
nonlinear methods is presented in [18] in the various frameworks of the isogeometric
analysis, the finite element method, and the spectral element method. In this paper, the
NRM is considered to account for the field dependency of the magnetic permeability
ν(x, B), using the Jacobian matrix J. The solution Ak+1 = Ak + ηkdk is updated at each
iteration with the increment d. Optionally, ηk ∈ [0, 1] is a relaxation parameter chosen
such that |d>k f(xk + ηkdk)| is a minimum. In practice, this is achieved through a line search
algorithm [19]. The considered isotropic Newton–Raphson formulation can be written as:

Jd = r, with (15)

J = S1 + S2, (16)

r = ( f , v)− S1A, (17)

S1,i,j = (ν(B) rot ωi, rot ωj), (18)

S2,i,j =

(
2

∂ν(B2)

∂B2 rot ωi · B, rot ωj · B
)

, (19)

and is implemented through its tensor form:

S2,i,j =

(
2

∂ν(B2)

∂B2 grad ωi

[
B2

y −BxBy

−BxBy B2
x

]
grad ωj

)
. (20)

Different methods exist for discretizing the time dimension. In Maxwell’s equations
describing low-frequency eddy current problems, a first-order time derivative is present,
which yields a parabolic problem. To discretize the time gradient, different approxima-
tion methods are possible and are categorized into two classes: discrete and continuous.
Continuous methods, such as the space-time Galerkin method, are detailed in Section 2.5.
Discrete methods are referred to as time-stepping techniques, which constitute the subject
of the next section.

2.3. Time-Stepping Technique

The most common time-stepping techniques are the so-called θ-methods [1]. The
general algebraic system is considered:

M
∂u
∂t

+ Su = b, (21)

u(t = 0) = u0, (22)

where M and S are the mass and stiffness matrices, respectively, while b is the source term.
The discrete time series is introduced:

tn+1 = tn + ∆t, (23)

where ∆t is the time step. The matrix R is introduced as:

R(u, t) = M−1[Su− b]. (24)
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Thus, the first-order ordinary differential equation reads:

∂u
∂t

+ R(u, t) = 0, for t ∈ (tn, tn+1) (25)

u(tn) = un, ∀n ∈ N. (26)

Finite difference discretization of the time derivative is introduced using two levels, so that
the θ-scheme reads:

un+1 − un

∆t
+
[
θR
(

un+1, tn+1
)
+ (1− θ)R(un, tn)

]
= 0, 0 ≤ θ ≤ 1, (27)

where θ is the implicitness parameter, which can generate some of the implicit and explicit
time-stepping schemes presented in Table 1. An explicit scheme is only a function of
the previous time steps, while an implicit scheme is a function of previous and current
time steps.

Table 1. θ-schemes for standard time-stepping approaches.

θ Name Scheme Precision

0 Forward Euler explicit O(∆t)
0.5 Crank–Nicolson implicit O(∆t)2

1 Backward Euler implicit O(∆t)

The precision indicated in Table 1 refers to the error made at a specific time t, and is
different from the local truncation error, which is defined as the error made in one step,
indicated in (28)–(31):

un+1 = un + f (tn, un)∆t +O(∆t)2, Forward Euler (28)

un+1 = un + f
(

tn+1, un+1
)

∆t +O(∆t)2, Backward Euler (29)

un+1 = un +
1
2

[
f (tn, un) + f

(
tn+1, un+1

)]
∆t +O(∆t)3, Crank–Nicolson (30)

un+1 = un + f
(

tn+1/2, un+1/2
)

∆t +O(∆t)3, Leapfrog method (31)

The θ-schemes introduced in (28)–(31) use different numerical time-integration quadra-
ture rules, which are graphically exemplified in Figure 4 [20]. Explicit schemes have a low
computational cost per time step and are simple to implement as well as to parallelize.
However, small time-step values are required for stability reasons, especially for high
speeds and high mesh-size aspect ratios. Implicit schemes exhibit stability over a wider
range of time steps and do constitute a good iterative solver for steady-state problems.
However, they have a higher cost per time step and are more difficult to implement as well
as parallelize. They may get insufficiently accurate for unsteady transient problems as the
time steps increases, which deteriorates the convergence [20]. More advanced transient
solvers have been proposed, such as the three-level explicit leap-frog method, or fractional-
step θ-methods. As the two-level methods can only be at most second-order accurate,
higher-order time integration methods have been developed, such as the Adams methods
and the Runge–Kutta methods [21].
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Figure 4. Graphical representation of the numerical integration rule on the interval (tn, tn+1) for the
θ-schemes (28)–(31)).

