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Abstract: This paper explores climate changes in Italy over the last 30 years. The data come from the
European observation gridded dataset and are concerned with the temperature throughout the country.
We focus our attention on two Italian regions (Lombardy in northern Italy and Campania in southern
Italy) and on two particular years roughly thirty years apart (1986 and 2015). Our primary aim is
to assess the most important changes in temperature in Italy using some variants of correspondence
analysis for ordered categorical variables. Such variants are based on a decomposition method using
orthogonal polynomials instead of singular vectors and allow one to easily classify the meteorological
station observations. A simulation study, based on bootstrap sampling, is undertaken to demonstrate
the reliability of the results.

Keywords: climate change; temperature; correspondence analysis; orthogonal polynomials;
linear classification

1. Introduction

For over a century now, the scientific community has undertaken a huge amount of
research focusing on the many aspects of climate change, which remains one of the most
challenging problems that humanity shall face in the immediate future. Climate change,
or global warming, refers, in part, to the rise in average surface temperatures on Earth.
Scientists maintain that climate change is due primarily to the human use of fossil fuels
which releases carbon dioxide and other greenhouse gases into the air. The gases trap heat
within the atmosphere, which can have a range of effects on ecosystems [1–3]. Indeed, it is
now well known that climate change is primarily caused by the actions of mankind and
has reached a sizeable scale and affects the whole planet [4–7]. In the Fifth Assessment
Report (AR5 2013–2014), the United Nations Intergovernmental Panel on Climate Change
(IPCC) states that: Warming of the climate system is unequivocal, and since the 1950s, many of
the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have
warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations
of greenhouse gases have increased (https://www.ipcc.ch/report/ar5/ accessed on 31 De-
cember 2020). IPCC investigations are conducted from temperature and other physical
variable observations collected from the mid-19th century through to the present [8]. These
observations are obtained mainly through direct measurements and from remote sensing
from satellites and other platforms. In particular in Italy, the time series of temperature
averages and trends, calculated from 1961 to 2004 [9,10] through three (linear, piecewise
and sloped steps) trend regression models of a dataset, show a negative trend for the
period 1961–1981, a more pronounced positive trend from 1981 to 2004, and an increase
in the average daily temperature range for the whole period. Tomozeiu et al. [11] predict
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temperature changes over different Italian agricultural areas, during the periods 2021–2050
and 2071–2100 against the base period 1961–1990, showing that a temperature increase
of about 2 ◦C could be expected during 2021–2050, and between 2.5 ◦C and 4.5 ◦C dur-
ing 2071–2100. Simolo et al. [12] investigate changes in the probability density functions
and the probability of moderate extremes for maximum and minimum daily temperature
anomalies in Italy from 1951 up to 2008. Their findings suggested that a simple, rigid shift
in the density functions alone (without invoking any change in shape) provides evidence
of changes in moderate extremes.

No studies exist that demonstrate the utility of correspondence analysis for investi-
gating climate change in Italy. This, it seems, is primarily because the focus of analyzing
such changes has involved time series modeling of temperature or precipitation for which
suitable predictive models exist in the literature [12–15]. Indeed, correspondence analysis
has been considered when investigating climatic change from a socio-economic perspective.
For example, Ali et al. [16] used multiple correspondence analysis to analyze car users’
attitudes to climate change in UK by referring to the British Social Attitude Survey (BSA)
datasets of 2011 and 2014. Brunette et al. [17] analyzed the consequences of climatic changes
on forest adaptation. However, a variant of correspondence analysis, called detrended corre-
spondence analysis [18], has been used to summarize ecological changes through time in
Mexico [19], since climatic and environmental changes correspond to changes in both the
biotic communities and the fossil assemblages they produce.

To the best of our knowledge, our research here is unique since previous studies have
focused on applying time series modeling techniques to study temperature changes in
Italy for predictive and probabilistic purposes [12,15]. This paper uses correspondence
analysis to highlight the correspondence that exists between temperature change and the
month in two moments in time (1986 and 2015) and across two different regions of Italy that
are characterized by different geographical conditions. Indeed, analyzing the association
between temperature and the month of the year can lead to significant changes on a range
of agricultural systems (such as viticulture, wheat, fruit and olive cultivation). Therefore,
even if the spatial distribution of warming is projected to be quite uniform over Italy by the
end of the century [11], highlighting any spatial and seasonal differences that exist over the
Italian regions can be useful for addressing suitable agricultural policies, given the climatic
vulnerability of a region.

In this paper some climatological investigations are carried out using two variants
of ordered correspondence analysis [20,21] for providing an automatic classification of
meteorological stations with respect to classes of temperature that have been observed
monthly during the first and last year of reference, i.e., 1986 and 2015. We also visually
investigate the association between temperature and these yearly time periods using
polynomial biplots [22,23]. Finally, a simulation study based on bootstrapped sampling
is proposed to show the reliability of the classification results. The paper is organized as
follows. Section 2 briefly describes some variants of correspondence analysis for ordered
variables suitable, for classifying the meteorological station observations and studying the
association between the temperature and months, and for portraying temperature trend in
a specific year. Section 3 describes the data preparation and gives the classification of the
Italian meteorological stations using the polynomials and biplots of the temperature data.
Section 4 show the reliability of ordered correspondence analysis through simulated data.
Some final remarks are made in Section 5.

