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Abstract: Principal component analysis (PCA) is used to reduce the dimensionalities of high-
dimensional datasets in a variety of research areas. For example, biological macromolecules, such as
proteins, exhibit many degrees of freedom, allowing them to adopt intricate structures and exhibit
complex functions by undergoing large conformational changes. Therefore, molecular simulations of
and experiments on proteins generate a large number of structure variations in high-dimensional
space. PCA and many PCA-related methods have been developed to extract key features from
such structural data, and these approaches have been widely applied for over 30 years to elucidate
macromolecular dynamics. This review mainly focuses on the methodological aspects of PCA and
related methods and their applications for investigating protein dynamics.

Keywords: principal component analysis; collective variables; molecular dynamics; energy landscape;
solvent effects; linear response theory; independent component analysis

1. Historical Overview

Principal component analysis (PCA) is a widely used multivariate analysis approach,
originally proposed about 100 years ago [1,2], that has found increasing applications since
the widespread availability of digital computers to reduce the dimensionality of high-
dimensional datasets. This reduction is enabled by linear transformation from the original
variables to new collective variables, so that a small number of “principal components”
dominate the features of the dataset. Now PCA is considered as an unsupervised machine
learning technique.

The structures of proteins and other biological macromolecules are well characterized
by a set of multidimensional variables, such as atomic coordinates and dihedral angles,
and information regarding the dynamics of these molecules is typically obtained as a time
series of high-dimensional data or an ensemble of experimentally determined structures.
Although such large ensembles of high-dimensional data contain useful information, they
are not easily interpretable. Therefore, extracting important features from high-dimensional
data is essential to understand the dynamics of biological macromolecules.

Similar to the increased application of PCA in other areas, the use of PCA in analyzing
protein dynamics has gradually become more common as the performance of comput-
ers has improved, making the molecular simulations of proteins more accessible. The
first molecular dynamics (MD) simulation of a small folded protein, bovine pancreatic
trypsin inhibitor (BPTI), in vacuum was conducted in 1977 [3], and the first protein normal
mode analysis (NMA) for BPTI was performed in 1983 [4–6]. NMA is a harmonic approx-
imation of protein dynamics at a potential energy minimum, and clearly shows that the
low-frequency normal modes of proteins are collective motions of the atoms spread over
the entire protein (namely, global motions) and that the lowest normal mode frequency is
a few cm−1. Since the vibrational frequencies of bond stretching modes are higher than
this by three orders of magnitude, the amplitudes of the lowest and highest modes also
differ by three-fold, indicating the highly anisotropic nature of proteins even within the
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range of vibrational motions. This high anisotropy may be partly attributed to the highly
packed structures of folded native proteins, whose packing densities are comparable to that
of a face-centered cubic lattice [7]. In highly packed structures, local motions uncorrelated
with the surroundings are limited to small amplitudes because of possible collisions, while
concerted motions of groups of atoms such as protein domains or loops can move in certain
directions largely without altering atomic packing. In 1981, Karplus and Kushick proposed
a method to estimate the configurational entropy of macromolecules from NMA, MD and
Monte Carlo (MC) simulations [8]. That publication also showed that simulations with
(NMA) and without harmonic approximation (MD and MC) can be connected by PCA.
The length of the first reported protein MD was 8.8 ps [3], which roughly corresponds to
one period of the lowest-frequency normal mode of typical small globular proteins and
thus was insufficiently long to sample large-amplitude motions of the protein. However,
increasing simulation lengths allowed investigation of the quasi-harmonic features of bu-
tane and BPTI, mainly focusing on quasi-harmonic frequencies deduced from PCA [9,10].
Later, projecting simulation trajectories onto collective coordinates was shown to be very
useful for characterizing dominant protein dynamics, but the early stages of this endeavor
used low-frequency normal modes for the projected collective variables [11]. Since normal
modes are determined based only on one energy minimum, they are not necessarily the
best choice to investigate the anharmonic nature of protein dynamics. In contrast, PCA de-
termines principal coordinates as the collective coordinates, which incorporate anharmonic
features included in the MD or MC trajectory. Longer and more realistic MD simulations
in solution were performed from the 1980s to the early 1990s, allowing the PCA of MD
trajectories. In the early 1990s, the anisotropic and anharmonic nature of native protein
dynamics was elucidated by PCA, focusing on principal components (PCs), defined as the
projections onto the principal coordinates [12–15]. PCA was also shown to be useful for
analyzing simulation trajectories of protein folding/non-folding dynamics [16,17]. The
past three decades have been seen the frequent use of PCA to investigate the dynamic
behavior of biopolymers, as well as many important methodological improvements and
the elucidation of simulated dynamic features [18–23]. Since PCA employs a variance–
covariance matrix for dimensionality reduction, it is useful to characterize large-amplitude
conformational change in molecules, such as protein domain motion and folding. How-
ever, PCA may not be sensitive for detecting localized, small amplitude but functionally
important motions, such as backrub motion [24], peptide-plane flip [25], the side-chain flip
and path-preserving motions [26].

This review provides an overview of PCA and related methods and their applications
for investigating protein dynamics, focusing mainly on methodological aspects. In addition,
some basic concepts and important findings obtained during the early years of this field
are revisited for the benefit of non-experts, as well as a review of the latest progress in
PCA-related research. The following PCA applications demonstrate the examples in which
macromolecular dynamics cannot be well characterized without the use of PCA.

