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Abstract: The overlapping problem occurs when a region of the dimensional data space is shared in
a similar proportion by different classes. It has an impact on a classifier’s performance due to the
difficulty in correctly separating the classes. Further, an imbalanced dataset consists of a situation in
which one class has more instances than another, and this is another aspect that impacts a classifier’s
performance. In general, these two problems are treated separately. On the other hand, Prototype
Selection (PS) approaches are employed as strategies for selecting appropriate instances from a
dataset by filtering redundant and noise data, which can cause misclassification performance. In this
paper, we introduce Filtering-based Instance Selection (FIS), using as a base the Self-Organizing
Maps Neural Network (SOM) and information entropy. In this sense, SOM is trained with a dataset,
and, then, the instances of the training set are mapped to the nearest prototype (SOM neurons).
An analysis with entropy is conducted in each prototype region. From a threshold, we propose
three decision methods: filtering the majority class (H-FIS (High Filter IS)), the minority class (L-FIS
(Low Filter IS)), and both classes (B-FIS). The experiments using artificial and real dataset showed
that the methods proposed in combination with 1NN improved the accuracy, F-Score, and G-mean
values when compared with the 1NN classifier without the filter methods. The FIS approach is also
compatible with the approaches mentioned in the relevant literature.
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1. Introduction

A situation that can cause problems in the performance of a classifier is class over-
lapping. It occurs when a region of the dimensional data space is shared in a similar
proportion by different classes, resulting in misclassification.

In addition to the problems that impact a classifier’s performance, an imbalanced
dataset is a rather common problem that appears in different areas of knowledge such as
medicine, psychology, industry, and in some other areas [1–4]. The imbalance problem
comprises a situation in which one of the classes (i.e., the majority class) has more instances
than the other class (i.e., the minority class).

Studies on this subject indicate that the overlapping of data can have a greater impact
in terms of loss of accuracy than an imbalance of classes [5–7]. In the relevant literature,
most of the works deal with these problems separately.

The classical algorithms to minimize class overlapping are defined as follows: Edited
Nearest Neighbor (ENN), which removes the instance with the class that disagrees with
neighborhood classes [8]; Decremental Reduction Optimization Procedure 3 (DROP3),
a classification process the is conducted and the misclassification instances are removed [8];
Adaptive Threshold-based Instance Selection Algorithm 1 (ATISA1), which is similar to
DROP3 with the difference that the instance classified as correct is selected [9]; and Ranking-
based Instance Selection (RIS), which is a ranking-based approach defined by the relation
of neighbor instance classes [10].
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The class imbalance problems can be defined into data-level approaches and
algorithmic-level approaches [11,12]. Data-level approaches consist of a sampling dataset
realized, in a random way, with the objective of an undersampling or oversampling dataset.
Algorithm-level approaches consist of an ensemble of classification algorithms trained with
different dataset samples.

However, more recent work has started to address these two problems in a unique
way. Vuttipittayamongkol and Elyan proposed an overlap-based undersampling method
for maximizing the visibility of the minority class instances in the overlapping region [1].
Elyan et al. proposed a hybrid approach aimed at reducing the dominance of the majority
class instances using class decomposition and by increasing the minority class instances
using an oversampling method [2]. Yuan et al. proposed a Density-Based Adaptive
k-Nearest Neighbors method (DBANN), which can handle imbalance- and overlapping-
related problems simultaneously. To do so, a simple but effective distance adjustment
strategy has been developed to adaptively find the most reliable query neighbors [4].

One classifier that is especially vulnerable to the overlapping problem and imbalanced
dataset is the supervised method of Instance-Based Learning (IBL) [6]. The kNN classifier
is a traditional IBL algorithm, which works using the nearest neighbor approach to classify
an instance [13].

Several strategies have been proposed to solve these issues for kNN. One of these
strategies is to use data reduction to select instances to enhance the classification process.
PS, as this method is called, is similar to a pre-processing step before algorithm training
that focuses on selection of instances that can contribute to improving the classification
performance and reducing the training (or comparative) timing.

Different methods for this approach have been proposed. Garcia et al. organized all
these works in a taxonomy and compared the different methods that try to improve the
classification and performance with special reference to kNN [14].

There are different strategies to define the subset of prototypes selected in PS. From
among the techniques available in the relevant literature, it is possible to highlight the
random methods, distance methods, and clustering and evolutionary algorithms [15].

This work considers the clustering techniques as it evaluates the use of Kohonen’s
SOM [16]. SOM is an unsupervised method that clusters the instances according to their
similarities. The standard version of this algorithm arranges the instances, according to
their Euclidean distance, inside nodes (neurons) that are arranged in the form of a grid.
This creates a map of nodes where the instances that are most similar to each other are
inside the same node or in neighboring nodes.

The objective of this paper is to propose FIS uses of information entropy that are
measured from the data clustered in the SOM’s nodes by using a PS approach. The theory
is that, with the removal of the chosen instances, the method will smoothen the borders
of difficult datasets such as those suffering from overlap problems by minimizing the
imbalanced data [17]. Some papers use SOM to preprocess a dataset [18–20]; however,
most of them are focused on the generation of another dataset represented by prototypes,
which, in the literature, is cited with a deform in the border region, causing the algorithm
to reduce the generalization capacity.

In addition to the proposed method, this work has as a contribution the introduction
of an overlapped measure to monitor the threshold of entropy, analyzed in each region of
SOM nodes to filter the majority class in a region (H-FIS (High Filter IS)), the minority class
(L-FIS (Low Filter IS)), and both the classes (B-FIS). These measures were created to identify
different attributes that evaluate the data complexity before classification, thus revealing
different information about the data, including overlap [21]. For this, a synthetic dataset
was created to control the imbalanced dataset and find the best threshold parameters from
complexity measures. Finally, this approach was validated using 12 real datasets and
contrasting it with 1NN with and without the FIS approach to measure the gain in the
data pre-processing.
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The rest of the paper is organized as follows. Section 2 provides brief explanations
of PS, SOM, and data complexity measures. The methods are proposed in Section 3. The
methodology is detailed in Section 4. Experimental results and discussion are presented in
Section 5. The last section (Section 6) contains the conclusions.

2. Theoretical Fundamentals
2.1. Prototype Selection

Prototype Selection (PS) consists of an approach to promote a transformation in a
dataset by minimizing data complexity, reducing the requirements of storage of the raw
dataset, and eliminating instances of noise [14]. The process starts with a raw dataset, and
an algorithm of PS is used to find the most representative instance, forming a reduced
dataset.