2. Methodology: Simple and Multiple Correspondence Analysis for Ordered Variables

To analyze the association between the months that span over time and classes formed
from the temperature change, we consider two recent methodologies, both of which are
based on orthogonal polynomials for categorical variables [24–27]. These methodologies are
referred to as ordered multiple correspondence analysis and doubly ordered correspondence analysis.
As discussed in Lombardo and Meulman [21], ordered multiple correspondence analysis
has the advantage, when compared with the classical approach, to multiple correspondence
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analysis [28,29], of automatically classifying the subjects/individuals/observations in as
many clusters as the number of ordered categories; for our study the number of clusters is
equivalent to the number of temperature classes. On the other hand, Beh [30] and Beh and
Lombardo [22] presented doubly ordered correspondence analysis to portray the trends of
ordered variables through polynomial biplots and, by doing so, adding new findings to the
interpretation of the association between ordered categorical variables [23]. Therefore, after
performing ordered multiple correspondence analysis for classifying the meteorological
stations of two specific years (1986 and 2015) in different classes (highlighting the higher
percentages of meteorological stations getting different classes of temperature in 2015
than 1986) we perform doubly ordered correspondence analysis to highlight those months
that are mainly associated with higher temperature values. In brief, Section 2.1 discusses
ordered multiple correspondence analysis and Section 2.2 provides a brief overview of
doubly ordered correspondence analysis.

2.1. Ordered Multiple Correspondence Analysis

Ordered multiple correspondence analysis (OMCA) has been proposed to study
the association among multiple ordered variables [21]. With respect to classic multiple
correspondence analysis [28,29,31,32], OMCA is based on an alternative method of de-
composition, called hybrid decomposition, that combines the well known singular value
decomposition [33] with the less well known bivariate moment decomposition, discussed
by [30]. The data are stored in an indicator (or binary) super-matrix, X = [X1|...|Xp] of p
ordered categorical variables observed on the same set of n observations. The hybrid de-
composition is based on the amalgamation of singular vectors and orthogonal polynomials,
the latter of which is generated by means of the recurrence formula of Emerson [26]. The
orthogonal polynomials are directly linked to the moments of an ordered variable [23,34].
Let Ψ be the diagonal super-matrix of polynomials and D the diagonal super-matrix of
weights, that are given by the sums of the columns of X. The hybrid decomposition (HD)
on the scaled super-indicator matrix X is defined as:

HD
(

1
p
√

n
XD−1/2

)
= ΦZΨ′ . (1)

where Φ is the matrix of singular vectors that are associated with the rows of X, and subject
to the usual orthonormality constraint. Similarly, Ψ is the matrix of the orthogonal polyno-
mials associated with the p ordered variables, subject to the orthonormality constraint with
respect to the super-matrix D. In Equation (1) the matrix Z = 1

p
√

n Φ′XD−1/2Ψ represents
the link between the singular vectors and the polynomials.

A set of orthogonal polynomials are generated for each variable we are studying.
For variable k with jk categories, there are jk − 1 non-trivial polynomials, the first of which
is linear, the second quadratic and so on. The total inertia, i.e., the variable association
linked to a chi-squared statistic, can be expressed in terms of the Z matrix, so we can
explore more about the statistical significance of the association between the variables
using other features of OMCA. However, for the sake of brevity, we focus here on the main
benefit of OMCA, that is, the automatic classification of the meteorological stations given
in Tables 3 and 4. Indeed, one of the major advantages of ordered multiple correspondence
analysis is concerned with the coordinates, or latent variables, of the individuals; the
coordinates for the individuals obtained using orthogonal polynomials allow the analyst
to objectively arrange individuals in distinct clusters. For each polynomial, the number
of distinct scores is equal to the number of categories. For example, we can group those
individuals with equal scores along the first, or linear, polynomial axis. Therefore, we
can say that the first cluster includes those Italian meteorological stations with the lowest
temperature class (corresponding to the lowest linear polynomial score), the second cluster
concerns those station points with the second lowest temperature value (corresponding to
the second lowest linear polynomial score), and so on.
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After clustering the meteorological stations along the linear polynomial axis, we
explore those months that are associated with the ordered classes of temperature using
polynomial biplots. For this reason, we perform doubly ordered correspondence analysis.

