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Abstract: In a functional linear model (FLM) with scalar response, the parameter curve quantifies the
relationship between a functional explanatory variable and a scalar response. While these models
can be ill-posed, a penalized regression spline approach may be used to obtain an estimate of the
parameter curve. The penalized regression spline estimate will be dependent on the value of a
smoothing parameter. However, the ability to obtain a reasonable parameter curve estimate is reliant
on how much information is present in the covariate functions for estimating the parameter curve.
We propose to quantify the information present in the covariate functions to estimate the parameter
curve. In addition, we examine the influence of this information on the stability of the parameter
curve estimator and on the performance of smoothing parameter selection methods in a FLM with a
scalar response.
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1. Introduction

Functional data analysis (FDA) continues to be an active and growing area of research as
measurements from continuous processes are increasingly becoming prevalent in many fields.
This type of data is functional data because they can be viewed as samples from curves. Recent key
references in FDA include those of Hsing and Eubank [1] and Kokoszka and Reimherr [2]. Consider the
following linear model where the response is a scalar, but the explanatory variable is function:

yi = α +
∫
T

xi(t)β(t)dt + εi (1)

for i = 1, 2, . . . , n. The response yi is a scalar value, xi(t) is a function, α is the intercept, β(t) is
a parameter curve, and εi is uncorrelated random noise with zero mean and constant variance σ2.
Model (1) is also referred to as a scalar-on-function regression model. Here, we assume T = [0, 1],
but note that any closed continuous domain T in R can be transformed to [0, 1]. Further, we assume
that the covariate functions are known.

The objective for model (1) is to estimate the smooth parameter curve, β(t). The parameter
curve quantifies the relationship between the scalar response and a functional explanatory variable
in the presence of uncertainty. A review of some common approaches for estimating β(t) are
provided in [3], and these approaches depend on some variant of a tuning parameter (smoothing
parameter, number of knots, bandwidth, number of retained principal components, etc.), where the
size of the tuning parameter controls the trade-off between the goodness-of-fit and the smoothness
of the parameter curve estimate. Regarding inference for model (1), some recently proposed
methodologies include goodness-of-fit test [4] and testing linearity in a FLM with a scalar response [5].
Tekbudak et al. [6] provided a comparison of these and other recent testing procedures for linearity in
a FLM with a scalar response. In influence diagnostics, Cook’s distance [7] and Peña’s distance [8] are
extended to a FLM with a scalar response [9].
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In this paper, our aim is to quantify the amount of information present in the covariate functions
for estimating the parameter curve when β(t) is identifiable and assess the influence of the amount of
this information on the numerical stability of the parameter curve estimator. In addition, we review the
performance of different smoothing parameter selection methods based on the amount of information
present in the covariate functions for estimating β(t). To our knowledge, no study has explicitly focused
on this aspect of model (1). Here, the concept of the numerical stability (referred to simply as stability
hereafter) is tied to the idea that the parameter curve estimate will not substantially change when
the set of covariate functions are slightly altered. In Section 2, we define a measure, denoted ζ (x(t)),
to quantify the amount of information present in the covariate functions for estimating β(t) when
the parameter curve is identifiable. There are various computational methods to estimate the smooth
parameter curve, β(t), in model (1). Our approach is to estimate β(t) using penalized regression
spline estimation. Penalized regression spline estimation of β(t) and common smoothing parameter
selection methods are discussed in Section 3. Section 4 proposes measures to assess the performance of
smoothing parameter selection methods and the stability of a parameter curve estimator. A simulation
study that assesses the relationship between ζ (x(t)) and the stability of the parameter curve estimator,
as well as examines the performance of different smoothing parameter selection methods under varying
ζ (x(t))s, is given in Section 5. Section 6 provides a real data application of ζ (x(t)). We conclude with
discussion in Section 7.

2. Number of Independent Pieces of Information in a FLM

Model (1) can be ill-posed to varying degrees. An ill-posed problem refers to one for which no
solution exists, the solution is not unique, or the solution is unstable [10]. Cardot et al. [11] provided
theoretical conditions for the existence and uniqueness of a solution to (1), where the solution falls in
the space spanned by the eigenfunctions of the functional covariate’s covariance operator in which the
model space is a separable Hilbert space of square integrable functions defined on [0, 1]. In practice,
it is generally assumed that theoretical conditions for identifiability are satisfied when estimating β(t)
in model (1). In scalar-on-image regression models, Happ et al. [12] studied the impact of structural
assumptions of the parameter image, such as smoothness and sparsity, on the model estimates, as well
as measures to assess to what degree the assumptions are satisfied.

Our focus is assessing how much information is present in the covariate functions to estimate the
parameter curve in model (1) when the parameter curve is identifiable. To our knowledge, no prior
studies have given consideration to this aspect of model (1) and its influence on the stability of
the parameter curve estimator. Given the different areas of application of model (1), assessing this
relationship is essential as the stability of the parameter curve estimate would influence the reliability
of model uncertainty estimates. We aim to study this aspect of model (1) by proposing to quantify the
information present in the covariate functions to estimate the parameter curve. The idea underlying
this work is motivated by the work of Wahba [13].