In this regard, suppose a raw dataset is to be used as a training dataset with m
attributes and n instances, i.e., XTrain = [x11, x12, . . . , xmn], and each instance has a label
where YTrain = [y1, y2, . . . , yn]. Normally, in the kNN classification process, XTrain is used
as a model to classify test instances. In the prototype selection, a subset of XTrain is selected,
i.e., XPS, where XPS ⊆ XTrain. Then, XPS is used to classify the test instances instead of the
original XTrain.

2.2. Self-Organizing Map

Self-Organizing Map (SOM) is a neural network that organizes a dataset in a grid
of neurons located on a regular low-dimensional grid, usually a two-dimensional (2D)
one [16]. It is conducted by an unsupervised learning algorithm that aims to associate
similar instances in the same neurons or in the adjacent neurons of the grid.

The training set XTrain is used to train SOM. Additionally, each neuron j of the SOM
grid has a weight vector wj = [wj1, wj2, ..., wjn]

T , where j = 1, 2, ..., l; here, l is the total
number of neurons of SOM.

The learning process starts with a random choice of the training dataset to be compared
with the weight vector of the grid that is randomly initialized. The comparison between xn
and wj is usually made through the Euclidean distance. The shortest distance indicates the
closest neuron c, which will have its weight vector wc updated to get close to the selected
instance xn. Formally, neuron c is defined in Equation (1):

c = argmin ‖ xn −wj ‖ (1)

The closest weights vector wc and their neighbors are updated using the Kohonen
algorithm [16]. However, the topological neighborhood is defined so that the farther away
the neuron is from wc, the lower the intensity of the neighborhood to be updated. Please
see the work of Kohonen [16] for a complete explanation of the training rule of the SOM.

2.3. Data Complexity Measures

Data complexity measures can indicate properties of data that increase or reduce the
level of performance expected in a process of data classification. Such measures have bee
studied by different authors [21–25].

The use of these complexity measures allows a better comprehension of both data
distribution in the data space and how classes are separated. In this work too, these
measures are used as a tool to gain a better comprehension of the performance of the
pre-processing methods in the different datasets and identify the level of data overlap that
exists in a dataset.

There are several measures suggested in the relevant literature. It was decided that the
works of Cano [24] and Moran [25] would be used. In their different works, these authors
identified that F1 and F3 are good measures to identify overlaps for different classifiers,
while N2 is a good measure to evaluate the classification performance of kNN. As the
works mentioned do not used the D3 measure, we decided to add it to our work.
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These measures, described in the following sections, are determined for the two-class
problem. For the multi-class problem, it is possible to extend such measures [25].

The Fischer’s Discriminant Ratio (F1) measure [22] calculates the separability between
two classes in a determined attribute. The measure for an attribute is given in Equation (2):

f =
(µ1 − µ2)

2

σ2
1 + σ2

2
(2)

where µ1 and µ2 are the class average measures and σ1 and σ2 are the respective stan-
dard deviations.

In a dataset with m attributes, the measure is calculated for each of these attributes. The
value considered as F1 is the greatest value of f , i.e., the attribute with the greatest separation.

Low values of F1 indicate classes with closer data centers, which, in turn, indicate
data overlap.

The Maximum (Individual) Feature Efficiency (F3) measure is calculated for each
attribute based on their efficacy to separate classes [21]. This measure is calculated using
the maximum and minimum values of the attributes in each of the classes. The value is
taken as the fraction of instances that are outside the range of the opposite class.

The value of F3 is defined as the greatest value among the attributes. The value of this
measure ranges from 0 to 1, where lower values indicate greater overlap.

The Ratio of Average Intraclass/Interclass NN Distance (N2) measure is calculated as
the ratio of the intraclass distance to the interclass distance of the instances. This measure
shows the distributions of the classes and how close the classes are to each other [21]. This
measure is given by Equation (3):

N2 =
∑n

i=1 Intraclass(xi)

∑n
i=1 Interclass(xi)

(3)

where xi represents the instances and n represents the total number of instances. Low
values of N2 indicate that the classes are more separable and, thus, easier to identify.

The class density in overlap region (D3) measure was proposed by Sanchez [23], and
it indicates the number of instances there are in an overlapped area.

For the present purpose, this measure uses a kNN to evaluate whether an instance
disagrees with its neighbors. In the case it does, that instance is marked as an overlapped
instance. The result of the measure is the fraction of instances that are marked as being
overlapped when compared with the total number of instances.

To identify these instances, the value of k must be chosen for the kNN classifier. For this
work, the kNN used for the measures had k = 5 as the original work.

3. Filtering-Based Instance Selection Algorithm

The proposed method is developed on a trained SOM. As the instances with similar
attributes are mapped in the same neurons, it is expected that the instances with different
classes can co-exist inside the neuron, i.e., overlapped classes.

Thus, after SOM training, a second step is introduced in this paper. This step consists of
post-processing through entropy calculation for each neuron of the grid [26]. The Shannon
entropy for the two probabilities is defined in Equation (4):

H = −p ∗ log2(p)− q ∗ log2(q) (4)

where p is the probability of class A inside the neuron and q of class B, where p = 1− q.
It is important to note that the entropy in the proposed method is calculated only

according to the distribution inside each SOM’s node. The overall distribution of the classes
has no impact.

Based on the entropy value, there are three different filter methods that can be proposed:
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• High Filter (H-FIS): If the neuron entropy is higher than or equal to a certain threshold
(ThresholdHigh), the overlapped instances are removed. The premise here is that
the overlapped instances do not have relevant information to delimited the borders
between the classes.

• Low Filter (L-FIS): If the neuron entropy is lower than or equal to ThresholdLow, the
instances from the class with the lower probability are removed. The premise here is
that removing those instances from the class that do not agree with the majority class
can smoothen the borders between the classes.

• Both (High and Low Filter) (B-FIS): H-FIS and L-FIS are combined through the com-
parison of ThresholdHigh higher than ThresholdLow. The premise here is that instances
overlapped in the border can be removed.

After the instance filtering is done using any of the proposed approaches, the selected dataset
is defined. This selected dataset (XPS) is used for the training of the classification algorithm.

An illustration of the FIS approach is represented in Figure 1. In this example, a hypo-
thetical SOM trained has the instances mapped to the neurons grid. These instances belong
to two classes (A and B), where class A is represented by squares and class B by triangles.
The instances to be removed are highlighted in the figure.

(a) H-FIS (b) L-FIS
Figure 1. Example of the selection process to decide which instances should be removed in a
hypothetical dataset after the use of SOM using H-FIS (a) and L-FIS (b). The value of the threshold
hyperparameter was set at 0.8631 for both H-FIS and L-FIS. The instances selected for removal in this
scenario are highlighted.