2. Basic Concept behind PCA

The investigation of macromolecular dynamics by PCA requires the selection of certain
degrees of freedom of the target molecule that characterize the dynamics well. Consider
a vector of general coordinates of a target molecule or molecules, q, and suppose that
q = {qi} is a column vector consisting of f variables (i = 1, . . . , f ). Thus, 〈q〉 = {〈qi〉} is
the average and ∆q = q− 〈q〉 is the deviation from the average. To explicitly indicate an
index of the mth data point among M (m = 1, . . . , M), we use the expression ∆qm. When
the MD trajectory is considered, the expression ∆q(tm) is employed to specify a coordinate
set at time tm. To conduct PCA, a variance–covariance matrix C is introduced:
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C =
1
M

M

∑
m=1

∆qm ∆qT
m =

〈
∆q ∆qT

〉
=
{〈

(qi − 〈qi〉)
(
qj −

〈
qj
〉)〉}

, (1)

where ∆qT represents the transpose of ∆q and 〈· · · 〉 denotes the simple average over a
given dataset. The matrix C =

{
Cij
}

is a positive semidefinite whose eigenvalues are
non-negative. By introducing an f ×M matrix of the whole dataset:

Q = {∆q1 · · ·∆qM}, (2)

A can be obtained as a matrix product:

C =
1
M

QQT , (3)

where QT denotes the transpose of Q. By solving the standard eigenvalue problem with
the orthonormal condition:

CV = Vλ, (4)

VVT = VTV = I, (5)

we obtain V, λ and I, which are the eigenvector, eigenvalue and unit matrices, respectively.
λ is a diagonal matrix whose αth diagonal element {λα} (α = 1, . . . , f ) is the variance of
the αth PC, and the αth column vector vα of V is the corresponding eigenvector. Typically,
λα is sorted in descending order such that the first PC shows the largest variance λ1 and
the corresponding column vector v1 of V =

(
v1 · · · v f

)
indicates the eigenvector of the

first PC.
Projection of ∆qm onto V provides:

σm = VT∆qm, (6)

where σm is a column vector of the projections (principal components). The overall linear
transformation of Q using V gives a projection matrix Σ =

(
σ1 · · ·σ f

)
onto the PC:

Σ = VTQ. (7)

The f ×M matrix Σ represents the matrix of principal components, which are collective
variables defined as a linear combination of the original coordinates and the elements of V
are coefficients for the transformation.

PCA can be conducted by solving the standard eigenvalue problem (Equation (4)),
which requires the diagonalization of C ( f × f matrix). PCA can also be performed by
the singular value decomposition (SVD) of Q ( f × M matrix). SVD directly provides a
decomposition of Q into three matrices:

Q =
√

MVλ1/2 UT , (8)

where UT is an M×M matrix of normalized projections defined as:

UT =
1√
M
λ−1/2Σ =

1√
M
λ−1/2 VTQ. (9)

In this case, λ1/2 is an f ×M matrix whose non-diagonal elements are zero. From
Equations (4), (5) and (9), it is straightforward to obtain the condition:
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UTU = I. (10)

To quantify the usefulness of PCA for a target dataset, the PC contribution to the total
variance is examined, which is defined as:

χα =
λα

f
∑

α=1
λα

. (11)

If the contributions from a small number of PCs to the total variance are dominant,
PCA is useful for dimensionality reduction because most of the total variance originates
from these PCs. Typically, folded proteins are highly anisotropic in nature and PCA is thus
useful for analyzing protein dynamics [18–20,22].

It is also straightforward to consider hierarchy in the distribution of a target dataset, for
example, the distribution of clusters and the distributions of data in each cluster. Suppose
that the dataset of interest is clustered into L groups, each consisting of nl data points. In
this case, 〈· · · 〉l indicates the mean over nl and fl = nl/K is the fraction of the lth group.
The variance–covariance matrix can be divided into two terms as [27]:

C = CJAM + Cintra

=

{
L
∑

l=1
fl

〈
(〈qi〉l − 〈qi〉)

(〈
qj
〉

l −
〈
qj
〉)〉

+
L
∑

l=1
fl

〈
(qi − 〈qi〉l)

(
qj −

〈
qj
〉

l

)〉
l

}
(12)

The first term represents the variance–covariance originating from the distribution of
the means of the groups and the second term shows the fl weighted average of intra-group
variance–covariance. Although Equation (12) shows a two-hierarchy model, extension to
multiple hierarchy is straightforward. If the distribution of each group shows fluctuations
in a certain local energy minimum, the first term originates from jumping among energy
minima. Using this formulation, the jumping-among-minima (JAM) model shows that
the JAM motions that contribute to the first term dominate a small number of anharmonic
large-amplitude motions and the second term is attributed to nearly harmonic fluctuations
around local energy minima that are detected as Gaussian-like distributions [19,27]. This
hierarchical view of protein collective dynamics is useful for understanding the boson peak
and glass transition of proteins [28], and for identifying multiple conformers in nuclear
magnetic resonance (NMR)-derived structure ensembles of proteins [29,30].

3. Error in PCA

A dataset to be analyzed by PCA may contain an insufficient number of samples
statistically, which can result in instability of the obtained eigenvectors. This situation
frequently occurs when standard MD simulations of macromolecules are conducted with
all-atom models because the accessible simulation time scale tends to be shorter than the
characteristic time scale of macromolecular movement. Hess showed that random diffu-
sions in high-dimensional space can result in cosine-shaped projections of the first few
dominant PCs, indicating that short simulation trajectories should be carefully treated [31].
However, using random matrix theory (RMT) [32,33], Palese showed that protein dynamics
is not truly Brownian even on a short time scale (~1 ns) while PCA leads to cosine-shaped
projections, using apo Cox17 as a model protein [34]. In this method, C is considered
to be the sum of the random component Cr and non-random component Cnr. Cr is de-
termined by an iterative method based on RMT, providing the cleaned Cnr without the
random component and its eigenvectors. Palese also proposed random component analysis
(RCA) as a random projection (RP) algorithm [35]. In RCA, PCA of the correlation matrix
P =

{
Cij/

√
CiiCjj

}
is considered, and P is replaced by a random symmetric correlation

matrix M as a dummy correlation. PCA of M and projection onto the obtained eigenvectors



J 2022, 5 302

provides the random components. RCA provides dimensionality reduction and cluster
detection comparable to that of PCA. Ref. [36] introduced and examined a parameter that
evaluates the overlap between such subspaces, called the root mean squared inner product
(RMSIP), and suggested that PCA for the concatenated equivalent trajectories achieves
better reproducibility.