Wahba [13] proposed the idea of the number of independent pieces of information to gauge if one
can obtain a reasonable solution in a type of general smoothing spline model (GSSM). In this context,
the number of eigenvalues provided by the eigendecomposition of the inner-product of the representer
of a bounded linear functional with itself when scaled by the reciprocal of the variance of the error
component in the model that are greater than one are considered to be the number of independent
pieces of information. If the number of independent pieces of information in a GSSM is large, then a
solution to a GSSM is recoverable. However, no explicit criterion was given to quantify how many
pieces are required. Motivated by this, we define a measure for the number of independent pieces of
information in the covariate functions for estimating β(t) in model (1). Let v1, . . . , vn be the eigenvalues
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from the eigendecomposition of
∫ 1

0 (x(t)) (x(t))T dt where x(t) = (x1(t), . . . , xn(t))T. We define the
number of independent pieces of information in the covariate functions for estimating β(t) as

ζ (x(t)) =
n

∑
i=1

I(vi/σ2>1), (2)

where σ2 is the variance of the error component in model (1). Measure (2) may be estimated by
plugging in an estimate of σ2. An estimate of σ2 is provide in Section 3.

As an illustration of (2), Figure 1 contains four different sets of covariate functions that vary in their
number of independent pieces of information. These covariate functions are used in a simulation study
in Section 5. Figures in this study were produced using the R packages ggplot2 [14] and cowplot [15].
If there is less information present in the covariate functions to estimate β(t) as quantified by (2),
then one would anticipate that a reasonable or stable parameter curve estimator would be less feasible.
To assess whether the size of ζ (x(t)) indicates the degree of stability of a solution to model (1),
we propose a stability measure of a parameter curve estimator in Section 4. We address the relationship
between ζ (x(t)) and the stability of the estimator in Section 5.
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Figure 1. Four different sets of covariate functions of size n = 25 and their respective number of
independent pieces of information when the signal-to-noise ratio is 0.10 in model (1).

3. Penalized Regression Spline Estimate of β(t)

Here, we review penalized regression spline estimation of the parameter curve β(t). Assuming
that the parameter curve is smooth in the sense that it lies in a Sobolev space of order 4, we may seek
an estimate of β(t) by minimizing

n

∑
i=1

(
yi − α−

∫ 1

0
xi(t)β(t)dt

)2

+ λ
∫ 1

0

[
β′′(t)

]2 dt, (3)
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where the term
∫ 1

0 (β′′(t))2 dt penalizes curvature in the estimate. To ease notation, from here forward,
we assume the intercept α = 0, but a non-zero α value is easily incorporated into the computational
approaches discussed.

We use the method of regularized basis functions [16], with a B-spline basis of order 4 to minimize
fitting criterion (3) with respect to the parameter curve β(t). With this approach, each covariate
function xi(t) and the parameter curve β(t) are represented using a linear combination of B-spline basis
functions. Let xi(t) be represented as ∑Jx

j=1 ki,jNj(t) for i = 1, . . . , n, where Nj(t) denotes the jth B-spline

function of order 4. Similarly, we represent β(t) as ∑
Jβ

j=1 cjNj(t). Now, let ∑Jx
j=1 ki,jNj(t) = K[i,]Nx(t)

where Nx(t) = [N1(t) · · ·NJx ]
T and K[i,] denotes the ith row of the matrix K that has elements

K[i,j] = ki,j. Similarly, let ∑
Jβ

j=1 cjNj(t) = Nβ(t)Tc where c = (c1, . . . , cJβ
)T. In this basis representation

framework, penalized least squares criterion (3) is re-expressed as finding c to minimize

(y−Mc)T (y−Mc) + λcTRc, (4)

where y = (y1, . . . , yn)T, M = K
∫ 1

0 Nx(t)NT
β (t)dt, and R =

∫ 1
0

[
N′′β(t)

] [
N′′β(t)

]T
dt. For a given λ,

an estimate of β(t) is obtained by minimizing (4) with respect to c via

β̂λ(t) = Nβ(t)Tĉλ

= Nβ(t)T
(

MTM + λR
)−1

MTy,

where the subscript λ signifies the dependence of the solution on the value of the smoothing parameter.
Various data-driven approaches have been proposed to select the smoothing parameter λ in (3).

These methods include Akaike’s information criterion, Akaike’s information criterion corrected,
cross-validation, generalized cross-validation criterion, L-curve criterion, restricted maximum
likelihood, Schwarz information criterion, etc. Since the size of λ controls the size of the penalty
in (3), most of these data-driven methods consist of two parts: one that measures the goodness of
fit of the model and another that quantifies the complexity of the parameter curve estimate. Thus,
these methods attempt to achieve an optimal balance between how well the model fits the data and the
smoothness of the parameter curve estimate (see [4,9,17–19], and others cited therein for examples of
recent studies that have used one or more of these criteria to select the smoothing parameter in models
of type (1).)

In our study, we restrict our discussion to the following commonly used data-driven criteria:
Akaike’s information criterion corrected (AICc), cross-validation (CV), Schwarz information criterion
(SIC), and the generalized cross-validation (GCV) criterion. The smoothing parameter selection
methods used in our study are by no means exhaustive, nor are they meant to be. Rather, our intent
is to explore if the amount of information present in the covariate functions for estimating β(t) may
effect the performance of given smoothing parameter selection method. For each criterion, the value
of the smoothing parameter λ that minimizes the criterion is assumed to be a reasonable value for λ.
Each criterion discussed here is dependent on the residuals sum of squares defined by

RSSλ =
n

∑
i=1

(
yi −

∫ 1

0
xi(t)β̂λ(t)dt

)2

and the smoother matrix, Sλ = M(MTM + λR)−1MT. With CV, for each λ, we obtain an estimate of
β(t) based on minimizing

N

∑
j=1,j 6=i

[
yj −

∫ 1

0
xj(t)β(t)dt

]2

+ λ
∫ 1

0

(
β′′(t)

)2 dt.
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Denote the minimizing solution by β̂
(−i)
λ (t), where (−i) symbolizes an estimate based on all

observations except for the ith case. Since there are n cases that one can delete for a given λ,
a cross-validation score is defined as

CV(λ) = N−1
N

∑
i=1

[
yi −

∫ 1

0
xi(t)β̂

(−i)
λ (t)dt

]2

.