2.2. Doubly Ordered Correspondence Analysis

When variables have ordered categories, a variant of correspondence analysis has
been developed that is particularly suitable for visualizing linear, quadratic or higher
order trends of ordered categories. This special variant, called doubly ordered correspondence
analysis, uses the bivariate moment decomposition that makes use of Emerson’s orthogonal
polynomials rather than the singular value decomposition for the ordered variables. Instead
of using the indicator super-matrix X as in ordered multiple correspondence analysis, we
now consider a two-way contingency table N of dimension I× J that is a cross-classification
of two variables consisting of I row categories and J column categories, respectively. Let
the matrix of the joint relative frequencies be P =

(
pij
)

so that ∑I
i=1 ∑J

j=1 pij = 1. Define

the ith row marginal proportion and the jth column marginal proportion, pi• = ∑J
j=1 pij

and p•j = ∑I
i=1 pij, respectively, as general elements of the diagonal matrices DI and DJ

and of the vectors r and c. To study the association between rows and columns, the Pearson
chi-squared statistic can be considered and is defined as

X2 = n
I

∑
i=1

J

∑
j=1

pi•p•j

(
pij

pi•p•j
− 1

)2

. (2)

In order to graphically depict the association between the rows and the columns
(classes of temperature and months) in a low dimensional space, we may consider the
bivariate moment decomposition of terms from Pearson’s statistic that we now briefly
describe. After computing the orthogonal polynomials for each ordered variable (classes of
temperature and months), we perform the bivariate moment decomposition (BMD) so that

BMD
[
D−1

I

(
P− rc‘

)
D−1

J

]
= AZBT (3)

where A and B are the row and column polynomial matrices, respectively, and defined
using Emerson’s recurrence formulae [26], and Z is the matrix of the generalized cor-
relations [34,35]. The row and column polynomials are orthonormal with respect to the
weight matrices DI and DJ , respectively. The construction of the row and column matrices
of polynomials A and B requires the specification of the marginal proportions and of a
priori ordered scores to reflect the ordinal structure of the row and column variables. The
generalized correlation matrix, Z, in the BMD reflects the various sources of association
between the variables and are derived using Emerson’s orthogonal polynomials; for further
detail, see [22]. For example, when the row and column scores are defined as consecutive
integers, such that sX(i) = i (for i = 1, ..., I) and sY(j) = j (for j = 1, ..., J), then z11 is
Pearson’s product moment correlation of P and describes the linear-by-linear association
between the row and column categories. Similarly, z12 describes the linear-by-quadratic
association between the row and column categories and is a measure of the correlation
between any change in the location of the row categories and dispersion of the column
categories. As for OMCA, the advantage of this strategy is that a formal statistical test of
the X2 statistic and the sources of association (polynomial components of inertia) can be
made. To test the statistical significance of the total inertia we can compare the chi-squared
statistic with the χ2 distribution with (I − 1)(J − 1) degree of freedom and each term of
Z can be assessed for statistical significance; see, for example, ref. [22] for further details.
However, here we prefer to focus on the graphical representation of the association.
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Polynomial Biplots

In the literature [22,23,30] polynomial biplots have been proposed to graphically rep-
resent trends of ordered categorical variables which can be treated as being symmetrically
or asymmetrically associated. When constructing a polynomial biplot, the ordered row and
column categories can be displayed in a single plot since the row and column coordinates
are computed with respect to the same set of polynomial axes. For example, in a polynomial
row metric preserving (or row isometric) biplot, the column categories are visually depicted
using standard polynomial coordinates and the rows are depicted using principal polyno-
mial. For a polynomial column metric preserving (or column isometric) biplot, the column
categories are visually depicted using principal polynomial coordinates while the rows
are visualized using standard polynomial coordinates. However, the coordinates for both
the row and column categories are computed using the same set of orthogonal polyno-
mial axes. For example, when using the first two polynomials, the standard coordinates
will be ordered on the linear polynomial axis and the origin will represent the mean of
the ordered categories. Along the second polynomial axis, the standard coordinates will
show a parabolic trend and the associated polynomial principal category coordinates will
depend on them as well as on the generalized correlations. This particular interpretation
is not present in the classical forms of correspondence analysis that use singular value
decomposition. Hence, the coordinates and their proximity from the origin using ordered
correspondence analysis have a distinctive interpretation from those used in the classical
approaches to correspondence analysis.