Figure 1a has the H-FIS approach parameterized with a ThresholdHigh of 0.8631. It is
to be noted that the instances removed are in regions where the neuron entropy is equal
or higher than the threshold value, and the instances from both the classes are removed.
Figure 1b has the L-FIS approach parameterized with a ThresholdLow of 0.8631. Thus, the
instances that belong to the minority (highlighted instances) class are removed.

4. Materials and Methods

Figure 2 represents the methodology followed during the experiments involving
the FIS approach. In each dataset, an experimental step was considered, as explained in
this section.
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Figure 2. Schema of experimental methodology.

For the first step, a controlled environment was created to study the effectiveness of
the methods in the overlapping problems and in imbalanced datasets.

This environment consists of 121 artificial datasets that represent different levels of
overlapped and imbalanced classes. A sample of the dataset is presented in Figure 3.

These artificial datasets were created with 1000 instances, divided equally between two
classes. The datasets have only two attributes to simplify the data visualization in 2D. The
instances were generated using a random Gaussian distribution to fill the attributes’ values.

To create the overlapping effect, one of the classes had the mean of the distribution
fixed, while the second class had its mean changed in the several values of distance from
the first class. This difference was set from 0 to 5 with steps of 0.125.

To create an imbalanced dataset, the approach taken was that of removing instances
from the target class. The instance number of the positive class was chosen to generate
different levels of the imbalance dataset, starting in scenarios with a low level of imbalance
and moving to more severe levels. The number of instance chosen can be checked in Table 1,
in which they were placed to identify the imbalance, the information of the proportion of
the positive class, and the number of the negative class.

Table 1. Different levels of imbalance for the generation of artificial bases.

# Instance of Positive Class Rate of Positive Class (%) Imbalanced Rate

500 50% 1.00:1
409 45% 1.22:1
333 40% 1.50:1
269 35% 1.86:1
214 30% 2.34:1
167 25% 2.99:1
125 20% 4.00:1
88 15% 5.68:1
56 10% 8.93:1
26 5% 19.23:1
5 1% 100.00:1

An example of the distributions is displayed in Figure 3. In the figure, 15 of the
artificial datasets created are displayed in a 2D graph. As can be noticed, low values of
the difference between the classes average create a large class overlapping; as this value is
increased, the data increase their separability until the classes are completely separated.
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Figure 3. Distribution of the artificial datasets in different configurations of imbalanced rate and overlapping. The red x
represents the negative class, while the blue + represents the positive class.
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To verify the behavior of the data outside a controlled environment, it was decided
to test the methods on 12 datasets taken from the UCI repository [27]. These datasets are
summarized in Table 2 and represent different data characteristics in relation to number of
attributes, instances, and class balance.

Table 2. Summary of the UCI tables used in this experiment.

Dataset # Samples Positive Class % Positive Class # Attributes

1 Ecoli 336 pp 15% 7
2 Glass 214 6 4% 9
3 Haberman 306 2 26% 3
4 Heart 303 1,2,3,4 4% 13
5 Hepatitis 155 1 21% 19
6 Iris 150 versicolor 33% 4
7 Libra 360 1,2,3 20% 90
8 Mamographic 961 Malign 46% 5
9 Pima 768 1 35% 8

10 SPECTF-Heart 268 0 21% 44
11 Wine 178 2 40% 13
12 Wisconsin 699 malign 34% 9

The methods require two groups of hyperparameters, the threshold values, and a
defined SOM. It is necessary to test the methods in the selected datasets to define the
different values for these hyperparameters.

For the values of the thresholds ThresholdHigh and ThresholdLow, the value of the
entropy threshold was experimented from 0.0 to 1.0, with steps of 5% in the difference
between the classes. This is represented in Table 3 that shows the ratio between the classes
inside the node and the respective entropy value. These entropy values were used as the
different hyperparameters for our tests.

Table 3. The different entropy values used in the experiment.

Ratio between the Classes Inside the Node
Calculated Entropy

Most Probable Class Least Probable Class

50% 50% 1.0000
55% 45% 0.9928
60% 40% 0.9710
65% 35% 0.9341
70% 30% 0.8813
75% 25% 0.8113
80% 20% 0.7219
85% 15% 0.6098
90% 10% 0.4690
95% 5% 0.2864

100% 0% 0.0000

For the SOM hyperparameters, a hexagon grid of equal sides was used. The different
lengths of the grid size were calculated as defined in Equations (5) and (6), with CMap
having the values of {−2,−1, 0, 1, 2, 3, 4, 5}:

lSOM =

√
#instances

2
+ CMap (5)

SOMSize = (lSOM)2 (6)

The next step was to compare the classification of the different datasets with the classifi-
cation of the 1NN without pre-processing to compare improvements. For the validation, the
training and test datasets were separated using the 10-fold cross validation methodology.
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To measure the performance, it was decided to use the accuracy, F-Score, and G-Mean
to validate the impact of the methods. Both the F-Score and G-Mean are commonly used for
the measurement of imbalanced data [28]. This imbalance is presented in some of the UCI
datasets. The F-Score measures the effectiveness of the classifier focused on the positive
class, while the G-Mean indicates that equal importance is given to both classes [15]. To
calculate these measures, the confusion matrix was used to determine the classification
performance in terms of the positive and negative classes.

The complexity measures F1, F3, N2, and D3 presented in Section 2.3 were used for all
the UCI and artificial datasets.

5. Results

In Tables 4–7, the best values of accuracy, F-Score, and G-Mean obtained with the
different approaches are summarized in terms of their means and standard deviations.
These values represent the best value obtained with different values of threshold and the
length of the grid size for each dataset. In Tables 4–6, some of the 41 artificial datasets were
chosen to represent the data. The top classifier for a dataset is highlighted in bold.

Table 4. Results for artificial dataset with 50% of positive class.