A computationally friendly form of CV [16] is defined as

CV(λ) =
1
n

n

∑
i=1

(
yi −

∫ b
a xi(t)β̂λ(t)dt
1− Sii

)2

,

where Sii denotes the ith diagonal element of Sλ.
The GCV criterion [20] replaces the diagonal elements of the smoother matrix in the CV formula

by tr(Sλ)/n to obtain

GCV(λ) =
RSSλ

n (1− γd fλ)
2 , (5)

where d fλ = tr(Sλ). d fλ is referred to as the effective degrees of freedom [21]. RSSλ and d fλ are
commonly used to estimate σ2 via σ̂2

λ = RSSλ/(n − d fλ). An estimate of σ2 may then be used to
estimate ζ (x(t)) via

ζ̂ (x(t)) =
n

∑
i=1

I(vi/σ̂2>1). (6)

The term γ in (5) represents an inflation of the effective degrees of freedom (EDF) for γ > 1.
Inflation of the EDF is used as a measure to guard against GCV selecting a smoothing parameter that
over-fits the data in non-parametric models [22]. Some simulation studies suggest 1.4 to be reasonable
in non-parametric models [22,23]. The SIC criterion [24] may be expressed as

SIC(λ) = ln
(

1
n

RSSλ

)
+ d fλ

log(n)
n

.

The AICc criterion proposed by Hurvich et al. [25] penalizes more complex estimates of β(t) than does
the SIC for smaller sample sizes, and it may be defined as

AICc(λ) = ln
(

1
n

RSSλ

)
+

2(d fλ + 1)
n− d fλ − 2

.

4. Quantifying Stability of β̂(t) and the Performance of Smoothing Parameter Selection Methods

An ideal value for the smoothing parameter, call it λ?, may be considered one that minimizes the
integrated squared error,

ISE(β, β̂λ?) =
∫ 1

0

(
β(t)− β̂λ?(t)

)2
dt. (7)

To assess the performance of the smoothing parameter selection methods discussed in Section 3,
we use the median of the measure

K(β, β̂) =

∫ 1
0

(
β(t)− β̂(t)

)2
dt∫ 1

0

(
β(t)− β̂λ?(t)

)2
dt

. (8)

Note that any penalized regression spline estimate of the parameter curve will be dependent on
the chosen value of the smoothing parameter, but the notation of this dependence is suppressed for
better readability. Relative to β(t), the estimator β̂(t) is considered better the closer the median of (8)
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is to 1. The further away the median of (8) is from 1, the poorer is the performance of the smoothing
parameter selection method. Measure (8) was motivated by a measure proposed by Lee [26] to compare
smoothing parameter selection methods in smoothing splines.

To assess the stability of a parameter curve estimator, we propose a leave-one-out measure
motivated by the DFFITS [27] statistic. Specifically, we use the median of a leave-one-out integrated
squared error measure,

ISE(n)

(
β, β̂

(−i)
λ?

)
=

1
n

n

∑
i=1

∫ 1

0

(
β(t)− β̂

(−i)
λ? (t)

)2
/σ̂2(−i)dt, (9)

where β̂
(−i)
λ? (t) and σ̂

2(−i)
λ∗ represent estimators of β(t) and σ2, respectively, based on all observations

except for the ith case, and where λ? minimizes criterion (7). A large value of the median of (9) would
reflect a less stable estimator. If ζ (x(t)) is to be considered an appropriate measure of information
in the covariate functions for estimating β(t), then large values of ζ (x(t)) would be associated with
small values of the median of (9) in the sense that slightly altering the set of covariate functions did
not lead to large changes in the parameter curve estimate. Similarly, smaller values of ζ (x(t)) would
be associated with larger values of the median of (9). This is evaluated with a simulation study in the
next section.

5. A Simulation Study

Using a simulation study, we examine the stability of a parameter curve estimator and the
performance of the smoothing parameter selection methods at varying levels of ζ (x(t)). The sampling
distributions required to derive analytical formulas for the median of (8) and (9) are unattainable due to
the dependence of the parameter curve estimator on the smoothing parameter. Therefore, a simulation
estimate of the median of (8) is obtained by

SMK = Median
(
Kg(β, β̂)

)
. (10)

The subscript g denotes the gth simulated dataset. Similarly, we estimate the median of (9) via

SMISE(n) = Median
(

ISEg(β, β̂λ?))
)

. (11)

To obtain (10) and (11), simulated datasets are generated under various settings by the model,

yi =
∫ 1

0
xi(t)β(t)dt + εi,

for i = 1, . . . , n, where εis are assumed to independent and identically normal random variables
with mean 0 and standard deviation σ. Overall, under four different sets of covariate functions,
g = 2500 simulated datasets were generated for each combination of n ∈ {25, 50, 100},
xi(t) ∈ {xi1(t), xi2(t), xi3(t), xi4(t)}, β ∈ {β1(t), β2(t), β3(t)}, and σ is chosen for each setting to ensure
that κ ∈ {.10, .20}, where κ refers to the signal-to-noise ratio. As defined by Febrero-Bande et al. [9],
κ = σ/ψ, where ψ denotes the standard deviation of

∫ 1
0 xi(t)β(t)dt for i = 1, ..., n. The different sets of

covariate functions used in this study were first produced on a discretized scale of 50 equally spaced
values. To ensure sufficient flexibility in their functional representations, the parameter curve and
the set covariate functions are represented as functions using the approach described in Section 3,
with Jβ = 50 and Jx = 50, respectively.
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The simulations are performed using R [28], along with the extension and usage of code from
the R package fda [29]. In addition, the R packages dplyr [30] and tidyr [31] were used for data
management. The parameter curves in this study (shown in Figure 2) are defined as

β1(t) =
1

23
Beta[20,5](t) +

1
3

Beta[12,12](t) +
1
3

Beta[7,30](t),

β2(t) =
7

10
Beta[3,10](t) +

3
10

Beta[7,2](t),

β3(t) =
1

10
Beta[2,5](t) +

9
10

Beta[5,2](t),

where

Beta[q,p](t) =
Γ(q + p)
Γ(q)Γ(p)

tq−1(1− t)p−1 for t ∈ [0, 1],

and they were chosen to assess the performance of (10) and (11) at varying levels of complexity of the
parameter curve in terms of their approximate curvature.
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Figure 2. The parameter curves β1(t) (left), β2(t) (middle), and β3(t) (right) used in the
simulation study.