An alternative to discrete time-stepping approaches consists of using continuous
methods instead. After the high-order Galerkin methods have been applied in space, it is
only natural to extend these methods to the space-time manifold. For instance, the space-
time Galerkin isogeometric methods, which are truly 4D methods, have been presented [2,3]
for single and multiple space-time patches.

In practice, each application has different requirements in space and in time. The
optimal basis functions are the ones that directly embed the characteristic properties of the
signal in their core. In the space domain, this is done with mimetic or structure-preserving
basis functions, which have been introduced already for Maxwell’s problems [22]. In the
time domain, few situations can arise in electrical machine applications with permanent
magnet arrays.

Steady-state operations often appear in periodical systems evolving at a constant
speed, such as rotating machines or long-stroke linear machines with many repeating
geometrical periods, which yield fields with a discrete and finite frequency spectrum. The
best basis functions in time might, therefore, be trigonometric functions, i.e., the Fourier
series. Solving the problems in terms of the coefficients of these series is commonly referred
to as the harmonic balance (HB) method [4,5].

2.4. Harmonic Balance Method

The harmonic balance (HB) method is a powerful alternative to a transient solver when
the time-periodic steady-state solution is sought. Moreover, it yields very good efficiency
when the time-harmonic content is small, i.e., when the time signals are reasonably smooth.
The application of the HB method is mainly restricted to discrete and small frequency
spectrum applications, although the considered frequencies can be widely spaced. Indeed,
it is not uncommon that the highest frequency is orders of magnitude higher than the
lowest frequency. This would require an enormous amount of time-stepping in practice
and lead to prohibitive integration cost [23]. Originally, the HB method was employed for
solving nonlinear electrical circuits, analog RF, and microwave problems in the frequency
domain. The response and total harmonic distortion (THD) of a system under single
or multi-tone excitation can be analyzed efficiently using the HB method. Frequency
sweeping can efficiently simulate the performance of a system for a wide range of operating
points. Outside of electromagnetic applications, the HB method has been applied to flow
problems [25], mechanical vibrations, and deformations [26].

The harmonic balance has been extended to finite element applications, especially
transformer problems, where the electric circuit coupling with magnetics is important.
It has been applied to both A − V and T − Φ formulations [27,28] and compared with
time-periodic finite element (TPFEM) approaches. Thanks to this method, the influence
of the DC bias [29], due to cosmic radiation [30] for instance, on the losses can be studied
more efficiently. The HB method has been applied to shielding and welding problems [31],
laminated cores [32], and induction heating [33]. Multiphysics simulations for microelec-
tromechanical systems (MEMS) using the HB method have been proposed [34]. Electrical
machines with linear material characteristics have been modeled in 2D [35,36]. However,
the HB method has not yet been applied to nonlinear motional eddy current problems.
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Furthermore, the convergence of the HB method has not yet been clearly demonstrated in
the literature.

The idea of the harmonic balance method is to expand the time dimension of the fields
into truncated time-harmonic series:

A(x, t) '
N

∑
k=0

[ũc
k(x)cos(kωt) + ũs

k(x)sin(kωt)] = Re

(
N

∑
k=0

ûk(x)ejkωt

)
, (32)

with the relationship ûk = ũc
k − jũs

k. In the rest of this section, the spatial dependency is
frequently omitted from the notation. The Fourier transform F is applied to the nonlinear
diffusion equation:

∇ · (ν(A(t))∇A(t))− σ
∂A(t)

∂t
= J(t) +∇× νM(t), (33)

∇ · (F (ν∇(A))− σ
∂F (A)

∂t
= F (J) +∇×F (νM). (34)

In between each nonlinear iteration, the time signals are reconstructed from the Fourier
coefficients, the nonlinear relationship is applied on the time signal ν(t) = f (B(t)), before
being transformed back to the frequency domain. The harmonic balance is therefore an
alternating time-frequency scheme, which solves for the Fourier coefficients and alleviates
time-stepping stability issues.

For solving the fully-coupled real-valued scheme, starting from (33) and using the real
Fourier transform yields:

∇ · (F (H(t)))− σDF (A(t)) = F (J(t)) +∇×F (νM(t)), (35)

where the derivative matrix D is given by:

D =



0 1 0 0 0 · · ·
91 0 0 0 0 · · ·
0 0 0 3 0 . . .
0 0 93 0 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...


