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Abstract: The construction industry consumes over 32% of the annually excavated natural resources
worldwide. Additionally, it is responsible for 25% of the annually generated solid waste. To become
a more sustainable industry, a circular economy is necessary: resources are kept in use as long as
possible, aiming to reduce and recirculate natural resources. In this paper, the investigation focuses
on pedestrian truss bridges of the types Warren and Howe. Many pedestrian bridges currently find
themselves in their end-of-life phase and most commonly these bridges are demolished and rebuilt,
thus needing a lot of new materials and energy. The aim is thus first and foremost to reduce the
amount of necessary new materials. For this reason, a design tool will be created, using the software
‘Matlab’, in which truss bridges can be evaluated and compared in the conceptual design stage. The
tool is based on the theory of morphological indicators: the volume indicator, displacement indicator,
buckling indicator and first natural frequency indicator. These allow a designer to determine the
most material efficient Warren or Howe truss bridge design with user-defined constraints concerning
deflection, load frequency, buckling and overall dimension. Subsequently, the tool was tested and
compared to calculations made in the finite element modelling software Diamonds. In total, 72 steel
bridge structures were tested. From these it could be concluded that the manual calculations in
Diamonds in general confirmed the results obtained with the automated design tool based on
morphological indicators. As such, it allows a designer to converge more quickly towards the best
performing structure, thus saving time, materials, and corresponding costs and energy.

Keywords: circular economy; conceptual design; morphological indicators; structural optimisation;
bridge construction

1. Introduction

In the current linear economy, the excavation rate of non-renewable materials is
alarming. If this trend continues, the annual extraction of non-renewable resources will
reach 170–184 billion tonnes by 2050, which will quickly result in their depletion [1]. A way
to limit the excavation is by changing from a linear economy model, where the idea is based
on a ‘take, make and dispose’ model, to a circular economy (CE) model [2]. The essence of
the CE can be brought back to the 4R’s—Reduce, Reuse, Recycle, Recover—signifying the
desired order of the value retention of products and materials [3,4]. As such, the first step
is always to ‘Reduce’ the amount of required material. This can be done by designing with
material-efficiency in mind. Additionally, the product should be designed in a way that its
components can be easily disassembled and ‘Reused’. Alternatively, the materials should
be ‘Recycled’ when the components are not reusable anymore. Lastly, when the materials
cannot be recycled, the embedded energy in the material should be ‘Recovered’ in heat and
power plants. The latter is mostly reserved for the bioeconomy.
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This study will focus on pedestrian bridges. Many concrete pedestrian bridges ranging
from 30 to 50 years in age, presently need to be replaced as they reached their end-of-life
phase and appear to be in a severe condition of disrepair [5–7]. This also corresponds to
the typical design working life that is mentioned in e.g., the Eurocodes [8,9]. Typically,
these bridges are not just being demolished, they are replaced by new ones. However,
a CE oriented design methodology for pedestrian and cycling bridges is non-existent.
Hence, a design methodology that incorporates the 4R principle needs to be developed.
The R’s Reuse and Recycle have been extensively researched, as they directly correspond
to Design for Adaptability and Design for Disassembly (e.g., [10–15]). The R of Recover
is covered in the bioeconomy. Yet, the first R of Reduce, the most important R in the
CE, is generally neglected and severely underestimated. Even in the current Eurocodes
there is no mention of structural optimisation. Traditionally, the engineer’s role is to
calculate the bridge structure according to the 3S principle: Strength, Stiffness, Stability.
The aim is always to design the structure so it is fully stressed and stripped of all redundant
material. Vandenbergh and De Wilde explain that this is of great importance, because low
material consumption limits the structure’s energetic impact, and decreases procurement,
transportation and construction costs. This thus lowers the environmental footprint and
post-use waste, and leads to a more sustainable structure by and large [16]. However,
engineers are usually involved in the design process after the architects have finished
the conceptual design. This often leads to lots of additional design iterations in order to
somewhat optimise the structural system [17–21]. Hence, engineers design an optimised
structure for an architectural concept that may be far from ideal from a structural point of
view. Unfortunately, less efficient structures require more material, even when they are
designed to be fully stressed.