The different sets of covariate functions were generated under different conditions to ensure
varying levels of ζ (x(t)). The first set of covariate curves (xi1(t)s) are produced by generating
realizations from a normal random variable with mean 0 and standard deviation η that are randomly
shifted about the y-axis by η, where η ∼ Uni f (1, 30). We denote this first set of covariate curves
as Covariate Set 1. Covariate Set 2 (xi2(t)s) is created by generating realizations from a Gaussian
process having an exponential covariogram with variance parameter 10 and scale parameter 0.4.
Covariate Set 3 (xi3(t)s) is produced by generating realizations from a mixture of beta random variables
randomly shifted about the y-axis. Covariate Set 4 (xi4(t)s) is obtained by generating realizations from
a Brownian motion process with variance parameter 2.7. As an illustration, the four different sets of
covariate functions used in this study are shown in Figure 1 for a sample of size n = 25 at a specified
signal-to-noise ratio.

Tables 1–3 provide the SMK when the parameter curves are β1(t), β2(t), and β3(t), respectively,
under each simulation setting and smoothing parameter selection method. The results are presented
on the log scale to better depict the differences. Note that a small value of the SMK does not reflect
whether a reasonable estimator of β(t) was obtained but rather reflects the performance of the given
smoothing parameter selection method relative to criterion (7). Some of the differences between the
smallest and the next smallest values of the SMK across the smoothing parameter selection methods for
a given simulation scenario may not appear large. To better distinguish between the smallest and the
next smallest values of the SMK, pairwise comparisons of the SMKs in a given simulation setting were
performed using Mood’s median test with the Benjamini and Hochberg [32] correction as implemented
in the R package RVAideMemoire [33] at significance level 0.05. Here, we consider the performance
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of a smoothing parameter selection method to be favorable or best if it obtains the lowest SMK or
an SMK that is not significantly different from the lowest SMK. We now summarize the favorable
smoothing parameter selection method(s) that were most common across different simulation settings.

Under Covariate Set 1, SIC consistently obtained the lowest SMK across across all simulation
settings. Under Covariate Set 2 at n = 25, GCVγ=1.4, AICc, and SIC consistently preformed best under
the different simulation settings. However, SIC tended to performed best across all simulation settings
at n = 50. At n = 100 and the lower κ, AICc generally performed best across the three parameter
curves. At the higher κ, SIC was the better smoothing parameter selection method. When the covariate
functions assume the form of Covariate Set 3, AICc and GCVγ=1.4 tended to perform just as well or
better than the other smoothing parameter selection methods across all settings. Under Covariate Set 4
with n = 25, AICc was consistently among the better methods for all settings. For n = 50, GCV and
AICc were favorable under parameter curves β1(t) and β2(t), whereas SIC was favorable under β3(t).
When n = 100, AICc performed best or just as well as the other methods.

Table 1. The SMK under each smoothing parameter selection criterion for each simulation setting
under parameter curve β1(t). A + next to a SMK for a given sample size indicates the lowest SMK
across the different smoothing parameter selection methods. A ∗ next to an SMK for a given sample
size indicates that the SMK was not significantly different from lowest SMK.

n ζ (x(t)) CV GCV GCV
γ=1.4

AICC SIC

C
ov

ar
ia

te
Se

t1 κ = 0.10 25 3 0.193 0.180 0.169 ∗ 0.171 ∗ 0.168 +

50 3 0.193 0.182 0.177 ∗ 0.180 0.173 +

100 3 0.184 ∗ 0.182 ∗ 0.178 + 0.181 ∗ 0.178 +

κ = 0.20 25 2 0.190 0.183 0.139 ∗ 0.151 ∗ 0.138 +

50 2 0.184 0.173 0.149 ∗ 0.164 0.138 +

100 3 0.174 0.174 0.168 ∗ 0.173 0.158 +

C
ov

ar
ia

te
Se

t2 κ = 0.10 25 6 0.372 0.363 0.279 + 0.297 ∗ 0.289 ∗

50 9 0.478 ∗ 0.478 ∗ 0.450 + 0.459 ∗ 0.454 ∗

100 14 0.536 ∗ 0.529 ∗ 0.559 ∗ 0.509 + 0.719

κ = 0.20 25 3 0.165 0.146 0.086 + 0.099 ∗ 0.088 ∗

50 5 0.276 0.276 0.136 0.220 0.095 +

100 8 0.449 0.453 0.373 0.445 0.261 +

C
ov

ar
ia

te
Se

t3 κ = 0.10 25 8 0.717 0.611 ∗ 0.697 0.604 + 0.711
50 10 0.412 0.400 0.357 ∗ 0.352 + 0.412
100 10 0.310 0.309 0.230 + 0.269 0.265

κ = 0.20 25 7 0.671 0.665 0.597 ∗ 0.580 + 0.628 ∗

50 8 0.566 ∗ 0.538 ∗ 0.553 ∗ 0.515 + 0.639
100 9 0.446 ∗ 0.446 ∗ 0.409 + 0.422 ∗ 0.617