Dataset Method Acc F-Score G-Mean

0.0/50% 1NN 0.5340 ± 0.0103 0.5296 ± 0.0124 0.5339 ± 0.0104
0.0/50% H-FIS 0.5300 ± 0.0123 0.5297 ± 0.0062 0.5300 ± 0.0123
0.0/50% L-FIS 0.5344 ± 0.0105 0.5302 ± 0.0129 0.5343 ± 0.0106
0.0/50% B-FIS 0.5300 ± 0.0123 0.5297 ± 0.0062 0.5300 ± 0.0123

0.5/50% 1NN 0.5132 ± 0.0058 0.5104 ± 0.0064 0.5131 ± 0.0057
0.5/50% H-FIS 0.6026 ± 0.0171 0.6015 ± 0.0179 0.6016 ± 0.0178
0.5/50% L-FIS 0.5484 ± 0.0101 0.5494 ± 0.0117 0.5483 ± 0.0100
0.5/50% B-FIS 0.6026 ± 0.0171 0.6015 ± 0.0179 0.6016 ± 0.0178

1.0/50% 1NN 0.6694 ± 0.0049 0.6665 ± 0.0044 0.6693 ± 0.0049
1.0/50% H-FIS 0.7434 ± 0.0076 0.7391 ± 0.0143 0.7430 ± 0.0076
1.0/50% L-FIS 0.7290 ± 0.0090 0.7277 ± 0.0097 0.7290 ± 0.0090
1.0/50% B-FIS 0.7472 ± 0.0083 0.7435 ± 0.0065 0.7468 ± 0.0082

1.5/50% 1NN 0.7962 ± 0.0034 0.7965 ± 0.0048 0.7962 ± 0.0034
1.5/50% H-FIS 0.8420 ± 0.0056 0.8418 ± 0.0055 0.8420 ± 0.0056
1.5/50% L-FIS 0.8312 ± 0.0056 0.8329 ± 0.0061 0.8311 ± 0.0056
1.5/50% B-FIS 0.8420 ± 0.0056 0.8418 ± 0.0055 0.8420 ± 0.0056

2.0/50% 1NN 0.8636 ± 0.0017 0.8637 ± 0.0017 0.8636 ± 0.0017
2.0/50% H-FIS 0.9098 ± 0.0034 0.9091 ± 0.0038 0.9097 ± 0.0035
2.0/50% L-FIS 0.8956 ± 0.0017 0.8943 ± 0.0026 0.8955 ± 0.0017
2.0/50% B-FIS 0.9104 ± 0.0029 0.9092 ± 0.0028 0.9103 ± 0.0029

2.5/50% 1NN 0.9476 ± 0.0011 0.9476 ± 0.0012 0.9476 ± 0.0011
2.5/50% H-FIS 0.9636 ± 0.0009 0.9636 ± 0.0009 0.9636 ± 0.0009
2.5/50% L-FIS 0.9606 ± 0.0011 0.9607 ± 0.0012 0.9606 ± 0.0011
2.5/50% B-FIS 0.9638 ± 0.0022 0.9639 ± 0.0022 0.9638 ± 0.0022

3.0/50% 1NN 0.9700 ± 0.0014 0.9700 ± 0.0014 0.9700 ± 0.0014
3.0/50% H-FIS 0.9818 ± 0.0016 0.9818 ± 0.0017 0.9818 ± 0.0016
3.0/50% L-FIS 0.9766 ± 0.0005 0.9766 ± 0.0006 0.9766 ± 0.0005
3.0/50% B-FIS 0.9820 ± 0.0016 0.9820 ± 0.0016 0.9820 ± 0.0016

3.5/50% 1NN 0.9876 ± 0.0005 0.9876 ± 0.0005 0.9876 ± 0.0005
3.5/50% H-FIS 0.9898 ± 0.0008 0.9898 ± 0.0008 0.9898 ± 0.0008
3.5/50% L-FIS 0.9884 ± 0.0005 0.9884 ± 0.0006 0.9884 ± 0.0005
3.5/50% B-FIS 0.9900 ± 0.0014 0.9900 ± 0.0017 0.9900 ± 0.0017

4.0/50% 1NN 0.9922 ± 0.0013 0.9922 ± 0.0013 0.9922 ± 0.0013
4.0/50% H-FIS 0.9954 ± 0.0017 0.9954 ± 0.0017 0.9954 ± 0.0017
4.0/50% L-FIS 0.9932 ± 0.0011 0.9932 ± 0.0011 0.9932 ± 0.0011
4.0/50% B-FIS 0.9954 ± 0.0017 0.9954 ± 0.0017 0.9954 ± 0.0017

4.5/50% 1NN 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
4.5/50% H-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
4.5/50% L-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
4.5/50% B-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

5.0/50% 1NN 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
5.0/50% H-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
5.0/50% L-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
5.0/50% B-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
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Table 5. Results for artificial dataset with 25% of positive class.

Dataset Method Acc F-Score G-Mean

0.0/25% 1NN 0.6144 ± 0.0061 0.2252 ± 0.0102 0.4082 ± 0.0106
0.0/25% H-FIS 0.7433 ± 0.0082 0.2131 ± 0.0215 0.3921 ± 0.0215
0.0/25% L-FIS 0.6918 ± 0.0215 0.2255 ± 0.0108 0.4085 ± 0.0111
0.0/25% B-FIS 0.7439 ± 0.0016 0.2131 ± 0.0215 0.3921 ± 0.0215

0.5/25% 1NN 0.6345 ± 0.0053 0.2764 ± 0.0159 0.4582 ± 0.0157
0.5/25% H-FIS 0.7514 ± 0.0065 0.2838 ± 0.0093 0.4618 ± 0.0096
0.5/25% L-FIS 0.7166 ± 0.0045 0.2968 ± 0.0193 0.4631 ± 0.0171
0.5/25% B-FIS 0.7499 ± 0.0070 0.2928 ± 0.0324 0.4631 ± 0.0101

1.0/25% 1NN 0.7379 ± 0.0086 0.4859 ± 0.0115 0.6365 ± 0.0088
1.0/25% H-FIS 0.8033 ± 0.0143 0.5524 ± 0.0212 0.6647 ± 0.0212
1.0/25% L-FIS 0.7934 ± 0.0058 0.5435 ± 0.0209 0.6630 ± 0.0173
1.0/25% B-FIS 0.8075 ± 0.0090 0.5591 ± 0.0165 0.6707 ± 0.0167

1.5/25% 1NN 0.8156 ± 0.0075 0.6192 ± 0.0128 0.7292 ± 0.0091
1.5/25% H-FIS 0.8645 ± 0.0057 0.7097 ± 0.0101 0.7866 ± 0.0113
1.5/25% L-FIS 0.8522 ± 0.0027 0.6862 ± 0.0069 0.7711 ± 0.0058
1.5/25% B-FIS 0.8642 ± 0.0041 0.7097 ± 0.0101 0.7933 ± 0.0077

2.0/25% 1NN 0.8786 ± 0.0070 0.7565 ± 0.0121 0.8327 ± 0.0070
2.0/25% H-FIS 0.9241 ± 0.0035 0.8456 ± 0.0132 0.8905 ± 0.0097
2.0/25% L-FIS 0.9163 ± 0.0022 0.8266 ± 0.0042 0.8727 ± 0.0034
2.0/25% B-FIS 0.9241 ± 0.0035 0.8456 ± 0.0132 0.8905 ± 0.0097