The calculation method for a structure is well defined, but the method for choosing the
most optimal structural design is usually vague and subjective. Often, structural engineers
generate conceptual designs based on intuitive knowledge and experience, which means
that only few possible alternatives are considered [17,20].

A structural geometry can also be generated with computational methods like topology
optimisation. This allows an engineer to obtain a lightweight design with maximum
stiffness for a given set of boundary conditions [22]. However, this can be computationally
expensive and often requires lots of post-processing in order to translate the generated
morphology into a practical one [23]. Some studies also incorporate principles of life cycle
assessment and life cycle costing analysis for the development of new optimisation and
decision-making methodologies for the design of different structural members [24–30].
These optimisation and decision-making tools will then find the most optimal parameters
-resulting in the lowest CO2 emissions and economic costs- for a certain type of structural
member. Hence, these optimisation tools allow to improve the sustainability of structural
components, as they result in lower material consumption. However, they are not suitable
for the optimisation of complete structural typologies.

For the optimisation of complete structures, the theory of the Morphological Indicators
(MI) was developed as a means to formalise the search for the most efficient-fully stressed-
structural typology in the conceptual design stage [31]. Considering the morphology of
structures, it was in the work of Zalewski and Kus [32] that the link between the geometrical
slenderness L/H and both the volume and displacement of trusses was demonstrated for
the first time. This concept was developed further by Samyn [33] in a methodical study
of the volume and displacement of structures. He also introduced the term ‘MI’. Van
Steirteghem defines MI as dimensionless numbers that represent a geometrical property
or a physical performance of a structure which can be used as a design tool to optimise
structures in the conceptual design stage [34]. In addition to Samyn’s work, multiple MI
have been developed such as the buckling indicator, self-weight indicator and the first
natural frequency indicator. Where the choice of the structural typology used to be a guess
based on experience, the idea of the MI is that they should easily allow to make a better
guess, actually leading to material savings. However, the problem with these MI is that they
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are all inter-connected and their practical application has become very complex. Hence,
they are barely used.

The goal is to develop a CE oriented design methodology for pedestrian and cycling
bridges. This paper optimises the application process of the MI by means of an automated
algorithm. In doing so, the MI can become a standard procedure in the conceptual design
stage in order to formalise material reduction in the envisaged design methodology.

In the subsequent sections, the applied method to construct the algorithm will be
explained. Subsequently, the MI that will be incorporated in the algorithm and the actual
algorithm are shown. Lastly, the algorithm is tested and discussed, followed by a conclusion
and further research recommendations.

2. Conceptual Design According to Morphological Indicators

The MI are to be used in the conceptual design stage. They allow the optimisation
of structures based on certain criteria. There are two kinds of MI: primary indicators and
secondary indicators, which are both dimensionless. The secondary indicators represent the
physical quantities: the quantity of material, the displacement, the rotation, the stresses, etc.
Examples of primary indicators are the slenderness, the form coefficient, or the buckling
indicator. Secondary indicators are implicitly dependent on one or more primary indicators.
The most important secondary indicator is the volume indicator (W) [31].

Initially, the theory on MI only considered design for strength with the volume of
used materials as the objective function. This strategy often resulted in a lightweight
structure with a questionable lack of stiffness, which implicates a significant increase
of material volume in the final design to meet the stiffness criteria [35,36]. Therefore,
additional indicators like the indicators of buckling Ψ and displacement ∆ were introduced,
improving the results obtained with the volume indicator.

The indicator of volume W allows the designer to compare the necessary material
volume for different structures. It is defined as follows: ‘The volume of a structure of
identical shape with a unity span of 1 m, loaded with a unit force of 1 N with a material
of allowable stress of 1 Pa’ [35,37]. In its most simple form, only considering design for
strength with all elements fully stresses, thus ignoring buckling, the equation for the
indicator of volume is: [34].