C
ov

ar
ia

te
Se

t4 κ = 0.10 25 14 0.604 ∗ 0.601 ∗ 0.590 ∗ 0.553 + 0.654
50 17 0.483 0.455 ∗ 0.460 0.411 + 0.599
100 21 0.350 0.348 0.293 + 0.305 ∗ 0.441

κ = 0.20 25 10 0.539 0.521 0.417 ∗ 0.410 + 0.455 ∗

50 12 0.581 ∗ 0.591 ∗ 0.555 ∗ 0.537 + 0.596 ∗

100 16 0.550 ∗ 0.549 ∗ 0.538 ∗ 0.523 + 0.739

Covariate Sets 1 and 2 tended to have a lower ζ (x(t)) in our study for a given sample size and
κ, whereas Covariate Sets 3 and 4 had a higher ζ (x(t)). While a perfect one-to-one relationship does
not appear evident between ζ (x(t)) and the performance of a smoothing parameter selection method,
SIC tended to perform more favorably when ζ (x(t)) ranged between two and nine across the three
different parameter curves. For the higher values of ζ (x(t)), AICc tended to perform just as well or
better than the other methods more often than not. In addition, note that GCVγ=1.4 obtained a lower
SMK than GCV for almost all simulation settings.
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Table 2. Analogous to Table 1 for parameter curve β2(t).

n ζ (x(t)) CV GCV GCV
γ=1.4

AICC SIC

C
ov

ar
ia

te
Se

t1 κ = 0.10 25 3 0.059 0.055 0.047 + 0.049 ∗ 0.047 +

50 3 0.279 0.260 0.079 0.191 0.065 +

100 3 0.621 0.619 0.494 0.604 0.289 +

κ = 0.20 25 2 0.052 0.050 0.040 ∗ 0.043 ∗ 0.039 +

50 3 0.070 0.063 0.055 ∗ 0.059 0.051 +

100 3 0.298 0.281 0.080 0.248 0.063 +

C
ov

ar
ia

te
Se

t2 κ = 0.10 25 6 0.289 0.307 0.215 + 0.239 ∗ 0.222 ∗

50 9 0.397 0.398 0.332 ∗ 0.367 0.298 +

100 14 0.567 ∗ 0.560 ∗ 0.633 0.542 + 0.827

κ = 0.20 25 3 0.133 0.115 0.048 + 0.057 ∗ 0.049 ∗

50 5 0.188 0.176 0.078 0.146 0.051 +

100 8 0.387 0.382 0.297 0.363 0.222 +

C
ov

ar
ia

te
Se

t3 κ = 0.10 25 8 0.488 ∗ 0.495 ∗ 0.498 ∗ 0.464 + 0.515 ∗

50 10 0.416 0.427 0.383 ∗ 0.363 + 0.451
100 10 0.413 ∗ 0.417 ∗ 0.392 ∗ 0.378 + 0.521

κ = 0.20 25 7 0.407 0.452 0.360 + 0.361 ∗ 0.386 ∗

50 8 0.446 0.418 ∗ 0.411 ∗ 0.382 + 0.512
100 9 0.482 ∗ 0.487 ∗ 0.429 + 0.439 ∗ 0.633

C
ov

ar
ia

te
Se

t4 κ = 0.10 25 16 0.425 + 0.435 ∗ 0.478 0.426 ∗ 0.496
50 20 0.349 ∗ 0.344 ∗ 0.390 0.324 + 0.496
100 23 0.394 ∗ 0.407 ∗ 0.472 0.377 + 0.731

κ = 0.20 25 12 0.477 0.481 0.449 ∗ 0.426 + 0.476
50 16 0.440 ∗ 0.425 ∗ 0.513 0.413 + 0.645
100 17 0.481 ∗ 0.471 ∗ 0.519 0.429 + 0.874

Table 3. Analogous to Table 1 for parameter curve β3(t).

n ζ (x(t)) CV GCV GCV
γ=1.4

AICC SIC

C
ov

ar
ia

te
Se

t1 κ = 0.10 25 3 0.095 0.091 0.081 + 0.085 ∗ 0.081 +

50 3 0.088 0.086 0.077 ∗ 0.082 0.072 +

100 3 0.086 0.087 0.082 ∗ 0.086 0.075 +

κ = 0.20 25 2 0.093 0.089 0.069 + 0.075 ∗ 0.069 +

50 3 0.094 0.092 0.078 0.087 0.068 +

100 3 0.093 0.092 0.084 0.091 0.075 +

C
ov

ar
ia

te
Se

t2 κ = 0.10 25 6 0.077 0.072 0.060 + 0.063 ∗ 0.061 ∗

50 9 0.091 0.088 0.071 ∗ 0.077 0.068 +

100 14 0.316 0.321 0.273 0.302 0.245 +

κ = 0.20 25 3 0.075 0.069 0.046 + 0.052 ∗ 0.046 +

50 5 0.072 0.071 0.055 ∗ 0.064 0.052 +

100 8 0.100 0.097 0.080 ∗ 0.092 0.073 +

C
ov

ar
ia

te
Se

t3 κ = 0.10 25 8 0.358 0.347 0.308 ∗ 0.307 + 0.323 ∗

50 10 0.332 0.321 ∗ 0.332 0.296 + 0.386
100 10 0.335 ∗ 0.340 ∗ 0.301 + 0.311 ∗ 0.409