. (36)

The matrix M only represents the sources due to the permanent magnet array as the
system (35) is solved using the Newton–Raphson method. The term H(t) is obtained at
each node through:

H(x, t) = ν(|B(x, t)|)B(x, t), where, (37)

B(x, t) = rot F−1(Ã(x)
)
, with, (38)

Ã(x) =
[
Ãc

1(x) Ãs
1(x) Ãc

3(x) Ãs
3(x) Ãc

5(x) · · ·
]>. (39)

This illustrates the alternating time-frequency approach of the harmonic balance method.
It is possible to decouple the system of equations of the HB method [37]. The complex-

valued problem derived from the decoupled harmonic balance is linearized using the fixed-
point method, as described in [38]. The decoupled approach is well suited for situations
where magnetic cross-coupling is not too critical. However, in general, the accuracy and
robustness of the decoupled approach can be limited. Therefore, the fully coupled approach
should be considered for general cases, in order to observe and analyze the convergence,
before simplifying the system further. The solving scheme has to be adapted depending on
whether a complex or real-valued Fourier series expansion is considered. If the Newton
iterations are considered, it is beneficial to use the real Fourier transform. Indeed, the
bilinear operator is real, and, therefore, differentiable. This is not straightforward for
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the complex-valued operator [39,40], for which the construction of the Jacobian matrix is
cumbersome. Instead, for the complex-valued operator, a fixed-point method (FPM) is
often preferred [18,38,41].

Depending on the selected scheme and the size of the system, different solvers can
be used. For fully coupled harmonic balance, with large system size and wide frequency
spectrum, iterative solvers [42], such as GMRES [43] or QMR [31], can be employed with
appropriate block preconditioners and smoothers. This can also be resolved with multigrid
(MG) solvers [40], which propagate the information from a fine mesh to a coarser mesh,
where the matrix is inverted directly, and the information is transferred back to the finer
space. They can be algebraic (AMG) [44], geometric (GMG), or geometric agglomerated
algebraic multigrid solvers (GAMG) [45]. Geometric multigrid approaches are natural in
the context of isogeometric analysis and can be either of type p-MG [46] or h-MG [47]. For
the decoupled harmonic balance approach [38,41], the only coupling mechanism present is
through the equivalent source terms on the right-hand side; therefore, each harmonic is
solved separately and sequentially, for which a direct solver can be used. Direct solvers can
also be used to solve the fully coupled harmonic balance if relatively small systems with
limited frequency content are considered, which is the case in the numerical experiments
presented in this work.

A few simplifications of the scheme can be made, depending on the type of excitation
and source. If the source is composed of odd harmonics, then only odd harmonics are
required for the solution and its derivatives [40]. Therefore, even harmonics are removed
from the unknown solution vector, since they are identically null. In the case of purely
complex-valued sinusoidal time excitation, only one frequency is needed to represent the
signal, while, for a real-valued sinusoidal signal, the spectrum consists of two frequencies,
which are conjugate symmetric, i.e., Hermitian. In this case, it is possible to replace the
discrete Fourier transform (DFT) with a discrete cosine transform (DCT), thereby reducing
the size of the system by a factor 2. Further harmonic reduction can be realized if a priori
or a posteriori knowledge about the harmonic content is available [48].

It might be necessary to have a certain constraint on the mesh, depending on the num-
ber of harmonics considered. In the periodic motional problems considered in this paper,
the time dimension is closely related to the first geometrical dimension x, along which the
uniform translation is operated. Therefore, it can be beneficial to impose sufficient mesh
refinement for resolving the highest frequency component considered in the HB scheme.

In order to include the motion within the harmonic balance framework, different
techniques can be applied depending on the motion profile and the geometry. Depending
on whether the eddy currents are only of interest in the stator or the mover, the Eulerian or
Lagrangian approaches can be used, respectively. However, if the eddy currents in both
mover and stator are important, or if both stator and mover present a complex topology, a
coupling strategy in the airgap should be considered [6]. The considered applications focus
on surface-mounted permanent magnet electrical machines, and the eddy currents are
solely of interest in the stator, notably, no electrical conductivity is considered in the mover.
The considered motion profiles are exclusively constant displacement speeds in both linear
and rotating coordinate systems. Therefore, the geometry and the relative motion of the
permanent magnet array can be both approximated by a periodic traveling magnetization
wave, without the need for a coupling strategy. In particular, only the fundamental time-
harmonic can be considered as the basis for the moving spatial-magnetization function:

M(x, t) = Ms(x)cos(ωt) −Mc(x)sin(ωt). (40)

The square wave representing the spatial distribution of the magnetization in the direction
of motion can be approximated by means of Fourier series. However, in practice, only the
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fundamental spatial-harmonic is considered by employing the following simple source
term in the permanent magnet array region:

M(x, t) =
Brem

µpm

(
sin
(

πx
τp

)
cos(ωt)− cos

(
πx
τp

)
sin(ωt)

)
. (41)

The exact description of the actual magnetization spatial distribution is not crucial if
the eddy currents are only of interest in the stator because the airgap acts as a low-pass
filter and tends to exhibit a sinusoidal magnetic flux density distribution. The proposed
approach allows for incorporating easily the motion of a surface-mounted permanent
magnet array in the frequency domain without stator–mover coupling. Furthermore, it
enables to study efficiently the eddy current phenomena in complex stator core geometries
and with nonlinear B-H characteristics, as will be demonstrated numerically in Section 3.