2.5/25% 1NN 0.9490 ± 0.0053 0.8984 ± 0.0106 0.9323 ± 0.0075
2.5/25% H-FIS 0.9601 ± 0.0023 0.9204 ± 0.0051 0.9467 ± 0.0059
2.5/25% L-FIS 0.9589 ± 0.0017 0.9175 ± 0.0040 0.9430 ± 0.0028
2.5/25% B-FIS 0.9613 ± 0.0027 0.9223 ± 0.0059 0.9467 ± 0.0026

3.0/25% 1NN 0.9742 ± 0.0007 0.9486 ± 0.0012 0.9663 ± 0.0009
3.0/25% H-FIS 0.9802 ± 0.0020 0.9603 ± 0.0040 0.9725 ± 0.0041
3.0/25% L-FIS 0.9808 ± 0.0027 0.9617 ± 0.0054 0.9744 ± 0.0039
3.0/25% B-FIS 0.9811 ± 0.0023 0.9622 ± 0.0046 0.9741 ± 0.0044

3.5/25% 1NN 0.9928 ± 0.0013 0.9856 ± 0.0025 0.9908 ± 0.0016
3.5/25% H-FIS 0.9940 ± 0.0011 0.9880 ± 0.0021 0.9924 ± 0.0015
3.5/25% L-FIS 0.9934 ± 0.0017 0.9868 ± 0.0034 0.9916 ± 0.0025
3.5/25% B-FIS 0.9943 ± 0.0007 0.9886 ± 0.0013 0.9930 ± 0.0014

4.0/25% 1NN 0.9970 ± 0.0000 0.9940 ± 0.0000 0.9960 ± 0.0000
4.0/25% H-FIS 0.9979 ± 0.0008 0.9958 ± 0.0016 0.9978 ± 0.0016
4.0/25% L-FIS 0.9973 ± 0.0007 0.9946 ± 0.0013 0.9966 ± 0.0013
4.0/25% B-FIS 0.9979 ± 0.0008 0.9958 ± 0.0016 0.9978 ± 0.0016

4.5/25% 1NN 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
4.5/25% H-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
4.5/25% L-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
4.5/25% B-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

5.0/25% 1NN 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
5.0/25% H-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
5.0/25% L-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
5.0/25% B-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

Analyzing the results of artificial dataset, for the case of accuracy, which can be seen
in Tables 4–6, the method proposed (FIS) resulted in significantly greater gains in the bases
with high overlap, especially when there was a greater imbalance. A possible explanation
for this good performance in the cases of high imbalance could be that given that the
parameters were optimized for accuracy, a considerable portion of the positive class has
been removed by this method, which favors the negative class, which, being in the majority,
increases the accuracy value. This effect decreases as the base becomes more balanced and
the gains become smaller. However, the effect does exist, including for the balanced bases.
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Table 6. Results for artificial dataset with 10% of positive class.

Dataset Method Acc F-Score G-Mean

0.0/10% 1NN 0.8122 ± 0.0037 0.1029 ± 0.0203 0.3076 ± 0.0333
0.0/10% H-FIS 0.8982 ± 0.0016 0.1234 ± 0.0295 0.3190 ± 0.0531
0.0/10% L-FIS 0.8842 ± 0.0043 0.1070 ± 0.0209 0.3091 ± 0.0334
0.0/10% B-FIS 0.8971 ± 0.0030 0.1249 ± 0.0287 0.3190 ± 0.0530

0.5/10% 1NN 0.8004 ± 0.0071 0.0947 ± 0.0247 0.2997 ± 0.0390
0.5/10% H-FIS 0.8978 ± 0.0023 0.0944 ± 0.0168 0.2927 ± 0.0260
0.5/10% L-FIS 0.8813 ± 0.0086 0.1140 ± 0.0351 0.3042 ± 0.0397
0.5/10% B-FIS 0.8957 ± 0.0018 0.1048 ± 0.0285 0.2937 ± 0.0262

1.0/10% 1NN 0.8741 ± 0.0075 0.3967 ± 0.0304 0.6164 ± 0.0247
1.0/10% H-FIS 0.9040 ± 0.0037 0.3960 ± 0.0398 0.6046 ± 0.0183
1.0/10% L-FIS 0.8957 ± 0.0042 0.4211 ± 0.0271 0.6166 ± 0.0247
1.0/10% B-FIS 0.9061 ± 0.0039 0.4218 ± 0.0344 0.6048 ± 0.0185

1.5/10% 1NN 0.8759 ± 0.0042 0.3937 ± 0.0193 0.6095 ± 0.0160
1.5/10% H-FIS 0.9014 ± 0.0059 0.4290 ± 0.0562 0.6099 ± 0.0245
1.5/10% L-FIS 0.9000 ± 0.0033 0.4326 ± 0.0176 0.6187 ± 0.0231
1.5/10% B-FIS 0.9065 ± 0.0087 0.4399 ± 0.0262 0.6099 ± 0.0245

2.0/10% 1NN 0.9381 ± 0.0010 0.6982 ± 0.0063 0.8275 ± 0.0081
2.0/10% H-FIS 0.9561 ± 0.0049 0.7557 ± 0.0301 0.8356 ± 0.0130
2.0/10% L-FIS 0.9554 ± 0.0035 0.7633 ± 0.0190 0.8429 ± 0.0166
2.0/10% B-FIS 0.9583 ± 0.0063 0.7759 ± 0.0354 0.8483 ± 0.0151

2.5/10% 1NN 0.9737 ± 0.0021 0.8727 ± 0.0087 0.9367 ± 0.0011
2.5/10% H-FIS 0.9802 ± 0.0013 0.9006 ± 0.0058 0.9385 ± 0.0039
2.5/10% L-FIS 0.9817 ± 0.0015 0.9071 ± 0.0074 0.9413 ± 0.0047
2.5/10% B-FIS 0.9813 ± 0.0016 0.9055 ± 0.0077 0.9415 ± 0.0040

3.0/10% 1NN 0.9799 ± 0.0008 0.9007 ± 0.0044 0.9467 ± 0.0042
3.0/10% H-FIS 0.9881 ± 0.0010 0.9405 ± 0.0049 0.9628 ± 0.0040
3.0/10% L-FIS 0.9853 ± 0.0008 0.9254 ± 0.0070 0.9507 ± 0.0014
3.0/10% B-FIS 0.9881 ± 0.0010 0.9405 ± 0.0049 0.9628 ± 0.0040