4. Relation with NMA

NMA is closely related to PCA as mentioned in Section 1. To conduct NMA, the
second derivative matrix of potential energy E (Hessian) F should be calculated at a certain
conformation, typically at a local potential energy minimum conformation where the first
derivatives ∂E/∂qi = 0 for all i:

F =
{

fij
}
=
{

∂2E/∂qi∂qj

}
(13)

when Cartesian coordinates are used for Equation (13), q should be mass weighted Carte-
sian coordinates. To obtain normal mode frequencies and eigenvectors, the standard
eigenvalue problem of F is solved as:

FW = Wω2, (14)

WTW = WWT = I. (15)

The βth column vector of W =
(

w1 · · ·w f

)
, wβ, represents the βth eigenvector. The

eigenvalue matrix ω2 =
{

ω2
β

}
determines the angular frequency of the normal modes

ωβ. Since the variance–covariance matrix C is related to F by C = kBTF−1 (kB: Boltzmann
constant, T: absolute temperature), we obtain the relation for the harmonic system:

λβ = kBT/ω2
β (16)

Therefore, comparing λα obtained by PCA of MD or MC trajectories to the NMA-
derived kBT/ω2

α is a straightforward way to examine the anharmonicity or quasi-harmonic
features of protein dynamics. W is determined for a potential energy minimum, while
MD simulation can sample multiple energy minima. Therefore, V obtained from an MD
trajectory can be significantly different from W calculated around a particular local energy
minimum. This difference becomes larger as the MD length is increased. To consider the
difference between two collective variables and to examine the anharmonicity of an energy
surface, the variance expected from NMA along the αth PC is obtained by:

λhar
α = kBT∑

β

(
wβ · vα

)2

ω2
β

. (17)

λhar
α is further used to define the anharmonicity observed in MD along the αth PC,

namely, the anharmonicity factor:

µα =
(

λα/λhar
α

)1/2
. (18)

µα is unity if the variance is equal to that expected from NMA, indicating that the
energy surface along the αth PC is nearly harmonic [27,37]. For short MD trajectories
up to 1 ns, the majority of PCs are harmonic and less than 1% of PCs show µα > 2, and
anharmonic motions dominantly contribute to the total variance [19,27].

NMA of proteins was originally conducted with full atomic models [4–6]. Over the
past 20 years or so, NMA has been more widely used with coarse-grained models as well as
with atomic models. Although this is an interesting topic related to PCA, NMA is beyond
the scope of this review but is covered in reviews on NMA [38–43].
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5. Solvent and Other Environmental Effects on Macromolecular Dynamics

To consider solvent effects on macromolecular dynamics, one of the simplest models
is the consideration of the independent Langevin equation for each PC σα(t) with harmonic
potential:

..
σα(t) = −ω2

ασα(t)− γα
.
σα(t) + Rα(t), (19)

where the first term of the right-hand side shows the harmonic force and γα and Rα(t)
indicate the Stokes friction coefficient and random force acting on the αth PC, respectively.

The autocorrelation functions of σα(t) and velocity
.
σα(t) are given by:

〈σα(t)σα(0)〉 =
kBT
ω2

α

[
γα + vα

2vα
exp

(
−γα −vα

2
t
)
− γα −vα

2vα
exp

(
−γα + vα

2
t
)]

, (20)

〈 .
σα(t)

.
σα(0)

〉
= kBT

[
−γα + vα

2vα
exp

(
−γα −vα

2
t
)
+

γα + vα

2vα
exp

(
−γα + vα

2
t
)]

, (21)

where vα =
√

γ2
α − 4ω2

α. If γα > 2ωα, vα is a real number and the correlation functions
simply consist of two exponential decays, resulting in overdamping motion. If γα < 2ωα,
vα consists of real and imaginary parts, with the former showing a single exponential decay
and the latter providing the sum of cosine and sine terms, causing damped oscillation.
Because of this relation, large-amplitude motions, i.e., low-frequency motions, tend to be
γα > 2ωα and overdamped [12,15]. The density of state (DOS) for this system is obtained
as the spectrum of the velocity correlation (Equation (21)):

S(ω) =
kBT
π

γαω2

(ω2
α −ω2)

2 + γ2
αω2

. (22)

As the ratio γα/ωα becomes larger, the peak of the spectrum decreases and the area of
the spectrum is shifted to the high-frequency region, resulting in lowered spectral density
around the peak ωα and seeming disappearance of the peak in DOS [12]. This model also
explains why the DOS of BPTI from neutron scattering is lower than that expected from
the frequency distribution in the low-frequency region < ~20 cm−1 [15].

Assuming each PC is a harmonic Langevin oscillator, the values of ωα and γα can be
estimated from the MD-derived time correlation function or its spectrum in different ways,
but the obtained results can be method dependent. Considering Equation (21), one way to
calculate γα is the time derivative of the velocity autocorrelation function at t = 0 [12,15]:

γα = − 1
kBT

(
d
dt
〈 .
σα(∆t)

.
σα(0)

〉)
∆t=0

. (23)

If γα is calculated as the numerical derivative from a difference in the velocity correla-
tion functions between t = 0 and ∆t, the numerical error should be carefully considered [15].
From Equation (21), the first-order approximation of the derivative for small t is obtained as:

γα(∆t) = − 1
kBT

d
dt
〈 .
σα(∆t)

.
σα(0)

〉
= γα +

(
ω2

α − γ2
α

)
∆t, (24)

which indicates a parabolic behavior of “apparent” friction coefficients as a function of
ωα deduced by this method, and such behavior is indeed observed [12,15]. From the
parabolic feature of γα(∆t), the “true” friction coefficient γα = γα(0) after correction based
on Equation (24) can be considered to be almost constant for large-amplitude PCs for a
given protein [15]. The value of γα is quite dependent on protein size, consistent with
Stokes–Einstein law, γ = 6πaη/M ∝ M−2/3 (a: radius, η: viscosity, M: mass) [27].