3. Application: Climate Change
3.1. Data Preparation

The original data were available in NetCDF format. The NetCDF file has a vectorial
structure: there are three vectors of attributes (latitude and longitude to set a point in the
space, plus a time vector that is a sequence of integers counting the number of days since
1 January 1950) and a very long vector of numbers that represents the specific climate
variable of interest. Once the data were structured in a tabular format, the next step
was to develop an Extract, Transform and Load (ETL) transformation using the Pentaho
Data Integration tool (Available online: http://community.pentaho.com/projects/data-
integration/ (accessed on 8 May 2012)). The main scope of the transformation was to
discretize monthly mean temperatures from a set of meteorological stations (grid points)
of two specific Italian regions (i.e., Lombardy and Campania) for studying the changing
seasonal temperature distributions using variants of correspondence analysis [22]. The
analysis of climate change in Italy is based on data from the European observation gridded
dataset (E-OBS). This dataset is a free set of reference climatic data widely used for the
assessment of climate modelling in Europe. The E-OBS dataset contains daily observations
of precipitation, temperature and pressure at sea level across Europe from 1 January 1950 to
31 August 2016, based on European Climate Assessment & Dataset (ECA&D) information
(Available online: http://www.ecad.eu/ (accessed on 31 December 2020)). Specifically,
the E-OBS dataset contains gridded data for 5 climatic features: daily mean temperature,
daily minimum temperature, daily maximum temperature, daily precipitation total and
daily average sea level pressure (available since version 14.0 of E-OBS). In particular, we
recovered values of mean daily temperature in degree Celsius for Italy in 1986 and 2015.
For the sake of brevity, our analysis of the data will be confined to the regions of Lombardy
and Campania. In Tables 1 and 2, we summarize the monthly average temperature in
1986 and 2015 of Lombardy and Campania, respectively; in bold are the most relevant
temperature increases in 2015. In particular, Table 1 shows that, in Lombardy in 2015,
the largest increase in average temperature (an increase of 2 ◦C from the mean temperature
recorded in 1986 was statistically significant with a p-value = 0.111) occurred over January,
February, April, July and December.

Figure 1 shows the temperature averages over 42 meteorologic stations during the
12 months of the year 1986 (left side of Figure 1-plot a) and 2015 (right side of Figure 1-

http://community.pentaho.com/projects/data-integration/
http://community.pentaho.com/projects/data-integration/
http://www.ecad.eu/
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plot b). Observe that the highest temperature values are recorded during August 1986.
Different from 2015, the highest temperature values are registered in July 2015.
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Figure 1. Average temperature in Lombardy over 12 months, recorded in 42 meteorologic stations. Plot a refers to the year
1986 and plot b to the year 2015.

Table 1. Average temperature over 42 meteorologic stations of Lombardy in 1986 and 2015. The
values highlighted in bold show the most relevant temperature increases in 2015.

Month 1986 2015

January −0.09 2.88
February −1.2 2.55

March 4.94 7.26
April 8.36 11.19
May 16.56 15.73
June 17.94 20.25
July 19.81 24.49

August 19.94 21.63
September 16.42 16.35

October 12.19 11.46
November 6.1 7.84
December 1.29 4.29

Table 2 summarizes the mean monthly temperature in Campania and shows that the
largest increases were observed in 2015 during June, July, and December. In 2015, an in-
crease of 1.9 ◦C from the mean temperature recorded in 1986 was statistically significant
with a p-value = 0.104.

Figure 2 shows the average temperature over 23 meteorologic stations during the
twelve months of 1986 (left side of Figure 2—plot a) and of 2015 (right side of Figure 2—plot
b). Observe that, also in Campania, the highest temperature values are recorded during
August 1986, while in 2015, the peak of average temperature values are registered in July.
Comparing Figures 1 and 2, we can observe that the distribution of average temperature
values over the respective meteorologic stations has a different shape, showing more
variability in Lombardy than in Campania, which is not surprising given the morphological
diversity of the two regions.
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Table 2. Average temperature over 23 meteorologic stations of Campania in 1986 and 2015. The
values highlighted in bold show the most relevant temperature increases in 2015.

Month 1986 2015

January 6.44 8.11
February 5.36 7.27

March 9.63 9.98
April 12.57 13.03
May 18.31 18.30
June 18.95 21.76
July 22.55 26.75

August 24.54 25.37
September 20.26 21.75

October 16.67 16.57
November 11.28 13.32
December 6.42 10.57
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Figure 2. Average temperature in Campania over 12 months recorded in 23 meteorologic stations. Plot a: referred to the
year 1986 and plot b to the year 2015

To further investigate the issues concerned with climate change in these two Italian
regions, we considering classes of temperature that have been observed monthly in 1986
and 2015, and perform some variants of ordered correspondence analysis.

Note that the extremes of temperature classes for both regions was determined using
the quantiles of the temperature distribution (where the quantiles are cut points dividing
the range of a probability distribution into continuous intervals with equal probabilities).
A two-way contingency table was then constructed for each Italian region, which cross-
tabulates the temperature classes and the months, for two specific years (1986 and 2015).
From this contingency table a super-indicator table was created to perform ordered multiple
correspondence analysis (OMCA).

By first performing OMCA, we are able to classify the meteorologic stations according
to the temperature classes. In doing so, we can highlight the increased number of meteoro-
logical stations in 2015 with respect to 1986 for a particular range of temperature values;
see Tables 3 and 4. Secondly, we perform doubly ordered correspondence analysis (DOCA)
for identifying those months that observed, for a particular temperature class, an increased
number of meteorological stations in 2015 when compared with their number in 1986.