3.5/10% 1NN 0.9910 ± 0.0013 0.9549 ± 0.0067 0.9709 ± 0.0065
3.5/10% H-FIS 0.9942 ± 0.0023 0.9714 ± 0.0120 0.9840 ± 0.0119
3.5/10% L-FIS 0.9928 ± 0.0013 0.9643 ± 0.0065 0.9800 ± 0.0064
3.5/10% B-FIS 0.9942 ± 0.0015 0.9714 ± 0.0075 0.9840 ± 0.0051

4.0/10% 1NN 0.9978 ± 0.0008 0.9893 ± 0.0040 0.9972 ± 0.0040
4.0/10% H-FIS 0.9982 ± 0.0000 0.9912 ± 0.0000 0.9990 ± 0.0000
4.0/10% L-FIS 0.9978 ± 0.0008 0.9893 ± 0.0040 0.9972 ± 0.0040
4.0/10% B-FIS 0.9982 ± 0.0000 0.9912 ± 0.0000 0.9990 ± 0.0000

4.5/10% 1NN 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
4.5/10% H-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
4.5/10% L-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
4.5/10% B-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

5.0/10% 1NN 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
5.0/10% H-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
5.0/10% L-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
5.0/10% B-FIS 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

With regard to the overlap, the profit margins are higher in the bases that have more
overlap, and they decrease as the level of overlap decreases to the point that we no longer
have any gains with these methods. This is so because the classes are already sufficiently
separated on these bases, creating conditions for the 1NN classifier without processing to
have high performance.

To continue the analysis of the artificial bases, different graphs were generated with
the best results of G-Mean after the variation of the parameters of ThresholdHigh and
ThresholdLow and CMap. These values were compared with the result of the 1NN classifier
without pre-processing (baseline). To demonstrate the overlap, the value of the difference
between the class means on the artificial base was placed on the x-axis, with values close
to zero having high overlap and values more distant from zero having less overlap. The
graphs were also divided according to their imbalance, choosing some fundamental values.
In this way, it is possible to observe the impacts of overlap and imbalance at the same time
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and to make comparisons between the three methods that were generated and the 1NN
without any alteration. B-FIS had results similar to those of H-FIS as shown in Tables 4–6.
This fact makes the gain curves of the two methods overlap. Thus, it was decided to hide
the B-FIS curve in these graphics for better visualization.

From the results in Figure 4, it can be seen that the H-FIS and L-FIS methods showed
the greatest gain in an intermediate range of the overlap level—between approximately
1.0 and 3.0 difference of mean. By analyzing this imbalance, it can be seen that the methods
have greater benefits for an intermediate range of imbalance between 15% and 30%. How-
ever, in situations with more severe imbalance, such as 5% and 10%, these methods had
lower gains compared to 1NN classifier without processing.

Figure 4. Comparison of G-Mean values on artificial bases for the methods developed in this work and
1NN without pre-processing (baseline). The grouping was done by proportion of the positive class.
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From the experiments summarized in Tables 4, 6 and 7, all three methods showed
an increase in accuracy, F-Score, and G-Mean when compared with the 1NN method on
all datasets.

Table 7. Results for the UCI datasets.

Dataset Method Acc F-Score G-Mean

Ecoli

1NN 0.9393 ± 0.0045 0.8082 ± 0.0152 0.8908 ± 0.0127
H-FIS 0.9613 ± 0.0030 0.8739 ± 0.0085 0.9204 ± 0.0017
L-FIS 0.9643 ± 0.0042 0.8837 ± 0.0134 0.9271 ± 0.0092
B-FIS 0.9649 ± 0.0053 0.8855 ± 0.0168 0.9275 ± 0.0099

Glass

1NN 0.9720 ± 0.0000 0.6667 ± 0.0000 0.8105 ± 0.0000
H-FIS 0.9748 ± 0.0026 0.6824 ± 0.0215 0.7979 ± 0.0304
L-FIS 0.9804 ± 0.0051 0.7480 ± 0.0555 0.8268 ± 0.0297
B-FIS 0.9757 ± 0.0039 0.6824 ± 0.0215 0.7979 ± 0.0304

Haberman

1NN 0.6634 ± 0.0139 0.3324 ± 0.0320 0.4996 ± 0.0291
H-FIS 0.7255 ± 0.0276 0.3477 ± 0.0304 0.5078 ± 0.0264
L-FIS 0.7196 ± 0.0152 0.3359 ± 0.0315 0.5018 ± 0.0269
B-FIS 0.7366 ± 0.0132 0.3458 ± 0.0287 0.5060 ± 0.0257

Heart

1NN 0.7617 ± 0.0108 0.7386 ± 0.0120 0.7591 ± 0.0109
H-FIS 0.8185 ± 0.0109 0.8018 ± 0.0088 0.8167 ± 0.0094
L-FIS 0.7947 ± 0.0180 0.7699 ± 0.0182 0.7900 ± 0.0172
B-FIS 0.8185 ± 0.0109 0.8018 ± 0.0088 0.8167 ± 0.0094

Hepatitis

1NN 0.8013 ± 0.0161 0.5067 ± 0.0296 0.6595 ± 0.0205
H-FIS 0.8413 ± 0.0149 0.5821 ± 0.0438 0.7022 ± 0.0384
L-FIS 0.8477 ± 0.0126 0.6096 ± 0.0369 0.7291 ± 0.0279
B-FIS 0.8465 ± 0.0029 0.5965 ± 0.0060 0.7173 ± 0.0263

Iris

1NN 0.9547 ± 0.0030 0.9659 ± 0.0023 0.9509 ± 0.0022
H-FIS 0.9587 ± 0.0056 0.9688 ± 0.0042 0.9570 ± 0.0067
L-FIS 0.9573 ± 0.0037 0.9678 ± 0.0027 0.9550 ± 0.0050
B-FIS 0.9587 ± 0.0119 0.9689 ± 0.0089 0.9570 ± 0.0067

Libra

1NN 0.9911 ± 0.0012 0.9773 ± 0.0033 0.9775 ± 0.0032
H-FIS 0.9917 ± 0.0020 0.9787 ± 0.0051 0.9789 ± 0.0050
L-FIS 0.9911 ± 0.0012 0.9773 ± 0.0033 0.9775 ± 0.0032
B-FIS 0.9917 ± 0.0020 0.9787 ± 0.0051 0.9789 ± 0.0050

Mamographic

1NN 0.7536 ± 0.0073 0.7307 ± 0.0069 0.7508 ± 0.0069
H-FIS 0.7879 ± 0.0092 0.7766 ± 0.0105 0.7879 ± 0.0099
L-FIS 0.7869 ± 0.0052 0.7762 ± 0.0050 0.7876 ± 0.0051
B-FIS 0.7983 ± 0.0060 0.7866 ± 0.0064 0.7986 ± 0.0060