2.5. Space-Time Galerkin Approach

The space-time Galerkin approach consists of extruding the geometrical model along
the additional time dimension. The spline basis functions are then built on the entire
domain. Specific augmented Levi–Civita symbols are used to assemble the curl and time-
derivative operators, from the overall space-time gradient. For a 2D geometrical model,
discretized with a scalar-valued magnetic vector potential:

εx
i′ j′ =

{
εij if (i′, j′) = (i, j),
0 otherwise,

(42)

εt
i′ j′ = δi′3, (43)

where (i′, j′) ∈ [1, 3]2 and (i, j) ∈ [1, 2]2, εij is the 2D Levi–Civita symbol defined in (13),
and δ is the Kronecker symbol. The advantage of this method is that it enables to guarantee
the smoothness of the solution, as well as to perform the advantageous features of IGA,
such as the adaptive mesh refinements, in both space and time. The computational cost,
however, is impaired, since the problem exhibits an additional dimension. Therefore, many
more degrees of freedom have to be solved simultaneously, as opposed to sequentially,
using the traditional time-stepping techniques.

2.6. Benchmarks

The two considered 2D benchmark geometries are shown in Figure 5, and their
respective dimensions are gathered in Table 2. In the first benchmark, the core region is
slotless, while the second benchmark is slotted. This is done to demonstrate that both
the correct force-ripple profiles and the mean damping force can be accurately predicted.
Furthermore, such slotless and slotted geometries constitute the most common topologies
in linear permanent magnet machine applications. The Dirichlet boundary conditions are
imposed at both the top and bottom boundaries, while periodic conditions link each side.
Both the iron and core regions have nonlinear magnetic properties corresponding to the
material M270-50A-50Hz [24]. The radial magnet array has a relative magnetic permeability
of µr = 1.05 and a remanent magnetic flux density of Br = 1.35 T. To force the soft-
magnetic materials to strongly saturate, the value of the remanent magnetic flux density is
artificially increased by 40 %. Only the stator core region is electrically conductive with
σ = 1.8182 106 S/m. The depth of the domain is taken as D0 = 10 mm. The permanent
magnet array is translated with constant linear speeds v ∈ {0.1, 1, 10}m/s.
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Figure 5. (a) Slotless and (b) slotted 2D benchmark geometries considered for validating the harmonic
balance method.

Table 2. Geometrical dimensions of the 2D benchmarks.

Parameter Value [mm] Parameter Value [mm]

2τp1 8.0 2τp2 10.5
hc 2.0 τi 2.0
g 1.0 τa 1.5

hm 2.0 hi 1.5
hbi 2.0 ha 2.0

3. Results
3.1. Slotless Benchmark

For the slotless benchmark, the reference discretization is taken to be four elements
along the height and 16 elements along the width per region as shown in Figure 5. The
modeling environment consists of the Nutils FEM toolbox [49]. Bivariate splines of degree
three are considered as basis functions, which are periodic along the x-direction, as shown
in Figure 2b. Odd harmonics until H = 7, which is equivalently denoted as N = 4, are
simulated for the harmonic balance. Three periods are simulated with 120 time steps per
period for the transient time-stepping solver, which is a backward Euler solver with θ = 1.
The number of samples of the discrete Fourier transform is selected to be equivalent to
the number of time-steps per period for the time-stepping solver, in order to match the
resolution. Reducing the number of time-samples decreases the computational effort, for
both the time-stepping approach and the harmonic balance solver.