The temperature distribution is slightly different for the two regions due to differ-
ences in the specification of the data. The two correspondence analysis variants, OMCA
and DOCA, were implemented using the R packages MCAvariants and CAvariants [36],
respectively; these packages are available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package (accessed on 31 December 2020)) .

https://CRAN.R-project.org/package
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3.2. Lombardy Region

The Lombardy region, owing to its peculiar geography (extended mountain areas,
steep valleys and high-flow rivers) and to its socio-economic features (employment, health,
agriculture, industry), is subjected to a high vulnerability to the impacts of climate change.
Past trends and future projections suggest a marked rise in mean temperature, as high-
lighted in Table 3.

Table 3. Percentage of meteorological stations in temperature classes for Lombardy in 1986 and 2015.
Those percentages of meteorological stations that are higher than 1% in 2015 with respect to 1986 are
shown in bold.

Temperature 1986 2015

(−10.9, −1.6] 7.5 6.2
(−1.6, 1] 7.4 6.6
(1, 2.3] 10.2 5.5

(2.3, 3.5] 5.7 6.6
(3.5, 4.5] 5.6 6.9
(4.5, 5.7] 4.8 12
(5.7, 6.7] 5.8 3.5
(6.7, 8.2] 9 4.4
(8.2, 9.5] 5.8 8.3

(9.5, 10.9] 6.2 8.1
(10.9, 12.2] 6.5 6.1
(12.2, 13.4] 5.8 6.8
(13.4, 14.6] 3.2 5
(14.6, 16.4] 1.3 1.4
(16.4, 18.1] 1.9 2.7
(18.1, 19.5] 3.9 3
(19.5, 20.9] 3.7 2.7
(20.9, 22.6] 2.7 1.6
(22.6, 24.1] 3 2.6

The Lombardy region includes 42 meteorological monitoring stations so that in every
12 month period we have a total of 504 observations. For this, the temperature is divided
into the 19 classes, detailed in Table 3. The column variable, Month, comprises 12 months,
from January to December. By using OMCA, we first calculate the indicator super-matrix
(with p = 2 number of ordered variables) according to the ordered temperature classes and
the month of reference. As a result, 504 meteorological stations were objectively classified
in 19 clusters.

In Table 3, we highlight in bold the highest percentages of meteorological stations
recorded during 2015. It is clear that there was an increase (higher than 1%) in the number
of meteorological stations in 2015 compared with 1986 for only some temperature classes.
In particular there was an increase in the number of stations that recorded temperatures
that lie within the following critical classes (3.5, 4.5], (4.5, 5.7], (8.2, 9.5], (9.5, 10.9], (12.2,
13.4], (13.4, 14.6] .

In order to determine those months that were mainly characterized by these temper-
ature changes, we perform doubly ordered correspondence analysis (DOCA) using the
two-way contingency tables for 1986 and 2015.

The total inertia, or strength of association between the temperature and month is
formally tested using the X2 statistic. Its value is 1589.29 with 198 degrees of freedom,
and thus, there exists a statistically significant association between the two variables. While
we have not shown it here, all polynomials for both variables are statistically significant for
modeling the association.

To portray the association between the temperature classes and the months, we
construct polynomial biplots. On the left and right side of Figure 3, plot a and plot b
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show the polynomial biplots for the year 1986 and 2015, respectively. Plot a of Figure 3
highlights the strong association between the temperature class (19.5, 20.9] and the months
of July and August, while, plot b of Figure 3 shows that, in 2015, the association between
the temperature classes and months has changed. In particular, plot b of Figure 3 shows
that the temperature class (19.5, 20.9] is strongly associated with the months of June
and August. Furthermore, the cold months of January and February are associated with
the warmer temperature class (2.3, 3.5] (instead of (−1.6, 1] in 1986). With respect to the
critical temperature classes, plot b of Figure 3 shows a very strong association between
the temperature class (3.5, 4.5] and December, and between (12.2, 13.4] and April. In
agreement with the findings discussed by [11], the average temperature increase recorded
in Lombardy of about 2 ◦C in April, and of about 2.2 ◦C in December shows statistically
significant results.
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Figure 3. DOCA polynomial biplot. Temperature and month association in Lombardy. Plot a refers
to the year 1986 and plot b to the year 2015.

Understanding those critical months that experienced a climatic change can allow for
an assessment of the vulnerability of the socio-economic and natural systems. Doing so
paves the way for the implementation of a regional adaptation strategy.