The MD-derived friction coefficient does not necessarily originate from solvent and it
can be estimated for MD conducted in vacuum. Ref. [44] used fitting Equation (21) with MD-
derived data for friction calculations and showed the frequency dependence of the friction
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coefficient. Ref. [44] also reported that friction in vacuum is directly proportional to the intra-
protein interaction of the collective mode but is also proportional to the accessible surface
area of the mode in solution. In Ref. [45], MD simulations of myoglobin in aqueous solution
between 120 and 300 K showed that the friction coefficient was shown to linearly increase
as temperature increases up to 300 K, independent of the glass transition temperature. This
tendency cannot be well explained only by the Stokes–Einstein law, at least at 0 ◦C and
higher, because the viscosity of liquid water decreases as a function of temperature. Thus,
this tendency must have a different origin. Notably, the Langevin-based time correlation
function should be fitted with care because the real time correlation will likely deviate for
longer t when a constant value of γ is used without considering the time dependence, as
in the generalized Langevin equation. The range of 0–5 ps was used for fitting the time
correlation function in Ref. [44] and a very short (2–6 fs) ∆t was used for the numerical
derivative at t = 0 in Refs [15,27].

The Langevin mode is a multidimensional version of harmonic Langevin oscillators,
formulated as a natural extension of NMA to include solvent effects [46,47]. Considering
the f × f friction matrix Γ in addition to Hessian F, the f × 2 f eigenvector matrix S and
the 2 f × 2 f diagonal eigenvalue matrix ξ = {ξα} are determined by the relations:

FS + ΓSξ+ Sξ2 = 0, (25)

STΓS + ξSTS + STSξ = ξ, (26)

where the matrix elements of L and ξ are complex numbers. The friction matrix Γ can be
modeled by diffusion tensors derived from hydrodynamics of polymers in solution [48–50].
Equations (25) and (26) correspond to (14) and (15) in NMA. It should be noted that the
eigenvalue of the αth Langevin mode ξα can have both real and imaginary parts, which
determine the damping factor and oscillatory frequency, respectively. In this case, the mode
is underdamping. If ξα is a real number, the mode is overdamping. In the limit Γ→ 0 , the
equations for NMA are recovered as:

S =
1√
2
(W, W), (27)

ξ =

(
±iω O

O ±iω

)
. (28)

A more general formulation based on the generalized Langevin equation and 3D refer-
ence interaction site model (3D-RISM) was proposed, called the Kim–Hirata theory [51,52].
This theory introduces the variance–covariance matrix obtained from the equilibrium free
energy surface in solution determined by 3D-RISM and this matrix describes the force
restoring an equilibrium conformation. Ref. [52] also proposed a protocol to evaluate fric-
tion based on the friction of an imaginary atom in solution from the site–site mode coupling
theory [53,54], multiplied by the fraction of a protein atom contacting the solvent defined
by the radial distribution function of solvent around the protein atom. The Kim–Hirata
theory was further extended to analyze the temperature-dependent mean-square deviation
of proteins [55].

6. Choice of Variables and Spaces for Better Representation of Macromolecular
Dynamics in PCA

To successfully analyze macromolecular dynamics, a set of variables that well represent
important features of dynamics should be employed for PCA. The Cartesian coordinates
of atoms are frequently used. For a set of selected N atoms of the molecules of interest,
the number of variables is f = 3N. The use of all-atom coordinates, including hydrogens, is
useful for characterizing the anharmonic nature of protein dynamics directly compared
to NMA [12,15,27,37,56]. The selection of Cα atoms is useful for selecting a small number
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of large-amplitude motions, namely, “essential dynamics” [14]. Raw atomic coordinates
from the original dataset typically reflect internal movements of the selected atoms, as well
as overall translation and rotation. The translational and rotational components can be
eliminated by the best fit of each dataset (typically a snapshot of a simulation trajectory) to a
reference dataset so that the Eckart condition [57] is satisfied, for example, using the Kabsch
method [58] or another method. To set the average 〈q〉 as the origin of the coordinates, 〈q〉
obtained after best fit should be used as the reference for the next round of best fit [12].
〈q〉 quickly converges within about five cycles with this procedure. Once translational
and rotational components are completely eliminated, Cartesian PCA results in (3N − 6)
positive eigenvalues for internal motions and six zero eigenvalues corresponding to PCs of
the translation and rotation.

Internal coordinates are also used frequently in PCA. In all-atom models of macro-
molecules, dihedral angles mainly determine the overall conformation of each molecule
because the contributions of bond length and angle changes are relatively small. The signif-
icant movements of dihedral angles result in protein atoms moving non-linearly. Therefore,
PCA in dihedral angle space can provide different information on protein dynamics com-
pared to Cartesian PCA. If the deviation of dihedral angles from the average ∆θ is directly
used as ∆q, the deviation of atomic coordinates from the average ∆r is related to ∆θ as a
first-order approximation as:

∆r = L∆θ, (29)

where L = dr/dθ is the Jacobian matrix that is evaluated for the average structure [59,60].
Omori et al. investigated the relation between the motions of atoms and dihedral angles
and showed that the latter mutually move in a compensative manner, called “latent dy-

namics” [60]. The variance–covariance matrix of dihedral angles Cθ was compared to
~
Cθ

deduced from the atomic variance–covariance matrix Cr as:

~
Cθ =

(
LTC−1

r L
)−1

. (30)

Using backbone atoms (N, Cα and C) and dihedral angles (φ, ψ, and ω) of small

globular proteins, Omori et al. also showed that
~
Cθ precisely recovers the information of

Cr and contains higher-order dihedral correlations, but Cθ does not [60]. Additionally, the
mean-square atomic displacements tended to be minimized upon rotation of the dihedral
angles, indicating the compensative nature of dihedral dynamics. However, such latent
dynamics behavior was not seen in dihedral PCs of deca-alanine, a short peptide.