W =
σ V
F L

= ∑ ki

(
li
L

)
= function

(
L
H

)
(1)

With:

• W the indicator of volume
• σ the allowable stress of the constituent material of the structure [N/m2]
• V the total volume of the structure [m3]
• F the total force acting upon the structure [N]
• L the span of the structure [m]
• li/L the ratio of the length of member i to the total length of the structure
• ki the portion of the load F present in member i

The indicator of buckling Ψ [38], is developed to indicate the tendency to buckling of
a compressed element in a structure. The higher Ψ, the higher the risk of buckling. The
primary indicator Ψ should be used in combination with the secondary indicators like the
indicator of volume W, the indicator of displacement ∆ and the indicator of first natural
frequency Θ. The indicator of buckling Ψ is defined as [35]:

Ψ =
µ σ L√

q E F
(2)

With:

• Ψ the indicator of buckling
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• L the span
• q a form factor defining the cross section of the bars
• E the modulus of elasticity of the material
• σ the allowable stress to which at least one section is dimensioned
• F the total resultant force
• µ the proportion of the buckling length of the compression bars to their geometrical

length, depending on the connection type

When the buckling indicator Ψ is considered, it is possible to take the buckling of
the members into account. For this reason, the lengths li and member forces fi need to
be expressed as a function of the overall slenderness L/H. Latteur [31,38] illustrates in
his work that with a given Ψ, a value L/H exists with a minimal value of W. This means
the volume indicator is not only dependent on the slenderness L/H anymore but is also
dependent on the buckling indicator Ψ. Latteur [38] shows that for every structure with a
total length L, composed of a material which is fully stressed σ, loaded with a resultant
force F working on elements i with a length li and following the Rankine buckling curve,
W becomes:

W =
σ

FL

(
V(T) + V(C)

)
= W(T) + W(C)

= ∑
(T)

ki

(
li
L

)
+

1
2 ∑

(C)

ki

(
li
L

)1 +

√√√√
1 +

4
π2

(
li
L

)2

ki
Ψ2

 = function
(

L
H

, Ψ
)

(3)

This equation can be used for both Warren structures with an even and an odd number
of panels. However, for both cases, the portion of loads, ki, in the members i will be
different. For more information about the theory behind the calculation of these portions
of loads, one can consult the scientific literature on MI. The portion of loads ki will be the
same for an even and odd truss structure except for the middle panel, where the portion of
loads in the diagonals will be 0 for a Warren truss with an odd number of panels.

The equation is divided into members subjected to tension and members subjected to
compression. If Ψ = 0, i.e., when buckling in the members in compression is ignored, the
same result is obtained as with Equation (1).

The displacement indicator compares the displacement of different truss structure
systems. It is the maximum displacement of an isomorphic structure with a unit span
of 1 m, with a material with a unit Young’s modulus of 1 GPa and an allowable stress of
1 N/mm2, subjected to a system load with a unit force of 1 N [35].

In its most simple form, considering only the slenderness L/H, thus ignoring buckling,
the equation for the indicator of displacement is [31,34,38]:

∆ =
E δ

σ L
= ∑ ni

(
li
L

)
= function

(
L
H

)
(4)

With:

• ∆ the indicator of displacement
• E the modulus of elasticity of the used material [N/mm2]
• δ the maximum displacement of the structure [mm]
• σ the allowable stress of the material used for the structure [N/mm2]
• L the span of the structure [mm]
• li/L the ratio of the length of member i to the total length of the structure
• ni the portion of the unitary force, applied in a node j, present in member i

When considering Ψ, it is possible to take the buckling of each member into account.
First of all, not only the portion of loads ki, but also the portion of unitary loads ni need to
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be addressed. When ∆ is no longer solely dependent on L/H but also on Ψ, the equation
for calculating the displacement indicator ∆ for a Warren truss becomes [33,34,38]:

∆ =
Eδ
σL

= ∑
(T)

ni

(
li
L

)
+ 2 ∑

(C)

ni(li/L)

1 +
√

1 + 4
π2

(li/L)2

ki
Ψ2

= fucntion
(

L
H

, Ψ
)

(5)

Equation (5) can be used to calculate both even and uneven Warren trusses.
Until now, Latteur [38] and Samyn [33] introduced the volume and displacement

indicator taking buckling into consideration. However, a structure optimised with respect
to strength often does not meet the necessary stiffness requirements. Lightweight structures
in which all components are optimised to be fully stressed may lack resistance to vibrations
occurring during use. Therefore, it is necessary to extend the morphological indicators
to include the natural frequencies of the structure. These should not coincide with the
frequencies of the applied load. For this reason, the indicator of first natural frequency is
introduced [34]:

Θ =
1
√∆

= f
(

L
H

, Ψ
)

(6)

This indicator is directly linked with the displacement indicator ∆. Hence, it is also
dependent on the buckling indicator Ψ.

The indicator of the first natural frequency is defined as “the natural frequency of
a structure with a unit length (L = 1 m) composed of members working at a unit stress
(σ = 1 Pa, β = 1) and with a unit Young’s modulus (E = 1 Pa) for which the ratio of the
co-vibrating loads to the total load is equal to z* = 1 in SLS” [17].

As apparent above, a hierarchy between W and ∆ exists, as ‘design for strength’, i.e.,
the volume of material, is taken as the point of departure. Both Samyn [9] and Latteur [38]
strive for the minimization of volume. Even though efficiency curves for ∆ have been
established, these are customarily used to verify afterwards if the displacement, i.e., the
stiffness, does not exceed the normative constraints imposed by the design code. In addition,
Van Steirteghem [34] proved that if buckling is considered, the displacements are smaller
than when buckling is ignored. Both Samyn and Latteur proved that the slenderness
optimised through the volume of material (W) is rarely equal to the slenderness that
minimises the displacement (∆). However, minimising ∆ is only important to the extent
that it does not exceed the normative criteria. When the indicator of first natural frequency
is introduced in the optimisation, a constraint that considers the dynamic behaviour of
the structure is added. Therefore, the general optimisation procedure can be formulated
as follows:

Minimise W = f
(

L
H

, Ψ
)

Subject to : ∆ ≤ E
σ∗

x

fi 6= fe,i

where:

• σ* (≈σ/1.40) is the stress level in the structure in SLS
• fi are the natural frequencies of the structure that must be adequately far from the

excitation frequencies fe,i of the external load.

If this constraint is rewritten in an interval of first natural frequencies that should be
avoided, in terms of the indicator of displacement, this interval will become [34]:

fi 6= fe,i
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or
fe,i

(1− β3)

2π
ccor

√
z∗βσL

gE
< Θ =

1√
∆

<
fe,i

(1 + β3)

2π
ccor

√
z∗βσL

gE
(7)

or

∆ /∈
[(

(1− β3)

fe,i

ccor

2π

)2 gE
z∗βσL

,
(
(1 + β3)

fe,i

ccor

2π

)2 gE
z∗βσL

]
(8)

The parameter β3 is used to define the safety interval around the first natural frequency
of the structure. This constraint yields an interval on the slenderness determined by the
indicator of displacement. The indicator of volume is not explicitly present in the constraint.
However, the first concern is to limit the volume of material, meaning that the stress level
is to be maximised. Thus, the indicator of volume is indirectly present in the formula.

3. Design of the Software

The morphological indicators, designed to be a simple conceptual design tool, have
paradoxically grown into a complex system. Their practical use is therefore limited to
non-existent. Hence, in this study the previously described morphological indicators will
be programmed into an automated algorithm. The platform used to create the software is
MATLAB [39], and more specifically the ‘app-designer’ function. The latter was chosen in
order to increase the user-friendliness, taking into account the norm ISO 25010:2011 [40,41].
The aim is to create a user-friendly design tool which will determine the most optimal
structure based on some user-defined constraints. The development of this tool needs to
conform to the Eurocode ‘NBN EN 1991-2—part 2: traffic loads on bridges’ [42].