The magnetic flux density distributions for speeds v ∈ {0.1, 1, 10} m/s are shown
for both the harmonic balance (HB) and time-stepping (TS) solvers in Figure 6. The
distributions are matching very well at low speeds, while at 10 m/s the time-stepping
approach suffers from small instabilities. The absolute value of the difference in magnetic
flux density between both approaches is shown in Figure 7. A maximum discrepancy
of 58 mT and 375 mT is found for speeds equal to 1 m/s and 10 m/s, respectively. The
profiles of the attraction force, the damping force, and the eddy current losses in the core
regions are shown for three different speeds in Figure 8, for an increasing number of
considered harmonics. A good agreement is obtained between both solvers, with less than
2% discrepancy among the mean values of the times profiles, as shown in Table 3.
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(a) (b)

(c) (d)

(e) (f)
Figure 6. Magnetic flux density modulus distribution B in [T] and flux lines for the slotless benchmark at speed v ∈
{0.1, 1, 10}m/s, using the harmonic balance in (a,c,e), and the time-stepping approach in (b,d,f).
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This discrepancy can be lowered by increasing the refinement in space and time,
but the current discretization represents a trade-off between accuracy and computational
effort. However, such a discrepancy is considered sufficiently accurate for the engineering
problems considered in this work, where a discrepancy of 5 to 10% is typically accepted.

In this slotless core example, concerning Figure 8, completely flat profiles are expected,
i.e., the amplitude of the ripples should tend to zero. This can be achieved using intensive h-
refinements with the time-stepping approach, where the amplitude tends to the computer
precision at the cost of an increased computational effort. Alternatively, with the HB
method, the correct profiles are directly obtained at a reduced cost. The computational
effort can be further reduced by relaxing the h-refinement and restricting the number of
harmonics considered. The harmonic balance method has the advantage of being stable
disregarding the considered speed, whereas the time-stepping approach gets unstable at
high speeds, as shown on the distribution of Figure 6f and the profiles of Figure 8b,d,f,
where unphysical spurious oscillations appear for v = 10 m/s. As shown in Table 3, the
force discrepancies increase by one order of magnitude for 10 m/s as compared to 1 m/s.

The nonlinear convergence of the solution is shown in Figure 9a for different speeds.
The nonlinear convergence at a speed of 10 m/s for different considered harmonic spectra
is shown in Figure 9b. The number of nonlinear iterations is reasonable and only slightly af-
fected by the additional harmonic content. It indicates that the additional harmonic content
has little effects on the final solution, which is also visible in Figure 8. The computational
effort as a function of the number of considered harmonics is given in Figure 10a. The
computational effort for the time-stepping approach is indicated at harmonic index zero
as a reference. In this resistive eddy current regime, the computational effort of the time-
stepping approach is independent of the displacement speed. Furthermore, the scaling of
computational effort is shown in Figure 10b as the number of cores working in parallel
for the matrix assembly is increased. It can be seen that the computational effort does not
correspond between Figure 9b and Figure 10b for the case with one processor. The reason
is that Figure 10b is obtained with a Linux machine, which enables the multithreading of
the solving step, and therefore reduces the overall computational time. Depending on the
number of considered harmonics, the proposed HB method achieves a speed up of at least
a factor 11 compared to the time-stepping approach.

(a) (b)
Figure 7. Absolute discrepancy in the magnetic flux density distribution ∆B in [T] between the harmonic balance and
time-stepping solutions, (a) at 1 m/s and (b) at 10 m/s.
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(a) (b)

(c) (d)

(e) (f)
Figure 8. Attraction force Fy, damping force Fx, and eddy current losses P, for the slotless benchmark at speed v = 1 m/s
in (a,c,e) and v = 10 m/s in (b,d,f), using the harmonic balance method with increasing number of harmonics and the
time-stepping approach (TS).



J 2021, 4 37

Table 3. Mean relative discrepancy in percentage, for the damping force ∆Fx, attraction force ∆Fy,
and eddy current losses ∆P, between the transient time-stepping solution and the ones obtained
with harmonic balance of increasing harmonic content N and upper harmonic order H, for speed
v ∈ {1, 10}m/s, for the slotless benchmark.

∆Fx [%] ∆Fy [%] ∆P [%]

N H 1 m/s 10 m/s 1 m/s 10 m/s 1 m/s 10 m/s

1 1 1.88 2.58 4.41 × 10−2 2.36 × 10−1 1.84 2.54

2 3 1.68 2.32 9.63 × 10−3 9.20 × 10−2 1.64 2.27

3 5 1.54 × 10−1 2.10 1.04 × 10−3 8.81 × 10−3 1.50 2.05

4 7 1.43 × 10−1 1.76 2.84 × 10−3 1.73 × 10−2 1.39 1.72

(a) (b)
Figure 9. (a) Nonlinear convergence of the solution including up to the third harmonic, (b) nonlinear convergence at 10 m/s,
for different harmonic spectra H.

(a) (b)
Figure 10. (a) Computational effort for the time-stepping approach (TS) and harmonic balance method with increasing
harmonic content N and different speeds, (b) scaling of the computational effort by increasing the number of processors in
parallel for the slotless benchmark.