3.3. Campania Region

The region of Campania, which lies in the southern part of the Italian peninsula, has
an area of about 13,500 km2 , and a coastline along the Tyrrhenian Sea. The landscape is
dominated by the Apennine mountain ranges, reaching altitudes of 1000–2000 m, and ac-
counts for 32% of the land area. The region of Campania has a Mediterranean climate,
affected by the Azores, Siberian and South African anticyclones and the Aleutian and
Icelandic lows, with hot, dry summers and moderately cool rainy winters. For Campania
from January to December, temperature values are divided into the 20 classes detailed in
Table 4. The Campania region includes 23 meteorological stations collecting data during
the 12 months of the year for a total of 276 observations in a year. We consider again 1986
and 2015 as our reference years. By performing OMCA, with p = 2 ordered categorical
variables (the temperature and the months of the year) we have 276 observations that were
automatically classified. Of course, this classification does not give the same result for
both years, so that a comparison of the distribution differences are of particular interest for
defining good climate adaptation practices. In Table 4, the percentages of meteorological
stations higher than 1% in 2015 with respect to 1986 are highlighted in bold. Additionally,
in Campania, the increase in the number (percentages) of observations in 2015 with respect

Figure 3. DOCA polynomial biplot. Temperature and month association in Lombardy. Plot a refers
to the year 1986 and plot b to the year 2015.

Understanding those critical months that experienced a climatic change can allow for
an assessment of the vulnerability of the socio-economic and natural systems. Doing so
paves the way for the implementation of a regional adaptation strategy.

3.3. Campania Region

The region of Campania, which lies in the southern part of the Italian peninsula, has
an area of about 13,500 km2 , and a coastline along the Tyrrhenian Sea. The landscape is
dominated by the Apennine mountain ranges, reaching altitudes of 1000–2000 m, and ac-
counts for 32% of the land area. The region of Campania has a Mediterranean climate,
affected by the Azores, Siberian and South African anticyclones and the Aleutian and
Icelandic lows, with hot, dry summers and moderately cool rainy winters. For Campania
from January to December, temperature values are divided into the 20 classes detailed in
Table 4. The Campania region includes 23 meteorological stations collecting data during
the 12 months of the year for a total of 276 observations in a year. We consider again 1986
and 2015 as our reference years. By performing OMCA, with p = 2 ordered categorical
variables (the temperature and the months of the year) we have 276 observations that were
automatically classified. Of course, this classification does not give the same result for
both years, so that a comparison of the distribution differences are of particular interest for
defining good climate adaptation practices. In Table 4, the percentages of meteorological
stations higher than 1% in 2015 with respect to 1986 are highlighted in bold. Additionally,
in Campania, the increase in the number (percentages) of observations in 2015 with respect
to 1986 concerns only some classes of temperature; those being (8.7, 9.6], (9.6, 10.4], (11.2,
12.2], (14.5, 16] and (25.1, 28.8], of course, these critical classes of temperature of Campania
are not the same of Lombardy.
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To identify what months were strongly associated with these critical temperature
classes that recorded an increase in the number of meteorological stations over the period,
we perform DOCA.

The total inertia is 1092.1 for the two-way contingency table formed by cross-classifying
temperature class and month for Campania in 2015 with 209 degrees of freedom, there ex-
ists a strong association between the temperature class values and the months. To visually
represent the association between the two variables in 1986 and 2015, we consider the two
plots of Figure 4. Plot a of Figure 4 shows the visual summary of the association for 1986.
It shows that there exists a strong association between the temperature class (21.8, 22.9]
and the month of July, while plot b of Figure 4 shows, for 2015, the association between
July and the warmer temperature class (25.1, 28.8]. These conclusions are in agreement
with the findings discussed by [11], the average test of temperature recorded in Campania
shows an increase of about 4 ◦C in July and December that is statistically significant. To
analyze the correspondence between those months that were mainly characterized by these
temperature changes, we perform doubly ordered correspondence analysis (DOCA) using
two-way contingency tables for 1986 and 2015. Furthermore, we observe the association
between the critical temperature classes in Campania (which recorded an increased number
of observations in 2015) with the months; plot b of Figure 4 shows a strong association
between (8.7, 9.6] and January, (9.6, 10.4] and March, (11.2, 12.2] and April, (14.5, 16] and
October and (25.1, 28.8] and July.

Note also that, in 2015 (plot b of Figure 4), the variability of the warmer temperature
values (see class (25.1, 28.8]) is lower when compared with 1986 (plot a of Figure 4) being
the polynomial coordinate along the second axis lower. Conversely, the variability in the
colder temperature values (see class (1.7, 5.8]) has increased relative to the temperatures
recorded in 1986. These results highlight a shift in the temperature distribution and is in
agreement with previous studies on temperature extremes in Italy [12].

Table 4. Percentage of meteorological stations in temperature classes for Campania in 1986 and 2015.
Those percentages of meteorological stations higher than 1% in 2015 with respect to 1986 are in bold.