The design tool is divided into four sections: Home, Limits, Results and Advanced
settings, as shown in Figures 1–4. Home is where the type of truss, the dimensions of the
bridge, the material specifications and the loads acting upon the bridge can be defined.
Limits is where the user can specify the constraints. The adjustable constraints are the
pavement length, height, deflection and first natural frequency. Results is where the user
determines if buckling needs to be considered, and where the result is calculated. The
final tab, Advanced settings, is where the user is able to change parameters that in most
cases would be a standard fixed value or to give certain values in a different form (e.g.,
displacement in mm instead of L/x). This prevents that the critical path to get a result, is
cluttered with input options.

Figure 1. Software home tab.
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Figure 2. Software limits tab.

Figure 3. Software results tab.

Figure 4. Software advanced settings tab.
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The result consists of six parameters: the volume indicator W, the volume V in cubic
meters (derived from W), the number of panels n, the angle g that the first diagonal makes
with the lower horizontal chord, the height H and the deflection d in millimetres. If the
height is fixed there can be up to three results: the first is the optimal layout for the given
height; the second is the absolute optimum with the optimal height; the third is the layout
where the height is minimal but where the volume indicator is equal to or lower than that
for the given height. If the optimal height is to be determined there will only be a single
solution, the absolute optimum for the given span. The essential steps that the software
runs through to calculate the result is depicted as a flowchart in Figures 5 and 6.

Figure 5. Flowchart software, part 1.
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Figure 6. Flowchart software, part 2.
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4. Results and Discussion

In order to check the tool’s performance, a comparison is made using the finite element
modelling software ‘Diamonds’ [43]. In this software, truss bridges are drawn with the same
input parameters as the ones used in the design tool based on morphological indicators.
This means that the bridges are drawn with the same span “L”, height “H” and number
of panels “n”. Several bridge spans were tested, but some parameters were fixed: the
bridge width is 3 m; the structural material is normal construction steel with a yield stress
of 235 MPa, Young’s modulus of 210 GPa and density of 7800 kg/m3; the service load on
the bridge is 5 kN/m2 with a safety factor of 1.5, both as prescribed in the Eurocode; the
maximum vertical deformation is limited to L/350.

The aim is not to obtain the same volume as indicated in the developed design tool.
Rather, the structural calculations in Diamonds serve as confirmation of the indicated most
optimal structure according to the design tool. The results are shown in Tables 1 and 2.
When reviewing the results, it can be concluded that both Diamonds and the design tool
follow the same trend, independent of the span-to-height ratio. The most optimal result
according to the software tool is indicated in bold, the results in Diamonds that deviate are
highlighted in yellow. There are some important remarks to be made. The morphological
indicators do not consider actual cross sections for the different bars in the truss. They
consider a form factor which is equal for all bars, and which expresses the efficiency of
the cross section. In the software tool, a highly efficient cross section is assumed. One can
understand that in a truss, where the internal forces are all normal forces, this form factor
is only important for bars in compression, thus bars susceptible to buckling. Additionally,
regardless of the bars’ susceptibility to buckling, the morphological indicators assume
that all bars are dimensioned so that they are all fully stressed, 100%. When this was
translated to a realistic structure in Diamonds, only standard profile sections were used,
corresponding to the considered form factor. Thus, for all bars in compression, profiles
of type CHS with standard dimensions available in the European Union and the United
Kingdom were chosen. The diagonals in tension were appointed L-shaped sections, because
these are available in very small sizes and can thus approximate a fully stressed state. For
the bars in the lower beam of the truss, it was chosen to use standard I-shaped sections,
because the lower bars are also very susceptible to bending considering their self-weight.
Some examples are shown in Figures 7 and 8.