κ = 0.20 25 7 0.160 0.156 0.082 + 0.092 ∗ 0.095 ∗

50 8 0.302 0.293 0.246 ∗ 0.261 0.235 +

100 9 0.353 0.343 ∗ 0.325 ∗ 0.322 + 0.376

C
ov

ar
ia

te
Se

t4 κ = 0.10 25 15 0.538 ∗ 0.504 + 0.538 ∗ 0.520 ∗ 0.550 ∗

50 19 0.583 ∗ 0.555 + 0.772 0.612 ∗ 0.869
100 23 0.377 ∗ 0.389 ∗ 0.560 0.360 + 1.158

κ = 0.20 25 11 0.192 0.189 0.081 + 0.088 ∗ 0.098 ∗

50 14 0.334 0.335 0.213 0.261 0.175 +

100 17 0.465 ∗ 0.466 ∗ 0.450 ∗ 0.450 ∗ 0.432 +
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Table 4 shows the SMISE(n) under each simulation setting. The results are presented on the log
scale to better depict the differences. The results show similar patterns or trends under each κ. For a
given parameter curve and sample size, the SMISE(n) decreases as ζ (x(t)) increases. Thus, the more
information present in the covariate functions for estimating the parameter curve, the more stable
the parameter curve estimator. We also note that, for a given covariate set, an increase in the sample
size corresponds to a decrease in the SMISE(n) and to a non-decreasing ζ (x(t)). This reassures that
ζ (x(t)) may be viewed as a measure of the amount of information present in the covariate functions
in the sense that under a given covariate set, more observed data tends to increase ζ (x(t)) to varying
degrees and provide a smaller SMISE(n). However, a large sample size does not imply a large ζ (x(t)),
as illustrated by Covariate Set 1. Similarly, a small sample size does not imply a low ζ (x(t)), such as
under Covariate Set 4. The differences in results under each κ are in part due to the scaling involved in
(9) by σ̂2(−i), where σ̂2(−i) would tend to be higher under κ = 0.20.

Recall that for smoothing parameter selection under a covariate set with a low ζ (x(t)),
SIC performed best or just as well as the other smoothing parameter selection methods. For covariate
sets with a higher ζ (x(t)), AICc was generally among the better smoothing parameter selection
methods. To visualize the impact of ζ (x(t)) on the stability of the parameter curve estimate, Figure 3
shows the resulting approximate expected value of the parameter curve estimator (computed across all
parameter curve estimates in the simulation study) plus or minus two times the approximate standard
deviation of the parameter curve estimator when using the preferred smoothing parameter selection
method suggested by Tables 1–3. For brevity, we only present the results for n = 25. The parameter
curve estimator, under Covariate Set 1, showed much higher variability than under the other covariate
sets. Further, the covariate set with a higher ζ (x(t)) (Covariate Set 4) reflected the lowest variability.
Similar behavior was exhibited at n = 50 and n = 100. This behavior is consistent with the behavior of
the SMISE(n) for a given covariate set and sample size. This reflects that a low ζ (x(t)) is associated
with a less stable solution, which in turn may substantially increase the variability of a parameter
curve estimator, where such variability would not be reflected in an observed confidence interval for
the parameter curve.

In practice, ζ (x(t)) will need to be estimated due to its dependence on σ2. An estimate of this
measure, ζ̂ (x(t)), is provided in (6) using the estimate of σ2 provided in Section 3. The estimate
of σ2 will be dependent on a chosen value of the smoothing parameter. To better understand the
impact of the chosen value of the smoothing parameter on (6), Tables 5–7 provide the average value
of (6), computed as the average over all simulated datasets, when parameter curves are β1(t), β2(t),
and β3(t), respectively, under each simulation setting and smoothing parameter selection method.
On average, (6) provides a reasonable estimate of ζ (x(t)) in the simulation settings considered.

Table 4. The SMISE(n) under each simulation setting. The size of ζ (x(t)) is shown below each
respective SMISE(n) in parentheses.

n x1(t) x2(t) x3(t) x4(t) x1(t) x2(t) x3(t) x4(t) x1(t) x2(t) x3(t) x4(t)
β1(t) β2(t) β3(t)

κ = 0.10 κ = 0.10 κ = 0.10

25 10.44 5.13 4.83 2.49 11.12 5.76 5.56 3.51 11.32 5.56 5.91 3.62
(3) (6) (8) (14) (3) (6) (8) (16) (3) (6) (8) (15)

50 9.66 4.41 3.07 1.28 10.27 5.02 3.94 2.21 10.61 5.01 4.67 2.54
(3) (9) (10) (17) (3) (9) (10) (20) (3) (9) (10) (19)

100 9.31 3.94 2.67 0.61 9.18 4.44 3.29 1.51 10.46 4.85 4.47 1.85
(3) (14) (10) (21) (3) (14) (10) (23) (3) (14) (10) (23)

κ = 0.20 κ = 0.20 κ = 0.20

25 8.95 4.01 3.86 1.74 9.96 4.69 4.48 3.02 9.97 4.34 4.28 2.79
(2) (3) (7) (10) (2) (3) (7) (12) (2) (3) (7) (11)

50 8.36 3.49 2.65 0.67 9.28 4.00 3.29 1.71 9.11 3.88 3.57 1.82
(2) (5) (8) (12) (3) (5) (8) (16) (3) (5) (8) (14)

100 8.06 3.17 1.99 0.18 8.61 3.74 2.79 1.07 8.93 3.74 3.38 1.27
(3) (8) (9) (16) (3) (8) (9) (17) (3) (8) (9) (17)
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Figure 3. In each panel, the solid line represents the true parameter curve. The orange shaded region
corresponds to the approximate expected value plus or minus two times the approximate standard
deviation of the parameter curve estimator.