Temperature 1986 2015

(1.7, 5.8] 9.8 5.1
(5.8, 7] 7.4 6
(7, 7.9] 6.9 6.2

(7.9, 8.7] 6.2 6.3
(8.7, 9.6] 5.6 6.7

(9.6, 10.4] 5.4 7.4
(10.4, 11.2] 6.2 6.2
(11.2, 12.2] 6.5 7.8
(12.2, 13.3] 6.7 6.7
(13.3, 14.5] 6.2 7.1
(14.5, 16] 5.6 7.1
(16, 17.4] 6.9 6.2

(17.4, 18.5] 3.6 2.5
(18.5, 19.6] 3.8 1.8
(19.6, 20.7] 2.9 2.7
(20.7, 21.8] 2.5 1.4
(21.8, 22.9] 2 2.3
(22.9, 23.9] 2.7 2.5
(23.9, 25.1] 1.8 2
(25.1, 28.8] 1.3 6
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Figure 4. DOCA polynomial biplot. Temperature and month association in Campania. Plot a is
reflects the year 1986 and plot b the year 2015.

4. Simulation: Climate Change

A simulation study has been performed to assess the reliability and stability of the
clusters for Lombardy and Campania regions. A total of 1000 bootstrap samples have been
generated from the original temperature data in order that 1000 contingency tables were
generated by fixing the table marginals and hypothesizing the multinomial distribution of
the categorical variables. What is interesting is that the average number of observations for
each class of temperature is equal to the original average in each class for both regions.

Table 5 includes the average and standard deviations of meteorological stations for all
classes of temperature in the Lombardy region in 1986 and 2015.

Figure 4. DOCA polynomial biplot. Temperature and month association in Campania. Plot a is
reflects the year 1986 and plot b the year 2015.

4. Simulation: Climate Change

A simulation study has been performed to assess the reliability and stability of the
clusters for Lombardy and Campania regions. A total of 1000 bootstrap samples have been
generated from the original temperature data in order that 1000 contingency tables were
generated by fixing the table marginals and hypothesizing the multinomial distribution of
the categorical variables. What is interesting is that the average number of observations for
each class of temperature is equal to the original average in each class for both regions.

Table 5 includes the average and standard deviations of meteorological stations for all
classes of temperature in the Lombardy region in 1986 and 2015.

Table 5. Data Simulated: Mean and standard deviation of 1000 meteorological bootstrapped observa-
tions of Lombardy for temperature classes in 1986 and 2015. The mean values highlighted in italics
are slightly different from the original table. The standard deviations (sd) highlighted in bold are
those of the critical temperature classes.

Temperature 1986-Mean 1986-sd 2015-Mean 2015-sd

1 (−10.9, −1.6] 7.5 0.8 6.2 0.7
2 (-1.6, 1] 7.5 0.7 6.6 0.7
3 (1, 2.3] 10.2 0.7 5.5 0.6
4 (2.3, 3.5] 5.7 0.6 6.6 0.6
5 (3.5, 4.5] 5.7 0.6 6.9 0.6
6 (4.5, 5.7] 5.0 0.6 11.9 0.8
7 (5.7, 6.7] 5.8 0.6 3.5 0.5
8 (6.7, 8.2] 9.0 0.7 4.4 0.5
9 (8.2, 9.5] 5.6 0.6 8.4 0.7
10 (9.5, 10.9] 6.4 0.6 8.0 0.7
11 (10.9, 12.2] 6.3 0.6 6.3 0.6
12 (12.2, 13.4] 5.8 0.6 6.8 0.6
13 (13.4, 14.6] 3.2 0.5 5.0 0.5
14 (14.6, 16.4] 1.3 0.3 1.4 0.3
15 (16.4, 18.1] 2.1 0.4 2.5 0.4
16 (18.1, 19.5] 3.9 0.5 2.9 0.4
17 (19.5, 20.9] 3.7 0.5 2.7 0.4
18 (20.9, 22.6] 2.7 0.4 1.6 0.3
19 (22.6, 24.1] 3 0.4 2.6 0.4
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Given the findings of the bootstrapped data in Table 5, we can confirm the reliability
of the percentage of meteorological stations in each temperature class for Lombardy and
for the both reference years. Only small differences between the bootstrapped and the
original data table for some temperature classes are highlighted in italics.

Similarly, Table 6 shows the average values and standard deviations of the number
(percentage) of meteorological stations in Campania for all classes of temperature in the
two reference years. The average of 1000 percentages for each temperature class (columns 1
and 3) is identical to the original percentage of each temperture class given in Table 4. As a
result of the summaries in Table 6, there are no mean values marked in italics suggesting
that the simulated results compare very well with the observed temperature recordings.
Furthermore, the standard deviation for each temperature class is very low, confirming the
reliability of the percentages of meteorological stations for each temperature class.

Table 6. Data Simulated: Mean and standard deviation of 1000 meteorological bootstrapped observa-
tions of Campania for temperature classes in 1986 and 2015. The standard deviations (sd) highlighted
in bold are those of the critical temperature classes.