The use of standard profile sections implicates that there is only a limited number
of profiles from which one can choose. This means that a fully stressed condition of each
bar is not possible, because there may not be a standard profile section with the necessary
dimensions to reach this fully stressed state. This is especially the case for compression bars,
as these are optimised for buckling and will rarely be fully stressed. Additionally, for these
compression bars it may even be that there is no standard profile section with the necessary
dimensions to reach a 100% optimisation for buckling, again reducing the optimisation rate.
These remarks are important, because they explain why the results in Diamonds sometimes
deviate from the results obtained with the design tool. Nonetheless, the best performing
structures according to the design tool were mostly confirmed in Diamonds. The design
tool based on the morphological indicators thus proves to be useful in the conceptual
design stage. It allows an engineer to converge more quickly towards the best performing
structure, thus saving time, materials, and corresponding costs and energy. However, it is
important to stress once again that this cannot be decoupled from an earlier involvement of
engineers, preferably already in the conceptual design stage.
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Table 1. Warren trusses (The most optimal result according to the software tool is indicated in bold,
the results in Diamonds that deviate are highlighted in yellow).

Input Output Diamonds

L [m] H [m] n γ [◦] W V [m3] δ [mm] V [m3]

20

4
2 38.7 2.62 0.050 21.7 0.0793
3 50.2 2.29 0.044 18.1 0.0544
5 63.4 2.31 0.044 23.6 0.0547

5
2 45.0 2.50 0.048 18.7 0.075

3 56.3 2.23 0.043 15.8 0.057

5 68.2 2.45 0.047 21.8 0.061

6
2 50.2 2.50 0.048 16.9 0.0740

3 60.9 2.28 0.044 14.7 0.0575

5 71.6 2.71 0.052 21.2 0.0699

40

6
5 56.3 2.80 0.215 51.4 0.2473

7 64.5 2.77 0.212 59.5 0.2494

9 69.7 2.78 0.220 67.1 0.2566

7
3 46.4 2.93 0.224 37.1 0.3045

5 60.3 2.86 0.212 46.8 0.2468

7 67.8 2.83 0.217 55.4 0.2560

8
3 50.2 2.84 0.218 33.8 0.2935

5 63.4 2.80 0.214 43.9 0.2614

7 70.3 2.97 0.228 52.9 0.2639

60

7
7 58.5 3.14 0.541 99.8 0.5942

9 64.5 3.10 0.534 109.9 0.6174

11 68.7 3.15 0.542 119.4 0.5873

8.4
6 59.2 3.17 0.546 89.7 0.5940

7 63.0 3.07 0.529 88.8 0.5778

9 68.4 3.12 0.538 99.5 0.6016

10
3 45.0 3.40 0.587 55.7 0.9225

5 59.0 3.12 0.537 69.3 0.6163
7 66.8 3.13 0.540 81.3 0.5305

80

8
9 60.9 3.38 1.036 157.5 1.1215

11 65.6 3.36 1.030 169.5 1.0951

13 69.0 3.50 1.043 180.8 1.1287

9.6
7 59.2 3.36 1.029 126.5 1.1878

9 65.2 3.31 1.014 139.7 1.0717

11 69.3 3.36 1.030 152.4 1.1463

11
5 54.0 3.48 1.066 101.6 1.2878

7 62.5 3.32 1.018 116.1 1.1453

9 68.0 3.35 1.026 129.8 1.1432
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Table 2. Howe trusses (The most optimal result according to the software tool is indicated in bold,
the results in Diamonds that deviate are highlighted in yellow).