The non-Euclidean nature of dihedral angles is not sufficiently considered in a linear
transformation. PCA with dihedral angles may also require careful treatment as they are
singular between 180◦ and −180◦, also called a periodic boundary. Stock and coworkers
proposed using dihedral angles differently in their dihedral angle PCA (dPCA), which uses
cosines and sines of dihedral angle θl [61–63]:

q = {q2l−1, q2l} = {cos θl , sin θl}, (31)

where l denotes the dihedral angle index. This treatment can be considered as using the real
and imaginary parts of exp iθl . Originally, Stock and coworkers focused on main chain φ
and ψ [62], but it is straightforward to include other dihedral angles in this framework. In
the case of short peptides, more rugged free energy landscapes were observed in the space
spanned by the first few PCs in dPCA compared to the results of Cartesian PCA [61–63].
Based on the analysis of folding dynamics of the villin headpiece 35 (HP35), a small protein
and native dynamics of BPTI up to the millisecond time scale, they reported that Cartesian
PCA failed to capture important features of the free energy landscape and that dPCA gave
a better presentation of the landscape [64].

Instead of projecting straight lines in the extrinsic tangent space of a mean, PCA
for Riemannian manifolds was proposed based on geodesics of the intrinsic metric [65].
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GeoPCA is a tool for dihedral angle-based principal component geodesics, in which angular
data are projected on a sphere composed of the first two principal component geodesics [66].
GeoPCA was validated by using it to cluster a set of RNA conformations derived from
a database comprising 73 RNA structures. Dihedral principal geodesic analysis (dPGA)
was applied to reduce the dimension of the protein structure ensemble and the result was
compared to the results obtained using PCA and dPCA [67].

The n-dimensional torus is a product space of n circles and can be used to characterize
dihedral dynamics. Torus-PCA (T-PCA) was proposed and applied to the RNA benchmark
used in GeoPCA [66], demonstrating the validity of T-PCA [68]. Another approach, dPCA+,
minimizes residual projection error by transforming the data such that the maximal gap of
the sampling is shifted to the periodic boundary of a dihedral angle [69]. Interestingly, this
transformation also minimized the error of the covariance matrix. dPCA+ was also used to
examine the non-equilibrium process simulated by targeted MD (TMD), and the free energy
profiles of deca-alanine obtained by unbiased MD, Jarzynski identity and second-order
cumulant approximation were compared [70]. In addition, the landscapes from unbiased
MD, TMD and reweighted TMD were investigated in that report.

Other variables have been introduced to conduct PCA of simulation trajectories. To
visualize MD and MC trajectories, Abagyan and Argos introduced a distance measure
between two conformers, defined based on dihedral angles [71]. Java Essential Dynamics
(JED) can use internal distance pair coordinates (dpPCA) as an option [72]. Ernst et al.
introduced contact distance-based PCA (conPCA), reciprocal distance-based (iconPCA)
and PCA based on inter-Cα distances (CαPCA) and compared each result to those obtained
using dPCA [73]. For conPCA, the distance between the closest heavy atom of each residue
is considered as a contact if it is less than 4.5 Å and the residue pair of the contact is
separated by more than three residues along the sequence [73,74]. Thus, conPCA can
consider side chains in contact with each other but excludes information regarding local
fluctuation along the sequence. Using 300 µs HP35 and 1 ms BPTI MD trajectories and
examining the resolution of the free energy landscape and the decay of autocorrelation
functions, Ernst et al. showed that distance-based PCAs, particularly CαPCA, tend to be
versatile, but they exhibit fewer landscape details than dPCA does [73]. Recently, Ogata
proposed grid-based PCA (GBPCA), which considers a grid system consisting of cubes
with 5 Å edges [75]. This method uses a unit vector of mass-weighted averages of atoms in
each cube to calculate the correlations to be diagonalized and was applied to bulk water,
bulk methane and hydrated proteins.

This review focuses on the PCA of structural data Q, but it is worth mentioning that
PCA is also used for analyzing multiple spectra measured under different conditions [76].
Consider a set of spectra obtained as a function of frequency or wavelength measured
under different temperatures, pH, times, etc. Q can be constructed with i = 1, . . . , f for
frequency or wavelength and m = 1, . . . , M for the conditions. For example, rapid scanning
wavelength stopped-flow kinetics experiments on liver alcohol dehydrogenase (LADH)
whose reaction is spectrally complex were analyzed by PCA and absorbing species were
identified [77,78]. Yuan et al. analyzed Fourier transform near-infrared (FT-NIR) spectra
of bovine serum albumin (BSA) at temperatures ranging 45–85 ◦C by PCA and evolving
factor analysis (EFA) [79]. The contributions from the first PCs obtained for two frequency
ranges were both greater than 99%, indicating that most of the spectral variations are
explained by the first PCs. PCA and EFA also revealed temperatures of structure changes.
Sakurai and Goto conducted the PCA of pH dependence of heteronuclear sequential
quantum correlation (HSQC) spectra of β-lactoglobulin measure by NMR spectroscopy
and identified three conformational transitions at different pH [80]. These results validate
the application of PCA for characterizing various condition-dependent spectra and for
investigating structure changes, which also enables the PCA under a combination of
multiple conditions, such as temperature-dependent kinetics.