3.2. Slotted Benchmark

Similarly, for the slotted benchmark, the reference discretization is taken to be two
elements along the height and two elements along the width per region as shown in Figure
5, with bivariates splines of degree 3. Odd harmonics until H = 9, or equivalently N = 5,
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are solved for the harmonic balance, and three periods are simulated with 120 time steps
per period for the transient time-stepping solver.

The magnetic flux density distributions are shown in Figure 11 for three different
speeds. A very good agreement is observed between the time-stepping approach and the
proposed harmonic balance approach. The absolute value of the difference in magnetic
flux density between both approaches is shown in Figure 12. A maximum discrepancy
of 138 mT and 213 mT is found for speeds equal to 1 m/s and 10 m/s, respectively. The
profiles of the attraction force, the damping force, and the eddy current losses in the core
regions are shown for two different speeds in Figure 13, for an increasing number of
considered harmonics. In the slotted benchmark, the cogging profiles shown in Figure 13
are correctly predicted from H = 7. For a speed of 10 m/s, the discrepancy between the
mean values of the three post-processed parameters is less than 1%, as can be seen in
Table 4. Furthermore, the mean deviation, calculated as the normalized root-mean-square
(rms) error, is less than 2% for all profiles.

Table 4. Mean and rms relative discrepancy in percentage, for the damping force ∆Fx, attraction force
∆Fy, and eddy current losses ∆P, between the transient time-stepping solution and the ones obtained
with harmonic balance of increasing harmonic content N and upper harmonic order H, for speed
v = 10 m/s, for the slotted benchmark.

∆Fx [%] ∆Fy [%] ∆P [%]

N H mean rms mean rms mean rms

1 1 1.64 1.40× 101 6.25× 10−1 6.74× 10−1 1.71 6.97

2 3 5.40× 10−1 4.27 5.22× 10−2 1.87× 10−1 4.86× 10−1 4.01

3 5 7.85× 10−1 1.67 3.77× 10−2 7.85× 10−2 7.29× 10−1 1.83

4 7 8.60× 10−1 1.60 6.46× 10−2 9.26× 10−2 8.05× 10−1 1.51

5 9 8.90× 10−1 1.58 6.85× 10−2 9.45× 10−2 8.36× 10−1 1.27

(a) (b)
Figure 11. Cont.
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(c) (d)

(e) (f)
Figure 11. Magnetic flux density modulus distribution B in [T] and flux lines for the slotted benchmark at speed v ∈
{0.1, 1, 10}m/s, using the harmonic balance in (a,c,e), and the time-stepping approach in (b,d,f).

(a) (b)
Figure 12. Absolute discrepancy in the magnetic flux density distribution ∆B in [T] between the harmonic balance and
time-stepping solutions, (a) at 1 m/s and (b) at 10 m/s.



J 2021, 4 40

(a) (b)

(c) (d)

(e) (f)
Figure 13. Attraction force Fy, damping force Fx, and eddy current losses P, for the slotted benchmark at speed v = 1 m/s
in (a,c,e) and v = 10 m/s in (b,d,f), using the harmonic balance method with increasing number of harmonics and the
transient approach.

The nonlinear convergence of the solution is shown in Figure 14a for different speeds.
It is observed that the number of iterations increases significantly for increasing speeds in
the slotted example, as compared to the slotless example (Figure 9a). Indeed, the higher-
order harmonics are truly excited by the slotting effect. Furthermore, for a speed of 10 m/s,
the nonlinear convergence for different harmonic spectra considered in the HB method is
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given in Figure 14b, which demonstrates a large increase in iterations as compared to the
slotless case in Figure 9b.

The computational effort as a function of the number of considered harmonics is given
in Figure 15a. The computational effort for the time-stepping approach is indicated at
harmonic index zero as a reference. In this resistive eddy current regime, the computational
effort of the time-stepping approach is independent of the displacement speed. The scaling
of computational effort is shown in Figure 15b as the number of cores working in parallel
for the matrix assembly is increased. Depending on the number of considered harmonics,
the proposed HB method achieves a speed up of at least a factor 7 compared to the time-
stepping approach.

(a) (b)
Figure 14. (a) Nonlinear convergence of the solution including up to the seventh harmonic, (b) nlinear convergence at 10
m/s, for different harmonic spectra H.

(a) (b)
Figure 15. (a) Computational effort for the time-stepping approach (TS) and harmonic balance method with increasing
harmonic content N and different speeds, (b) scaling of the computational effort by increasing the number of processors in
parallel for the slotted benchmark.