Table 5. The average value of (6) computed across all simulated datasets for each simulation setting
under parameter curve β1(t).

n ζ (x(t)) CV GCV GCV
γ=1.4

AICC SIC

C
ov

ar
ia

te
Se

t1 κ = 0.10 25 3 2.71 2.71 2.71 2.71 2.71
50 3 3.00 3.00 3.00 3.00 3.00
100 3 3.00 3.00 3.00 3.00 3.00

κ = 0.20 25 2 2.00 2.00 2.00 2.00 2.00
50 2 2.49 2.50 2.49 2.49 2.49
100 3 3.00 3.00 3.00 3.00 3.00

C
ov

ar
ia

te
Se

t2 κ = 0.10 25 6 6.16 6.19 6.05 6.08 6.08
50 9 9.21 9.22 9.14 9.19 9.10
100 14 14.18 14.18 14.14 14.17 14.09

κ = 0.20 25 3 3.76 3.77 3.72 3.73 3.72
50 5 5.33 5.33 5.30 5.32 5.29
100 8 7.87 7.88 7.86 7.87 7.84

C
ov

ar
ia

te
Se

t3 κ = 0.10 25 8 7.92 7.99 7.82 7.85 7.90
50 10 9.78 9.78 9.74 9.76 9.72
100 10 10.32 10.32 10.30 10.31 10.27

κ = 0.20 25 7 6.80 6.82 6.76 6.77 6.78
50 8 7.74 7.75 7.69 7.72 7.65
100 9 9.00 9.00 9.00 9.00 9.00

C
ov

ar
ia

te
Se

t4 κ = 0.10 25 14 14.84 14.87 14.58 14.61 14.76
50 17 17.43 17.43 17.30 17.36 17.25
100 21 21.19 21.19 21.14 21.17 21.11

κ = 0.20 25 10 10.32 10.35 10.07 10.10 10.19
50 12 12.99 13.00 12.87 12.93 12.80
100 16 15.99 15.99 15.96 15.98 15.92
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Table 6. Analogous to Table 5 for parameter curve β2(t).

n ζ (x(t)) CV GCV GCV
γ=1.4

AICC SIC

C
ov

ar
ia

te
Se

t1 κ = 0.10 25 3 2.96 2.96 2.96 2.96 2.96
50 3 3.00 3.00 3.00 3.00 3.00
100 3 3.00 3.00 3.00 3.00 3.00

κ = 0.20 25 2 2.01 2.01 2.01 2.01 2.01
50 3 2.99 2.99 2.99 2.99 2.99
100 3 3.00 3.00 3.00 3.00 3.00

C
ov

ar
ia

te
Se

t2 κ = 0.10 25 6 6.18 6.17 6.06 6.08 6.08
50 9 8.96 8.96 8.88 8.92 8.84
100 14 14.01 14.01 13.96 14.00 13.88

κ = 0.20 25 3 3.74 3.75 3.69 3.70 3.70
50 5 5.17 5.16 5.12 5.14 5.10
100 8 7.69 7.69 7.67 7.69 7.65

C
ov

ar
ia

te
Se

t3 κ = 0.10 25 8 8.08 8.16 8.01 8.03 8.09
50 10 9.81 9.81 9.77 9.79 9.75
100 10 10.34 10.34 10.32 10.33 10.29

κ = 0.20 25 7 6.85 6.87 6.83 6.84 6.84
50 8 7.81 7.82 7.75 7.79 7.69
100 9 9.00 9.00 9.00 9.00 9.00

C
ov

ar
ia

te
Se

t4 κ = 0.10 25 16 16.62 16.65 16.28 16.31 16.64
50 20 20.33 20.34 20.13 20.21 20.08
100 23 23.35 23.35 23.30 23.32 23.25

κ = 0.20 25 12 12.68 12.71 12.37 12.41 12.55
50 16 15.48 15.49 15.32 15.40 15.24
100 17 17.68 17.68 17.58 17.64 17.48

Table 7. Analogous to Table 5 for parameter curve β3(t).

n ζ (x(t)) CV GCV GCV
γ=1.4

AICC SIC

C
ov

ar
ia

te
Se

t1 κ = 0.10 25 3 2.93 2.93 2.93 2.93 2.93
50 3 3.00 3.00 3.00 3.00 3.00
100 3 3.00 3.00 3.00 3.00 3.00

κ = 0.20 25 2 2.00 2.00 2.00 2.00 2.00
50 3 2.90 2.90 2.90 2.90 2.90
100 3 3.00 3.00 3.00 3.00 3.00

C
ov

ar
ia

te
Se

t2 κ = 0.10 25 6 6.11 6.12 6.02 6.04 6.04
50 9 9.08 9.08 9.02 9.05 9.00
100 14 14.05 14.05 14.00 14.04 13.97

κ = 0.20 25 3 3.77 3.77 3.72 3.73 3.73
50 5 5.22 5.22 5.18 5.20 5.17
100 8 7.75 7.75 7.73 7.75 7.72

C
ov

ar
ia

te
Se

t3 κ = 0.10 25 8 7.87 7.94 7.77 7.79 7.84
50 10 9.77 9.78 9.71 9.75 9.65
100 10 10.32 10.32 10.29 10.31 10.25

κ = 0.20 25 7 6.82 6.83 6.79 6.80 6.80
50 8 7.77 7.78 7.70 7.74 7.66
100 9 9.00 9.00 9.00 9.00 9.00

C
ov

ar
ia

te
Se

t4 κ = 0.10 25 15 15.71 15.75 15.38 15.41 15.59
50 19 18.98 19.00 18.73 18.86 18.63
100 23 22.59 22.60 22.47 22.56 22.26

κ = 0.20 25 11 11.70 11.73 11.45 11.48 11.56
50 14 14.36 14.36 14.26 14.30 14.22
100 17 16.94 16.94 16.91 16.93 16.88
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6. A Real Data Illustration