As shown in Section 2, PCA and SVD provide the same information, V, U and λ
from Q, but SVD directly determines these matrices without calculating C. Thus, SVD
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is also employed for analyzing spectra similar to PCA. In spectral analysis, U quantifies
condition-dependent components while V describes the condition-independent basis sets.
By focusing on dominant components in λ, SVD can act as a mechanism-independent
noise filter for spectra. Thus, SVD is regarded as an automated procedure of modeling
of spectroscopic datasets [81,82] and is also used for the analysis of protein dynamics.
For example, Hofrichter et al. measured time-dependent optical absorption spectra from
3 ns to 100 ms after the photolysis of the CO complex of hemoglobin and identified three
significant basis spectra and five exponential relaxations from the time course of their
amplitudes by SVD, which enabled the analysis of ligand rebinding kinetics [83]. Moffat
and coworkers developed a method to analyze time-dependent difference electron density
by SVD and analyzed structural intermediates of photoactive yellow protein (PYP) [84–86].
These works indicate the usefulness of SVD in spectral analysis.

7. The Fluctuation–Dissipation Theorem, Linear Response Theory and PCA

The fluctuation–dissipation theorem states that the linear response of a given system
to an external perturbation is expressed in terms of fluctuation properties of the system in
thermal equilibrium [87,88]. In a time-independent form, the linear response theory (LRT)
shows that a perturbation applied to a system f results in response ∆qR mediated by the
variance–covariance matrix C as:

∆qR ∝ Cf. (32)

Using C obtained from MD simulations of an unliganded protein and f mimicking
the protein–ligand interaction, LRT was shown to reproduce the response of the liganded
protein [89]. Additionally, dihedral LRT based on the variance–covariance derived us-
ing Equation (30) was shown to better predict the ligand-bound form of ferric-binding
protein [59]. Time-independent and time-dependent LRT showed agreement for the time
response of myoglobin upon CO binding between LRT, ultraviolet resonance Raman spec-
troscopy and time-resolved X-ray crystallography, suggesting that the primary response
can be described by LRT [90]. Hirata proposed a theory to evaluate a response function
based on the aforementioned Kim–Hirata theory [91].

If LRT is considered in the PC space, the expected response (Equation (32)) in PC space
σR is obtained in a manner similar to Equation (6) as:

σR ∝ VT∆qR. (33)

Additionally, considering Equations (4) and (32), we obtain:

σR ∝ λVTf = λfPC. (34)

If f is applied as an isotropic random perturbation, the perturbation in PC space
fPC = VTf is also isotropic. However, the response σR is scaled by λ, meaning that
the perturbation force acting along the PC is proportional to λα [92]. Equation (34) also
indicates that random perturbations are expected to cause highly anisotropic responses
in the protein because proteins fluctuate in a highly anisotropic manner in equilibrium.
Transform and relax sampling (TRS) enhances anisotropic protein movements, implicitly
expecting the response in Equation (34) but without actually calculating C [92]. TRS is
carried out as cycles of transform, relax and sampling stages. In the transform stage, the
protein is perturbed by random forces during MD, then the protein is relaxed during MD
without perturbation in the relax stage and finally usual MD is conducted as the sampling
stage. TRS successfully simulated open-close motions of domains of multi-domain proteins
several times within a simulation time of 20 ns. Additionally, folding–unfolding transitions
of the “mini-protein” chignolin were observed many times during a 100 ns simulation.

Linear response path following (LRPF) simulates global conformational changes in
proteins upon ligand binding by periodically updating a linear response (LR) force with
three phases of MD, enabling non-linear transformation to a target direction [93]. In the
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first phase, the LR force is obtained by computing C and a mean force acting from ligands
during equilibrium MD. Biased MD subsequently induces conformational change in the
second phase, then the final MD re-equilibrates the system without bias. LRPF predicted
an inward-facing form of mitochondrial ADP/ATP carrier (AAC), a membrane transporter,
starting from an outward-facing form determined by X-ray crystallography [94].

8. Non-Gaussianity and Non-Linearity in PCA

PCA performs best if the distribution of a dataset is a multidimensional Gaussian that
depends only on the mean and variance–covariance (second moments), which are the only
quantities considered to determine collective variables in PCA. However, a small number of
dominant PCs show non-Gaussian distributions in protein dynamics. These non-Gaussian
collective variables are believed to be important for protein function [12–15] and indicate a
limitation of using second moments in determining new collective variables. Since non-
Gaussian distributions cannot be well characterized with mean and second moments only,
one solution may be to consider higher-order moments to determine collective variables
other than PC. Independent component analysis (ICA) separates non-Gaussian signals that
are independent from Gaussian noise and typically considers mutual information (MI) to
quantify the correlations and determine the optimal coordinate transformation to minimize
the MI [95–97]. Typical ICA employs preprocessing, “centering” and “whitening” [97].
“Centering” corresponds to the treatment already completed in PCA, as in Equation (1), in
which the mean is subtracted. “Whitening” is typically the normalization of components by
their standard deviations. Early applications of ICA for protein dynamics by full component
analysis (FCA) used Cartesian coordinates [98] while the dihedral of Equation (31) was
used for ICA in Ref. [99].

Most of the methods described in this review focus on extracting mutually indepen-
dent components as much as possible, whereas independent subspace (ISA) determines
significantly correlated collective motions. ISA features non-Gaussian behaviors similar to
ICA, using fourth-order cumulants [100]. In this method, ISA based on the subspace joint
approximate diagonalization of eigenmatrices algorithm (SJADE) [101] extracts several
independent subspaces, in each of which collective modes are significantly correlated while
the other modes are independent. Application of this method successfully detected the
modes with long-tailed non-Gaussian probability distributions [100].

Another limitation is the linear transformation of PCA, whereas protein dynamics can
be highly non-linear in nature. This problem was partially discussed in Section 6, mainly in
relation to the use of dihedral angles in PCA and thus other PCA variants are discussed
here. For example, Nguyen proposed the use of non-linear PCA (NLPCA) [102], enabled
by non-linear mapping based on neutral networks [103].