3.3. Comparison with the Space-Time Approach

The solutions obtained with the space-time Galerkin approach are given as the distri-
bution of the modulus of the magnetic flux density in Figure 16 for both the slotted and
slotless benchmarks. The direction of motion can be seen from the top plane in the slotless
example.
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Figure 16. Space-time solutions for the slotted and slotless benchmarks of Figure 5, on the left and
right, respectively.

Figure 17 shows the nonlinear convergence of the space-time and harmonic balance
approaches. Since the harmonic balance is based on trigonometric basis functions, as
the time signals get more complex, more harmonics are necessary, which degrades the
convergence due to cross-coupling effects. For the slotless benchmark, 5 and 8 iterations
are necessary to reach convergence for the space-time and harmonic balance approaches,
respectively, while it takes 6 and 12 iterations for the slotted problem to converge. As
expected, the number of iterations needed for the space-time solver is much less sensitive
to the complexity of the solution in time than for the HB solver. However, since an HB
iteration is typically faster than an ST iteration due to reduced dimensionality, the harmonic
balance approach is still competitive overall.

(a) (b)
Figure 17. (a) Nonlinear convergence of the space-time approach and harmonic balance method with the third time
harmonic for the slotless benchmark of Figure 5a, (b) nonlinear convergence of the space-time approach and harmonic
balance method with the seventh time harmonic for the slotted benchmark of Figure 5b.

In Table 5, the computational effort for the slotless and slotted benchmarks are given,
for the space-time CG approach illustrated in Figure 1a, and compared to the harmonic
balance method, and the time-stepping technique. The temporal and spatial discretizations
described in Sections 3.1 are reused for both the slotless and slotted benchmarks. The
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only difference is that only eight elements along the periodic x-direction are used for the
slotless benchmark. Because of the correlation between the x and time t dimensions due
to the motion, eight elements are taken along the periodic time dimension as well. A
Newton–Raphson tolerance of 10−8 is specified for all solvers, and a speed of 1 m/s is
considered.

Table 5. Computational effort comparison among the three nonlinear transient approaches for the
2D benchmarks, harmonic balance method with up to the third (HB(2)) or seventh (HB(4)) time
harmonic, space-time (ST), and time-stepping (TS) methods, without adaptivity, and with a single
core.

Slotless Slotted

HB(2) ST TS HB(4) ST TS

Time [s] 24 119 821 138 236 1470

Ratio [-] - 5.0 34.4 - 1.72 10.6

The results of Table 5 demonstrate that the space-time approach is advantageous
compared to the time-stepping technique, with a speedup factor of 6. Furthermore, they
show that the harmonic balance method is the most efficient solution overall, with a
speedup factor of 34 and 10 compared to the time-stepping technique for the slotless and
slotted benchmarks, respectively. However, as the solution gets more complex in terms of
local features and as the time-harmonic content is increased, i.e., from solution including up
to the third and seventh time harmonics, the advantages of the harmonic balance method
are lessened.

3.4. Refinement Strategy

When solving large problems using the harmonic balance solver, for instance with
significant harmonic spectra and/or in three dimensions, the computational efficiency
can be impaired. One way to speed up the overall solving time is to adopt a progressive
harmonic refinement strategy. This strategy is called progressive as opposed to adaptive,
since the refinement is not based on error estimators. It is illustrated in Figure 18a, as
opposed to the traditional approach depicted in Figure 18b. Instead, the system is first
solved using the fundamental harmonic alone and this intermediate solution is then used
as an initial guess for the next Newton–Raphson iteration, which solves the system for
incrementally richer harmonic content. For instance, applying this progressive harmonic
refinement strategy to the slotted benchmark can save up to 37% of the computational
time reported in Table 5, which uses the traditional approach. This use of this progressive
harmonic refinement strategy can become mandatory to avoid convergence plateau, as
visible in Figure 17b, when the magnetic saturation is more pronounced and especially on
larger problem sizes. Otherwise, it might be challenging to guarantee the convergence of
the nonlinear solver.

A similar idea of the progressive harmonic refinement strategy can be applied to adap-
tive mesh refinements [10], independently of the time-discretization method being used.
By replacing harmonic level by mesh level in the schematic of Figure 17, the corresponding
scheme can be obtained, realized using the L2 projection of the solution at the previous
mesh level to the refined mesh. The effects of this strategy are exemplified in Figure 19.
Figure 19a,b show that the number of nonlinear iterations is greatly reduced. Moreover, the
possible convergence plateau is avoided. Altogether, it reduces the computational effort
as shown in Figure 19c. The reduction is such that the cumulative time of the proposed
strategy can get smaller than the original time at one level, as seen at levels 1 and 5. Fur-
thermore, Figure 19d demonstrates that both strategies converge to the same value, which
verifies that the initial guess strategy does not stir towards a wrong solution. The resulting
magnetic flux density distribution including the adaptively-refined mesh discretization is
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shown in Figure 20. It can be seen that the refinements are concentrated next to the core
interface, where the stronger eddy currents are concentrated.