In this section, we illustrate the use of ζ (x(t)) with two real datasets: the gasoline dataset
described by Kokoszka and Reimherr [2] and used by Reiss and Ogden [18] and the streamflow
and precipitation data described by Masselot et al. [34]. Model (1) was applied to both datasets
to model the relationship between a functional covariate and scalar response. The gasoline data
consist of near-infrared reflectance spectra of 60 gasoline samples (measured in 2-nm intervals from
900 to 1700 nm), as well as the octane numbers for each gasoline sample. These data are available
in the R package refund [35]. The aim of modeling these data using model (1) is to determine the
association between the octane rating (response variable) and the near-infrared reflectance spectra
curves (covariate curves). We represent the near-infrared reflectance spectra discretized measurements
and the parameter curve as functions using the methods described in Section 3, with Jx = 50 and
Jβ = 50. The top left panel of Figure 4 contains the near-infrared reflectance spectra curves, xi(ω)

for i = 1, . . . , 60. The estimated number of independent pieces of information in these covariate
functions for estimating parameter curve is 5. Since ζ̂ (x(t)) = 5, we use the SIC for smoothing
parameter selection because it performed just as well or better in our simulation study when ζ (x(t))
was small. The upper right panel shows the parameter curve estimate along with 95% point-wise
confidence intervals for β(ω) when using SIC for smoothing parameter selection. Note that the
estimated parameter curve has a positive effect in the intervals (950, 1125) and (1325, 1475), implying
that higher values of near-infrared reflectance spectra are associated with higher octane levels in
these intervals. Lower values of near-infrared reflectance spectra are associated with lower octane
levels in the intervals (1175, 1325) and (1525, 1650). For a given λ, approximate point-wise confidence
intervals may be constructed using the variance of the parameter curve estimator, σ̂2NT

β (t)TTTNβ(t),

where T =
(

MMT + λR
)−1

MT [16]. Since ζ (x(t)) is low, our simulation study suggest that the
variability of the parameter curve is greater than what is reflected by the confidence interval.

We briefly summarize the streamflow and precipitation data, referring to Masselot et al. [34] for
further information on the study and the corresponding data. The data consist of yearly observations
of the sum daily streamflow values from 1 July to 31 October, and yearly precipitation time series from
1 June to 31 October for years 1981–2012. These data were measured in areas of the Dartmouth River
located in a region of the province of Quebec, Canada. In this study, investigators were interested in
estimating and forecasting yearly total streamflow (scalar response) using the corresponding yearly
precipitation profile (functional covariate). The precipitation time series and the parameter curve are
represented as functions using the methods described in Section 3, with Jx = 153 and Jβ = 22. However,
since precipitation measurements are non-negative, we constrain the functional representation of the
precipitation measurements to be non-negative by imposing non-negative constraints on the B-spline
coefficients. The bottom left panel of Figure 4 contains the precipitation curves, xi(t) for i = 1, . . . , 153,
covering the daily time domain from June to October in a given year. For these data, ζ̂ (x(t)) = 29.
We use the AICc since it performed just as well or better than the other methods in our simulation
study when ζ (x(t)) was large. The lower right panel shows the parameter curve estimate along with
95% point-wise confidence intervals for β(t) when using AICc for smoothing parameter selection. The
estimated parameter curve shows that the effect of precipitation on total streamflow is negative in June,
as well as in October. Due to the size of the ζ̂ (x(t)), our simulation study suggests that this parameter
curve estimate is more stable than the one estimated for the gasoline data.
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Figure 4. (top left) The reflectance spectra curves; (top right) the parameter curve estimate displaying
the association between the octane rating and the near-infrared reflectance spectra curves is shown
in the, together with a 95% point-wise confidence interval; and (bottom) analogous graphs for the
streamflow and precipitation data.

7. Discussion

We present a measure, ζ (x(t)), for a FLM with a scalar response to determine how much
information is present in the covariate curves for estimating the parameter curve β(t) when the
parameter curve is identifiable. To estimate the parameter curve in model (1), penalized regression
spline estimation is used, and we summarize several commonly used methods for selecting the
smoothing parameter. To assess the stability of the parameter curve estimator under varying levels of
ζ (x(t)), we examine the SMISE(n) of a parameter curve estimator. The results show that the greater is
ζ (x(t)), the more stable is the parameter curve estimator in that it produces a smaller SMISE(n) than
when ζ (x(t)) is smaller. Further, we assess the impact of ζ (x(t)) on smoothing parameter selection,
and, while a one-to-one relationship is not clear between ζ (x(t)) and the performance of a smoothing
selection method, SIC tends to perform just as well as or better than other methods when ζ (x(t))
is small, whereas AICc tends to perform just as well as or better than other methods when ζ (x(t))
is large.

Overall, our simulation study showed that the size of ζ (x(t)) impacts both the stability of
a parameter curve estimator and the performance of the smoothing parameter selection methods.
Future work will study if these results are consistent under alternative parameter curve estimation
procedures. An interesting direction for future work is to investigate if shape constraints on the
parameter curve could serve as a remedial measure for improving stability of the parameter curve
estimator, particularly when ζ (x(t)) is low. Scenarios in which shape constraints are imposed on
the parameter curve do arise in practice in a FLM with a scalar response (see [36,37] for some recent
examples). Identifying problematic data in functional regression models remains critical and an
on-going challenge. We hope this study encourages others to consider approximating ζ (x(t)) when
applying model (1) so that the amount of information present in the covariate curves for estimating
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parameter curve can be gauged. This, in turn, may provide guidance in choosing a smoothing
parameter selection method, as well as considering the stability of the parameter curve estimate.
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