Another possible solution for incorporating non-linearity in PCA is the introduction
of kernel methods [104]. In kernel PCA [104], a new “feature space” F, which is non-
linearly related to the original space, is introduced and principal components in F are
considered. ∆qm is non-linearly mapped to a function Φ(∆qm) that satisfies the condition
〈Φ(∆qm)〉 = 0. Consider the variance–covariance in F as:

C =
1
M

M

∑
m=1

Φ(∆qm) ΦT(∆qm) =
〈

Φ ΦT
〉

, (35)

and the eigenvalue problem shown in Equation (4). The nth eigenvector vn is defined as a
linear combination of Φ(∆qm) with a coefficient matrix α = {αmn} as:
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vn =
M

∑
m=1

αmnΦ(∆qm) . (36)

Here, we introduce the kernel representation k(x, y) = Φ(x)ΦT(y) and an M×M
matrix K as:

K = {kmn} = {k(∆qm, ∆qn)}. (37)

As shown in Ref. [104], α is obtained by the relation:

Kα = M λα, (38)

which can be solved by diagonalizing K using the condition:

λαTα = I. (39)

Using K and α, principal components in F space are obtained as the projection of
Φ(∆q) onto the nth eigenvector by:

vT
n Φ(∆qm) =

1
λn

M

∑
m=1

αmnkmn . (40)

Equations (38) and (40) indicate that eigenvalues and principal components in F space
are determined from the kernel K without directly solving Equation (35), which is typically
difficult. It is worth mentioning that the use of k(x, y) = xyT recovers the original PCA
and the use of k(x, y) =

(
xyT)d

(d > 1) considers higher moments. Additionally, Gaussian

kernel k(x, y) = exp
(
− ‖x−y‖2

2σ2

)
with the adjustable parameter σ is frequently used in

kernel methods. Kernel PCA can also be applied to the analysis of protein dynamics [21].
“Diffusion maps” is used as nonlinear dimensionality reduction method to embed

data points into a Euclidean space in which the Euclidean distance is equal to “diffusion
distance” and to conduct the reduction by neglecting certain dimensions in the diffusion
space [105–107]. Diffusion maps considers a Markov chain random walk on normalized
data points and the probability of one-step random walk between two data points (connec-
tivity), which is proportional a kernel function (typically Gaussian kernel). For diffusion
maps, “diffusion matrix” is obtained by normalizing the rows of the kernel matrix, eigen-
vectors of the diffusion matrix are calculated and the diffusion mapping is conducted by
mapping the data points to dominant eigenvectors in the diffusion space. Ferguson et al.
used diffusion maps for a protein simulation for the first time to investigate trajectories
of replica-exchange molecular dynamics (REMD) simulations of pro-microcin J25 (pro-
MccJ25), the 21-residue uncyclized analog of antimicrobial peptide microcin J25 (MccJ25),
which identified two global order parameters and three distinct pathways of conforma-
tional change [108]. One of the pathways was shown to correspond to a conformational
change to left-handed lasso coil conformations. Kim et al. employed diffusion maps to
characterize MD trajectories of Trp-cage miniprotein folding [109]. Recently, Trstanova et al.
demonstrated the use of diffusion maps to identify metastable states as well as to formalize
the locality within the metastable states in the analysis of molecular systems [110].

9. Detecting Data Differences by PCA and Related Methods

PCA is also used to detect differences in a dataset or featurize the differences between
datasets. Self-consistency of dipolar couplings analysis (SECONDA) is a PCA based on
residual dipolar coupling (RDS) measured by NMR and was developed to examine the
effects of different alignment media used for RDS measurements [111]. The results showed
that if the structure and dynamics of the target molecule are the same, PCA gives at most five
nonzero eigenvalues, but additional nonzero eigenvalues are obtained if differences exist.
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Howe conducted Cartesian PCA of 49 NMR-determined structures of EF40, a 28-residue
peptide and demonstrated that the structures are clustered and outliers are detected [112].
Using the online tool PCA_NEST, systematic analysis of 24 pairs of enzyme structures
determined by both solution NMR and X-ray crystallography revealed differences in the
solution and crystal structures of the proteins [113]. Notably, the X-ray structures were
shown to be a conformational state along the dominant PCs derived from NMR models,
consistent with the expectation from LRT, since the environmental differences (in crystal or
in solution) can be considered as a perturbation to the protein.

Sakuraba and Kono employed linear discriminant analysis with iterative procedure
(LDA-ITER) to compare two trajectories obtained under different conditions [114]. LDA-
ITER was developed to consider the trace ratio optimization problem in supervised learning
and maximizes the ratio of two matrices by unitary transformation [115,116]. This method
finds the axis of projection that separates two trajectories while keeping each trajectory well
clustered. LDA-ITER was applied to the wild-type and R96H mutant of T4 lysozyme, as
well as to the liganded and unliganded PDZ2 domains of human phosphatase hPTP1E. The
results showed very clear separation of two kinds of trajectories along the first dimension
and a Gaussian-like distribution for each cluster. In contrast, the projections onto the first
two PCAs significantly overlapped, and another method, partial least squares discrimina-
tion analysis (PLS-DA) [117], gave less overlapped results in the 2D projection compared to
PCA. However, LDA-ITER gave the best results. In addition, important differences were
characterized on a residue-by-residue basis.

Relative principal component analysis (RPCA) also featurizes the differences between
two datasets, but the transformation is determined by maximizing the Kullback−Leibler
divergence between the probability distributions between the two states and by simul-
taneously diagonalizing two variance–covariance matrices of the states with a single
transformation matrix [118]. The application of RPCA to HIV-1 protease showed better
performance compared to PCA and identified conformational hotspots.