Pima

1NN 0.7109 ± 0.0080 0.5694 ± 0.0107 0.6613 ± 0.0085
H-FIS 0.7362 ± 0.0117 0.5900 ± 0.0124 0.6761 ± 0.0102
L-FIS 0.7411 ± 0.0053 0.6036 ± 0.0086 0.6870 ± 0.0069
B-FIS 0.7500 ± 0.0038 0.6129 ± 0.0080 0.6935 ± 0.0066

SPECTF-Heart

1NN 0.6933 ± 0.0061 0.3507 ± 0.0098 0.5530 ± 0.0096
H-FIS 0.7925 ± 0.0057 0.3767 ± 0.0430 0.5703 ± 0.0398
L-FIS 0.7343 ± 0.0166 0.3753 ± 0.0315 0.5644 ± 0.0364
B-FIS 0.7925 ± 0.0057 0.3850 ± 0.0493 0.5777 ± 0.0459

Wine

1NN 0.9506 ± 0.0025 0.9339 ± 0.0036 0.9360 ± 0.0034
H-FIS 0.9551 ± 0.0000 0.9406 ± 0.0092 0.9437 ± 0.0121
L-FIS 0.9528 ± 0.0031 0.9371 ± 0.0044 0.9390 ± 0.0041
B-FIS 0.9562 ± 0.0025 0.9420 ± 0.0034 0.9441 ± 0.0033

Wisconsin

1NN 0.9577 ± 0.0033 0.9381 ± 0.0050 0.9509 ± 0.0045
H-FIS 0.9694 ± 0.0030 0.9559 ± 0.0043 0.9678 ± 0.0038
L-FIS 0.9677 ± 0.0048 0.9534 ± 0.0070 0.9657 ± 0.0056
B-FIS 0.9714 ± 0.0027 0.9589 ± 0.0039 0.9709 ± 0.0035

The use of the ThresholdHigh and ThresholdLow have the disadvantage of having an
additional hyperparameter for the classifier. To simplify this fact, we examined the behavior
of the thresholds in H-FIS and L-FIS and the effect on the G-Mean in the artificial dataset.
This can be seen in Figure 5.
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(a) H-FIS (b) L-FIS
Figure 5. Graphs that represent the effect of the H-FIS (a) and L-FIS (b) on G-Mean in the artificial datasets as we adjust
the process to be more aggressive in the removal of points. The point to the left of the graph represents the initial point
without pre-processing.

From the artificial datasets, the analyses of the threshold graphs indicate that the best
results are in areas where the threshold is more aggressive, especially in areas with high
class overlapping. The exception happens in the dataset with the largest overlapping where
the difference between the classes averages is zero. It is also possible to verify that, when
the classes are far apart, the method brought no benefits as there is no class overlapping.

For the next step, we calculated the complexity measures for the artificial datasets.
The results for some of the datasets are summarized in Table 8.

It is possible to use the data complexity values to evaluate the gain of the datasets
compared to the complexity measures’ values. This way, it is possible to verify the behavior
of the methods according to the increase of data complexity. In Figure 6, the results are
shown for B-FIS. The behavior is similar for H-FIS and L-FIS.

As can be noticed in the graphs in Figure 6, this method has a range of class over-
lapping with the highest improvements, thus showing that this method is efficient in the
original proposal of datasets with overlapping classes. However, in datasets with severe
overlapping, indicated by very low values of F1, this method had only slight improvements
in 1NN. The gain of the method reduces as the overlapping decreases, until the method no
longer has a gain for the original 1NN.
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Table 8. Data complexity measures for the artificial datasets.

Difference in Class Average F1 F3 N2 D3

0 0.0016 0.0030 0.9696 0.4830
0.25 0.0586 0.0030 0.9434 0.4640
0.5 0.1225 0.0040 0.9604 0.4600
0.75 0.3345 0.0100 0.6831 0.3240

1 0.5231 0.0120 0.5835 0.2750
1.5 1.0130 0.0240 0.3121 0.1550
2 1.8996 0.0840 0.1886 0.1010

2.5 3.4796 0.2890 0.1155 0.0370
3 4.5360 0.4340 0.0712 0.0230

3.5 6.0856 0.6190 0.0521 0.0110
4 8.1638 0.7490 0.0413 0.0040

4.5 10.3897 0.8830 0.0303 0.0010
5 12.4878 0.9700 0.0261 0.0000

(a) F1 (b) F3

(c) N2 (d) D3
Figure 6. Graphs that represent the gain of G-Mean using the B-FIS in the artificial datasets by the different complexity
measures. In the case of F1 and F3, low values represent high class overlapping, while, for N2 and D3, low values represent
low class overlapping.

To check if these conclusions are the same for other distributions of data, these proce-
dures were repeated and compared for the UCI datasets. The data complexity measures
that were calculated for the datasets are presented in Table 9 and Figure 7.

(a) F1 (b) F3

(c) N2 (d) D3
Figure 7. Graphs that represent the gain of G-Mean using the B-FIS in the UCI datasets by the different complexity measures.
In the case of F1 and F3, low values represent high class overlapping, while, for N2 and D3, low values represent low
class overlapping.
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As can be evaluated from the results in Figure 7, the gains of the methods cannot be ex-
plained by only the complexity measures. This behavior indicates that other characteristics
of the data such as data distribution and data imbalance may impact the gains of B-FIS.

The analyses of the impact of the threshold values on the UCI datasets is shown
in Figure 8. For L-FIS, there is a similar behavior of the artificial datasets, where the change
in behavior happens in cases where a dataset suffers from a more severe overlapping. This
is indicated by the low values of F1 and F3 in the cases of the datasets Haberman and Libra.
However, in the case of H-FIS for the UCI datasets, there was no clear pattern even when
compared with the data complexity measures.

Table 9. Data complexity measures for the real datasets.

Dataset F1 F3 N2 D3

1 Ecoli 1.8042 0.2143 0.4247 0.0417
2 Glass 0.9531 0.2196 0.2392 0.0374
3 Haberman 0.1832 0.0294 0.7948 0.2876
4 Heart 0.7422 0.0132 0.9080 0.3399
5 Hepatitis 0.7075 0.1742 0.8789 0.2387
6 Iris 0.6802 0.5600 0.2010 0.0333
7 Libra 0.1102 0.0583 0.3102 0.0139
8 Mammographic 0.9175 0.0010 0.4624 0.2029
9 Pima 0.5743 0.0052 0.8277 0.2852

10 SPECTF-Heart 0.5443 0.0746 0.7994 0.2687
11 Wine 2.3331 0.3258 0.1692 0.2303
12 Wisconsin 3.4635 0.1187 0.3334 0.0315

(a) H-FIS (b) L-FIS
Figure 8. Graphs that represent the effect of H-FIS (a) and L-FIS (b) on G-Mean in the UCI datasets as we adjust the process
to be more aggressive in the removal of the points. The point to the left of the graph represents the initial point without
pre-processing.
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To better understand the effects of imbalance in the method, the effects of F1 were
plotted against the gains of the F-Score dividing the classes’ imbalance ratio. The data can
be found in Figures 9 and 10.