Harmonic Level = 1

Nonlinear Solver

Solution

Level reached ?

Initial guess

0

no

yes

Converged

Refinement

Level +1

(a)

Harmonic Level = N

Nonlinear Solver

Solution

Initial guess

0

(b)
Figure 18. Schematic representations of (a) the progressive harmonic refinement strategy, (b) the traditional approach.

(a) (b)

(c) (d)
Figure 19. (a) Residual norm at successive Newton–Raphson iterations for the untrimmed problem, increasing the
refinement levels without initial guess and (b) with an initial guess obtained from the solution at the previous level;
(c) evolution of the number of degrees of freedom and corresponding computational time; (d) convergence of the mean
value of the eddy current losses for increasing refinement level.
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Figure 20. Magnetic flux density distribution B in [T] and mesh at the last level for the slotless
benchmark.

4. Conclusions

The harmonic balance approach for simulating nonlinear motional eddy current
problems is presented in this paper. It is demonstrated that the proposed approach is well
suited for the simulation of nonlinear motional eddy current problems. Furthermore, it
is more computationally efficient than the backward Euler time-stepping approach for
reaching the steady-state solution. In addition, it prevents from having to choose a time
step value, which influences the convergence and final values by introducing numerical
oscillations.

Slotless and slotted benchmarks are simulated to establish the accuracy of the time
profiles of post-processed parameters, as well as to verify that the cogging waveform
is correctly predicted. The mean discrepancies and average deviations are less than 2%
for all cases. The magnetic flux density modulus distributions are compared between
both approaches. A good agreement is obtained on the field distributions. Maximum
discrepancies of 58 mT and 375 mT for the slotless benchmark, as well as 138 mT and 213 mT
for the slotted benchmark, at speeds of 1 m/s and 10 m/s, respectively, are registered.
These discrepancies occur in regions away from the main field and may be attributed in
majority to the time-stepping solver instabilities. For the considered refinements at high
speeds, e.g., 10 m/s, the harmonic balance solver has demonstrated better stability and
an absence of numerical oscillations on the time profiles, compared to the time-steeping
approach. Moreover, the convergence of the norm of the residual is demonstrated for the
proposed harmonic balance method. Depending on the number of considered harmonics,
the computational time is reduced by at least a factor of 7 and 11 compared to the time-
stepping approach, for the slotted and slotless benchmark, respectively.

The space-time Galerkin approach has been detailed and compared to the harmonic
balance and time-stepping approaches on both the slotless and slotted benchmarks. It is
shown that the harmonic balance is the most advantageous method for the considered
nonlinear motional eddy current problems.

Finally, spatial adaptive refinements are implemented for the harmonic balance
method together with an initial guess for the Newton–Raphson iterations based on the solu-
tion at the previous level, which enables a faster convergence. On the slotless benchmark, it
results in a decrease in the computational effort by a factor 2. Progressive harmonic refine-
ments are proposed, which improve the convergence properties. On the slotted benchmark,
this refinement strategy improves the computational efficiency by 37%. These strategies are
also important to guarantee convergence for larger and more complex three-dimensional
problems.
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Abbreviations
The following abbreviations are used in this manuscript:

1D, 2D, 3D, 4D One-, Two-, Three-, Four-dimensional
2.5D Two and a half dimensional
BE Backward Euler
B-spline Basis spline
CAD Computer-Aided Design
CG Continuous Galerkin
CK Crank–Nicolson
DC Direct Current
dofs degrees of freedom
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DG Discontinuous Galerkin
FEM Finite Element Method
FE Forward Euler
FPM Fixed-Point Method
GAMG Geometric Algebraic Multigrid
GMG Geometric Multigrid
GMRES Generalized Minimal Residual
HB Harmonic Balance
IGA Isogeometric Analysis
LF Leapfrog
MEMS Microelectromechanical Systems
MG Multigrid
NRM Newton–Raphson Method
NURBS Non-Uniform Rational B-splines
PDEs Partial Differential Equations
QMR Quasi-Minimal Residual
RF Radio Frequency
rms Root Mean Square
ST Space-Time
THB-spline Truncated Hierarchical B-spline
THD Total Harmonic Distortion
TP Time-Periodic
TS Time-Stepping
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