10. Time Evolution of Collective Variables

The methods described in Sections 4 and 5 consider the time evolution of collective
variables based on physical models, but another type of approach investigates evolution
from a phenological perspective. Time-independent component analysis (tICA) is a vari-
ation of ICA that focuses on the time independence between time 0 and τ, instead of
considering non-Gaussianity [119–121]. In addition to C defined in Equation (1), tICA
introduces the time-lagged variance–covariance matrix:

C(τ) =
〈

∆q (0)∆qT(τ)
〉

, (41)

using the time lag parameter τ. Although C = C(0) is symmetric, C(τ) can be a non-
symmetric matrix. In tICA, the generalized eigenvalue problem is solved with the normal-
ization condition:

C(τ)Y = CYζ, (42)

YTCY = I, (43)

where ζ = {ζα} and Y =
(

y1 · · · y f

)
are eigenvalue and eigenvector matrices, respectively.

Since matrix elements of ζ and Y are generally obtained as complex numbers, the sym-

metrization
¯
C(τ) = 1

2

(
C(τ) + CT(τ)

)
conducted in Refs [120,121] and Equation (42) is

modified as:
¯
C(τ)Y = CYζ, (44)

such that ζ and Y comprise real values. Combining Equation (42) or (44) with (43) gives:
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YTC(τ)Y = ζ orYT
¯
C(τ)Y = ζ, (45)

respectively. Equations (43) and (45) indicate that the autocorrelation function of the αth

time-independent component at time 0 is yT
α Cyα = 1 and that at time τ is yT

α

¯
C(τ)yα = ζα.

If the autocorrelation function is a single exponential decay with characteristic time Tα, we
obtain the relation exp(−τ/Tα) = ζα, which results in:

Tα = − τ

ln ζα
. (46)

Dynamic component analysis (DCA) considers the time-lagged variance–covariance
matrix for normalized PCs, but Equation (41) is recovered in the original coordinates [122],
indicating the equivalence of tICA and DCA in this formulation. In practice, however, DCA
uses the inter-residue distance (distance map) as the coordinates of PCA [122].

Relaxation mode analysis (RMA) [123–127] considers “whitened” signals as the αth
relaxation mode φα(t) as:

c(τ) =
{〈

φα(0)φβ(t)
〉}

=
{

δαβ exp(−κατ)
}

, (47)

where κ = {κα} and δαβ indicate the relaxation rate and Kroneker delta, respectively.
Independence and single exponential decay of each relaxation mode are assumed in
Equation (47). Using c(τ) values at time τ and c = c(0), the relaxation rates are deter-
mined as:

c(τ)y = exp(−κτ)cy, (48)

yTcy = I. (49)

These equations correspond to Equations (42) and (43) for tICA, indicating the equiva-
lence of RMA and tICA, and that RMA in practice can be considered as tICA for the whitened
signals. Similar to tICA, symmetrization c(τ) = 1

2
(
c(τ) + cT(τ)

)
is also used in RMA. Both

tICA and RMA can obtain Tα or κα, which characterize a single exponential decay.
In principle, the results of these methods depend on the time lag parameter τ. The

rigid-body domain motion of lysine-, arginine- and ornithine-binding protein (LAO) was
analyzed by tICA in the ligand-free open state during a 600 ns MD using a 10 ns lag
time, and the IC vectors and relaxation rates were shown to be fairly robust on this time
scale [120]. tICA of LAO backbone dynamics for 1 µs was conducted using a 1 ns lag
time [121], whereas DMA of the folding/unfolding dynamics of the FiP35 WW domain
for two 100 µs MD trajectories used a 10 ns lag time. RMA of a 10-residue peptide,
chignolin, for a 750 ns MD simulation at 450 K in solution used a relatively short lag time
(10 ps) [127]. A two-step RMA was proposed and used to conduct a 2 µs MD trajectory of
hen egg-white lysozyme [128].

tICA projections of high-dimensional random walks were recently shown to resemble
cosine functions, be strongly dependent on the lag time and be very similar to those of 1 µs
MD trajectories of proteins, particularly for larger proteins [129]. Although the introduction
of a lag time allows tICA to provide richer information than PCA, care must be taken in
choosing the lag time.

Time-dependent PCA (TDPCA), proposed recently, conducts multiple PCAs for short
segments taken from a single MD trajectory by shifting the time window and allowing
overlap, which provides time-dependent eigenvalues and eigenvectors. This approach was
applied to a bulk water model and a coarse-grained protein-G model [130].

tICA and PCA are widely used as dimension reduction methods in the Markov state
model (MSM) [131–133]. Notably, kernel methods were combined with tICA to provide
kernel tICA (ktICA) for MSM [134]. The use of tICA-related methods in MSM is described
in detail in recent review articles on MSM [135,136].
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11. Conclusions

This review reported the development of PCA and related methods for analyzing
protein dynamics, from basic concepts to the latest advanced methods. Possible applications
of PCA are now very broad and many variations in PCA have been developed for specific
purposes. As is clear from this review, it is difficult to specify the best and most versatile
PCA method. Rather, the most suitable method should be chosen based on the purpose
of the simulation and analysis. In many of the examples described, improved methods
provided better performance than “classical” PCA. Additionally, the choice of original
coordinates is important, as shown in Section 6. In addition, different methods should be
tested, allowing the best method to be selected or to examine the validity of the obtained
conclusion.

It is worth mentioning that some of the advanced methods described in this review
do not directly employ original coordinates for large molecules but rather use a two-step
procedure. Specifically, standard PCA and dimensional reduction into a smaller subspace
are conducted first, then more advanced component analysis is conducted. For example,
FCA [98] and ISA [101] described in these references used 100 PCs. DCA described in [122]
used dimensional reduction by PCA but the number of PCs employed is unclear to us. The
top five PCs were used in kPCA [21]. Therefore, even in cases where more sophisticated
methods than standard PCA are used, PCA can be used for dimensionality reduction and
as a reference for the comparison of other PCA-related methods.
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