(a) H-FIS (b) L-FIS
Figure 9. Graphs that represent the effect of the H-FIS (a) and L-FIS (b) on F-Score in the artificial datasets segregated
by imbalance.

From the results in Figure 9, it is possible to identify that higher levels of data imbal-
ance caused higher gains with a certain range of low F1 values where this effect was en-
hanced.

(a) H-FIS (b) L-FIS
Figure 10. Graphs that represent the effect of H-FIS (a) and L-FIS (b) on F-Score in the artificial datasets segregated by
imbalance. The positive class ratio of that dataset is mentioned in parentheses.

Similarly, in the UCI datasets in Figure 10, the gains showed a similar pattern in inter-
mediary ranges of imbalance and overlapping, especially in the case of L-FIS. The higher
gains happened in datasets with more severe data imbalance.

To find the best size of SOM, the average maximum gain in F-Score was calculated for
each value of CMap with the help of Equation (5) for each dataset. The data were then ranked
according to the F-Score value. An example of this process is summarized in Table 10 for
the Ecoli dataset. The measure of the ranks in the datasets was calculated for each value of
CMap, and the average is summarized in Table 11. The best value is highlighted.

Table 10. Ranked values of F-Score for CMap for the Ecoli dataset.

Max F-Score Value

CMapa H-FIS L-FIS B-FIS

−2 0.8414 (8th) 0.8770 (1st) 0.8802 (1st)
−1 0.8618 (3rd) 0.8690 (2nd) 0.8740 (3rd)
0 0.8707 (1st) 0.8636 (3rd) 0.8786 (2nd)
1 0.8659 (2nd) 0.8589 (4th) 0.8721 (4th)
2 0.8562 (5th) 0.8360 (5th) 0.8622 (5th)
3 0.8584 (4th) 0.8328 (6th) 0.8597 (6th)
4 0.8536 (7th) 0.8201 (8th) 0.8590 (7th)
5 0.8551 (6th) 0.8230 (7th) 0.8563 (8th)
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Table 11. Average rank of best F-Score for CMap constant.

Average Rank of Best F-Score

CMapa H-FIS L-FIS B-FIS

−2 4.3333 3.1667 3.0000
−1 4.1667 3.0000 3.5000
0 3.5833 3.0000 3.2500
1 4.8333 3.1667 4.3333
2 4.8333 4.0833 4.3333
3 4.2500 4.8333 5.0833
4 4.1667 5.9167 5.4167
5 5.7500 6.0833 7.0000

The best values, shown by the lowest average rank value, indicate that the best values
for H-FIS and L-FIS occur in values close to the value zero; however, for B-FIS, the lowest
values of CMap are more effective.

It was decided to use the Wilcoxon signed-ranks test to validate whether the methods
that were developed are statistically better than 1NN with no pre-processing. This test is
appropriate for comparisons of classifiers over datasets [29].

The results for the UCI datasets are shown in Table 12. The results prove that the
methods are statistically different with an α < 0.001, proving statistically that the methods
enhance the classification of 1NN for the three different measures.

Table 12. Calculated values of p using the Wilcoxon signed-ranks test for the UCI datasets.

Method Comparison p Acc p F-Score p G-Mean

H-FIS-1NN 4.88× 10−4 4.88× 10−3 4.88× 10−3

L-FIS-1NN 3.86× 10−3 3.86× 10−3 3.86× 10−3

B-FIS-1NN 4.88× 10−4 4.88× 10−3 4.88× 10−3

Finally, a rough analysis carried out with the results available in the relevant literature
is summarized in Table 13. As there is no structured dataset in the literature with separated
training and test sets and a definition of the positive class in the dataset to investigate the
algorithm performance in the overlap problem and imbalanced dataset, the comparison
illustrated in this table is as shown in the papers cited. It may be noted that different
algorithms show the best performance of G-Mean. The method proposed had good results
which, in fact, were among the best results in the analyzed datasets.

Table 13. Comparative results of G-Mean for the UCI datasets used in the literature.

Dataset FIS EVINCI DBANN NB-BASIC AdaOBU BoosOBU CDSMOTE SBagging
[30] [4] [1] [31] [31] [2] [32]

Ecoli 0.9275 0.7939 0.9798 0.9182 1.000 0.8944 0.93 –
Glass 0.8268 0.6621 0.7972 0.6776 0.7325 0.8105 0.94 –
Pima 0.6935 – – 0.475 – – 0.728
Wine 0.9562 – – – – – – 0.94

Wisconsin 0.9714 – 0.9839 0.9712 – – 0.96 –

6. Discussion

This work introduces three prototype selection methods that use SOMs and entropy
to act as a filter for the selection of prototypes. Experiments using the methods were done
both in a controlled environment to simulate class overlapping and with UCI datasets.
These experiments showed that the methods improved the accuracy, F-Score, and G-mean
values when compared with the common 1NN classifier in the different datasets.

The use of data complexity measures allowed quantifying the class overlapping
in artificial datasets. These measures indicated that the methods had increased gains
in overlapping scenarios in the artificial datasets according to the original proposal of
the methods.
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The methods have the disadvantage of requiring the setting of new hyperparameters
ThresholdHigh and ThresholdLow for the classification process. To simplify this fact, we
examined the behavior of the thresholds in H-FIS and L-FIS and the impact on method
improvements. This can be seen in Figures 5 and 8. L-FIS indicated a pattern of increased
effectiveness with an increase in the value of ThresholdLow except for heavily overlapped
datasets, which allows us to determine an ideal range based on an overlap measure, such
as F1. H-FIS, however, did not show a clear pattern for ThresholdHigh.

The complexity measures allowed, by the analysis of F1, F3, and D3Pos, indicating that
these methods had good performances in databases with data overlapping. In addition,
these methods showed increased gains in datasets with higher imbalance. However, the
behavior of these methods could not be explained by only those measures, so other factors
must affect the performance of the methods presented.

It would be interesting if further studies focus on trying some new situations, for
instance, how these methods behave with noisy data and with different controlled envi-
ronments involving imbalance and types of data distribution so that we can have a better
comprehension of these methods. In addition, an extensive comparison with other algo-
rithms can be done to have a better understanding of the benefits of the proposed methods.
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