Input Output Diamonds

L [m] H [m] n γ [◦] W V [m3] δ [mm] V [m3]

20

2
8 38.7 3.04 0.058 45.6 0.0640

10 45.0 2.98 0.057 47.9 0.0658

12 50.2 2.98 0.057 50.2 0.0647

3
6 42.0 2.82 0.054 31.5 0.0634

8 50.2 2.78 0.053 34.6 0.0624

10 56.3 2.85 0.055 37.9 0.0653

4
4 38.7 2.93 0.056 23.4 0.0678

6 50.2 2.83 0.054 26.5 0.0637

8 58.0 2.95 0.056 30.5 0.0723

40

4
10 45.0 3.34 0.256 89.6 0.2889

12 50.2 3.32 0.254 94.5 0.2781

14 54.5 3.34 0.256 99.4 0.2984

5
8 45.0 3.28 0.251 71.8 0.2748

10 51.3 3.25 0.249 77.4 0.2623

12 56.3 3.29 0.252 83.1 0.2669

6
6 42.0 3.37 0.259 58.4 0.2776

8 50.2 3.27 0.251 64.1 0.2806

10 56.3 3.32 0.254 70.5 0.2860

60

5
12 45.0 3.73 0.643 155.2 0.7085

14 49.4 3.69 0.637 161.8 0.6974

16 53.1 3.70 0.638 168.2 0.7141

6.6
10 47.7 3.58 0.617 120.6 0.6568
12 52.9 3.56 0.614 128.4 0.6607

14 57.0 3.61 0.622 136.2 0.6975

8
8 46.8 3.63 0.626 98.9 0.6669

10 53.1 3.60 0.620 107.3 0.6844

12 58.0 3.66 0.631 116.1 0.6826

80

7
12 46.4 3.90 1.194 193.9 1.2908

14 50.8 3.85 1.181 203.0 1.3113

16 54.5 3.86 1.183 211.9 1.3302

8.5
10 46.7 3.86 1.181 159.8 1.2701

12 51.9 3.81 1.166 169.8 1.2658

14 56.1 3.83 1.173 179.9 1.3017

10
8 45.0 3.94 1.208 133.5 1.3066

10 51.3 3.85 1.180 144.0 1.2865

12 56.3 3.87 1.187 155.1 1.3014
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Figure 7. Warren truss, span L = 40 m, height H = 7 m, number of panels n = 5, optimal standard
sections are indicated.

Figure 8. Howe truss, span L = 40 m, height H = 6 m, number of panels n = 6, optimal standard
sections are indicated.

In this study, only pedestrian bridges were considered. However, the design tool based
on morphological indicators can also be used when designing heavier bridge structures for
regular traffic or trains. The major difference in the conceptual design stage is the increased
load that needs to be considered.

The calculations of the 72 bridges were executed in a 2D design space, both in the
design tool based on the morphological indicators and in Diamonds. This means that only
local buckling of truss components was considered, while global buckling of the trusses
was neglected. Additionally, imperfections that could affect the trusses’ susceptibility to
buckling were not considered. Tomei et al. investigated these buckling phenomena for grid
shell structures [44]. Their research may serve a s starting point for a future investigation of
the effect of global buckling phenomena on W.

The major limitation of the design tool in its current form is that it only considers
Warren and Howe truss bridges. In the future, other types of structures should be integrated
in the software tool as well. Important bridge typologies to be considered are arch bridges,
suspension bridges and cable-stayed bridges.

Additionally, the reuse of components in the end-of-life stage of a construction not
only corresponds to DfA and DfD, but also to standardisation. In this sense, the use of
standard profile sections is a start, but in order to enable the reuse of components, also
the standardisation of their lengths becomes important [45] whilst maintaining a balance
between architectural freedom and standardisation [3]. Hence, another challenge for
improving the design tool will be to incorporate standardisation to improve the applicability
and concreteness of the conceptual design results.

Another parameter that can be implemented is a parameter for non-homogenous
materials, as the software tool can only work with homogenous materials. Finally, higher
frequencies can be implemented in the software as well to take into account other types of
external frequencies, such as wind and earthquakes.