Temperature 1986-mean 1986-sd 2015-mean 2015-sd

1 (1.7, 5.8] 9.8 0.8 5.1 0.6
2 (5.8, 7] 7.4 0.8 6 0.7
3 (7, 7.9] 6.9 0.7 6.2 0.6
4 (7.9, 8.7] 6.2 0.6 6.3 0.6
5 (8.7, 9.6] 5.6 0.6 6.7 0.6
6 (9.6, 10.4] 5.4 0.6 7.4 0.7
7 (10.4, 11.2] 6.2 0.6 6.2 0.6
8 (11.2, 12.2] 6.5 0.6 7.8 0.7
9 (12.2, 13.3] 6.7 0.6 6.7 0.6
10 (13.3, 14.5] 6.2 0.6 7.1 0.6
11 (14.5, 16] 5.6 0.6 7.1 0.7
12 (16, 17.4] 6.9 0.6 6.2 0.6
13 (17.4, 18.5] 3.6 0.5 2.5 0.4
14 (18.5, 19.6] 3.8 0.5 1.8 0.3
15 (19.6, 20.7] 2.9 0.4 2.7 0.4
16 (20.7, 21.8] 2.5 0.4 1.4 0.3
17 (21.8, 22.9] 2 0.4 2.3 0.4
18 (22.9, 23.9] 2.7 0.4 2.5 0.4
19 (23.9, 25.1] 1.8 0.3 2 0.4
20 (25.1, 28.8] 1.3 0.3 6 0.6

From the simulation study, Figures 5 and 6 illustrate the 19 box-plots concerning
the 19 classes of average temperature for the Lombardy region in 1986 and 2015. These
figures show the presence of many outliers as well as the different distribution of the
meteorological stations between the two years of reference. For example, the median of the
observations in class 6 is greatly increased from 1986 to 2015.

For the Campania region, Figures 7 and 8 show the 20 box-plots concerning the
observation numbers and the 20 classes of temperature in 1986 and 2015. Additionally, for
this region, the climate change between the two reference years for the different temperature
classes is very evident. For example, the median of the observations in class 20 (highest
temperature) is greatly increased from 1986 to 2015.
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Figure 5. Lombardy, bootstrapped observations referring to 1986. Distribution of the number of
meteorological stations in each of the 19 temperature classes.
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Figure 6. Lombardy, bootstrapped observations referring to 2015. Distribution of the number of
meteorological stations in each of the 19 temperature classes.
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Figure 7. Campania, bootstrapped observations referring to 1986. Distribution of the number of
meteorological stations in each of the 20 temperature classes.
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Figure 8. Campania, bootstrapped observations referring to 2015. Distribution of the number of
meteorological stations in each of the 20 temperature classes.

5. Conclusions

The challenge of climate change requires a clear response strategy: apart from the
adoption of measures to reduce greenhouse gas emissions (i.e., mitigation policies), there
should be more actions taken to reduce the vulnerability of the local natural and socio-
economic systems. Doing so will increase their resilience towards the inevitable impacts of
a changing climate (i.e., adaptation measures). Climate change and its impact on growth
and development in recent years is of central importance in the overall context of spatial
planning, given the territorial vulnerability arising from risks associated with flooding
and desertification. While analyzing data concerned with climate change we demonstrate
the utility of some variants of ordered correspondence analysis for objectively classifying
meteorological station observations [21] and visually exploring the total association using
polynomial biplots. Indeed, the orthogonal polynomials [24–26] allow the analyst to
portray the complex dependence associations that exist in the ordered data. Polynomial
biplots are visual displays that can be constructed as part of an investigation of the data
using ordered correspondence analysis [23,30]. Such plots visually portray the association
between the classes of temperature and months of a specific year of study. As a result,
the visualization of the changes in temperature for particular months allows for one to
assess the most important differences across Italy and over time. The reliability of the
ordered correspondence analysis results have been assessed through bootstrapped samples.
Here, the aim was to describe the main results of the statistical analysis of temperature
changes in two morphologically different regions of Italy (Lombardy and Campania) using
variants of correspondence analysis. This analysis has shown that the average temperature
increase recorded in Campania and Lombardy is in agreement with the findings discussed
by Tomozeiu et al. [11]. By observing plot b of Figure 4, it shows that the variability of
the warmer temperature values (class (25.1, 28.8]) is lower in 2015 than in 1986 (plot a of
Figure 4) being the polynomial coordinate along the second axis lower. On the other hand,
plot b of Figure 3 shows that the variability of the colder temperature values (class (−10.9,
−1.6]) is higher in 2015 than in 1986 (plot a of Figure 3). For Campania, these findings show
a shift in the temperature distribution in agreement with previous studies on temperature
extremes in Italy [12].

The application of correspondence analysis to the data examined in this paper suggests
that a strong association exists between temperature class and the month of the year and
gaining a deeper understanding of this association can be useful to policy makers for
addressing suitable climate and agricultural policies. Indeed, by better understanding of
the increasing climatic changes being observed around the world, not just in Italy, using
visual strategies such as correspondence analysis (as we did above) can better prepare
the agricultural industry. For example, such strategies can help support farmers with the
adaptation of new farming practices (such as providing ad hoc insurance mechanisms or
tools for fighting plant diseases).
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