5. Conclusions

The goal is to develop a CE oriented design methodology for pedestrian and cycling
bridges, a design methodology that incorporates the 4R principle. The R’s of Reuse and
Recycle have been extensively researched. The R of Recover is covered in the bioeconomy.
Yet, the first R of Reduce, the most important R in the CE, is generally neglected and
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severely underestimated. This paper optimises the application process of the MI by means
of an automated algorithm. This developed design tool allows the user to quickly obtain
the best structural typology, Warren or Howe, to be used for a given span. The user
can also introduce additional boundary conditions, e.g., height, number of panels, fixed
typology (Warren or Howe), etc. This allows the user to find alternative, but sub-optimal
solutions. The design tool was tested and compared to calculations made in the FEM
software Diamonds. In total, 72 steel bridge structures were tested. From these it could be
concluded that the manual calculations in Diamonds mostly confirmed the results obtained
with the design tool based on morphological indicators. However, some important remarks
are to be considered. The theory of morphological indicators starts with the assumption
that all components in a structure are dimensioned so they are fully stressed, 100%. In
reality, this is very difficult to achieve as usually standard profile sections are used. This
means there is a limited number of sections from which the designer can choose. Hence,
especially for compression elements, the profile section is optimised for buckling, rather
than stress. As a result, the calculations in Diamonds result in higher material volumes.

Important to note is that only local buckling of truss components was considered in this
study. In future work, the effect of global buckling phenomena on W can be investigated.

In its current form, the design tool only considers Warren and Howe truss bridges.
The most important challenge in the further development of the design tool is therefore to
integrate other types of structures. Important bridge typologies to be considered are arch
bridges, suspension bridges and cable-stayed bridges. Another challenge for improving
the design tool will be to incorporate standardisation to improve the applicability and
concreteness of the conceptual design results, and this whilst maintaining a balance between
architectural freedom and standardisation.

To conclude, the design tool based on the morphological indicators proves to be useful
in the conceptual design stage. It allows a designer to converge more quickly towards the
best performing structure by automating the selection of the optimal structural typology,
thus saving time, materials, and corresponding costs and energy. Hence, it allows the R of
Reduce to be formalised in the CE oriented design methodology.
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Abbreviations

3S Strength, Stiffness, Stability
4R’s Reduce, Reuse, Recycle, Recover
A section area
B width of the bridge
ccor correction factor
CE Circular Economy
CHS Circular Hollow Sections
DfA Design for Adaptability
DfD Design for Disassembly/Deconstruction
E modulus of elasticity
fe,i excitation frequencies of the external load
fi natural frequencies of the structure
f1 the first natural frequency of the structure
F total resultant Force
FD* co-vibrating load
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FEM Finite Element Modelling
g gravitational acceleration
GPa GigaPascal
H Height of a truss
i the index of an element
I second moment of inertia
j the index of a node
k static stiffness
ki portion of load F present in member i
kN kiloNewton
li length of member I [m]
L span of a truss
m meter
mm millimeter
MI Morphological Indicator(s)
MPa MegaPascal
n number of panels of a truss
ni the portion of the unitary force, applied in node j, present in member i
Pa Pascal
q formfactor
qfk standard uniform characteristic load for pedestrian found

in ‘NBN EN 1991-2—part 2’
SLS Serviceability Limit State
ULS Ultimate Limit State
V Volume
V(T) Volume of the members in tension
V(C) Volume of the members in compression
W volume indicator
W(T) morphological indicator of volume of the members in tension
W(C) morphological indicator of volume of the members in compression
z* ratio of the co-vibrating load in service limit state to the total load

in ultimate limit state
β parameter for the stress level in the structure in the calculation of the displacement

and first natural frequency indicators
β3 parameter to define the safety interval around the first natural

frequency of the structure
δ the maximum displacement in the middle of the truss
∆ morphological indicator of displacement
Θ morphological indicator of the first natural frequency
µ proportion of the buckling length of compression bars over their geometrical length,

depending on its connection type
σ allowable stress
σ* stress level in the structure
Ψ morphological indicator of buckling
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