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Abstract: Multivariate nonnegative orthant data are real vectors bounded to the left by the null vector,
and they can be continuous, discrete or mixed. We first review the recent relative variability indexes
for multivariate nonnegative continuous and count distributions. As a prelude, the classification
of two comparable distributions having the same mean vector is done through under-, equi- and
over-variability with respect to the reference distribution. Multivariate associated kernel estimators
are then reviewed with new proposals that can accommodate any nonnegative orthant dataset. We
focus on bandwidth matrix selections by adaptive and local Bayesian methods for semicontinuous
and counting supports, respectively. We finally introduce a flexible semiparametric approach for
estimating all these distributions on nonnegative supports. The corresponding estimator is directed
by a given parametric part, and a nonparametric part which is a weight function to be estimated
through multivariate associated kernels. A diagnostic model is also discussed to make an appropriate
choice between the parametric, semiparametric and nonparametric approaches. The retention of pure
nonparametric means the inconvenience of parametric part used in the modelization. Multivariate
real data examples in semicontinuous setup as reliability are gradually considered to illustrate the
proposed approach. Concluding remarks are made for extension to other multiple functions.

Keywords: associated kernel; Bayesian selector; dispersion index; model diagnostics; multivariate
distribution; variation index; weighted distribution

MSC: 62G07; 62G20; 62G99; 62H10; 62H12

1. Introduction

The d-variate nonnegative orthant data on T+
d ⊆ [0,∞)d are real d-vectors bounded to

the left by the null vector 0d, and they can be continuous, discrete (e.g., count, categorical)
or mixed. For simplicity, we here assume either T+

d = [0,∞)d for semicontinuous or
T+

d = Nd := {0, 1, 2, . . .}d for counting; and, we then omit both setups of categorial and
mixed which can be a mix of discrete and continuous data (e.g., [1]) or other time scales
(see, e.g., [2]). Modeling such datasets of T+

d requires nonnegative orthant distributions
which are generally not easy to handle in practical data analysis. The baseline parametric
distribution (e.g., [3–5]) for the analysis of nonnegative continuous data is the exponential
distribution (e.g., in Reliability) and that of count data is the Poisson one. However, there
intrinsic assumptions of the two first moments are often not realistic for many applications.
The nonparametric topic of associated kernels, which is adaptable to any support T+

d
of probability density or mass function (pdmf), is widely studied in very recent years.
We can refer to [6–15] for general results and more specific developments on associated
kernel orthant distributions using classical cross-validation and Bayesian methods to select
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bandwidth matrices. Thus, a natural question of flexible semiparametric modeling now
arises for all these multivariate orthant datasets.

Indeed, we first need a review of the recent relative variability indexes for multivariate
semicontinuous ([16]) and count ([17]) distributions. The infinite number and complexity of
multivariate parametric distributions require the study of different indexes for comparisons
and discriminations between them. Simple classifications of two comparable distributions
are done through under-, equi- and over-variability with respect to the reference distribution.
We refer to [18] and references therein for univariate categorical data which does not yet
have its multivariate version. We then survey multivariate associated kernels that can
accommodate any nonnegative orthant dataset. Most useful families shall be pointed out,
mainly as a product of univariate associated kernels and including properties and construc-
tions. We shall focus on bandwidth matrix selections by Bayesian methods. Finally, we have
to introduce a flexible semiparametric approach for estimating multivariate nonnegative
orthant distributions. Following Hjort and Glad [19] for classical kernels, the corresponding
estimator shall be directed by a given parametric part, and a nonparametric part which
is a weight function to be estimated through multivariate associated kernels. What does
it mean for a diagnostic model to make an appropriate choice between the parametric,
semiparametric and nonparametric approaches in this multivariate framework? Such a
discussion is to highlight practical improvements on standard nonparametric methods for
multivariate semicontinuous datasets, through the use of a reasonable parametric-start
description. See, for instance, [20–22] for univariate count datasets.

In this paper, the main goal is to introduce a family of semiparametric estimators with
multivariate associated kernels for both semicontinuous and count data. They are meant to
be flexible compromises between grueling parametric and fuzzy nonparametric approaches.
The rest of the paper is organized as follows. Section 2 presents a brief review of the relative
variability indexes for multivariate nonnegative orthant distributions, by distinguishing
the dispersion for counting and the variation for semicontinuous. Section 3 displays a
short panoply of multivariates associated kernels which are useful for semicontinuous
and for counting datasets. Properties are reviewed with new proposals, including both
appropriated Bayesian methods of bandwidths selections. In Section 4, we introduce the
semiparametric kernel estimators with a d-variate parametric start. We also investigate the
corresponding diagnostic model. Section 5 is devoted to numerical illustrations, especially
for uni- and multivariate semicontinuous datasets. In Section 6, we make some final remarks
in order to extend to other multiple functions, as regression. Eventually, appendixes are
exhibited for technical proofs and illustrations.

2. Relative Variability Indexes for Orthant Distributions

Let X = (X1, . . . , Xd)
> be a nonnegative orthant d-variate random vector on T+

d ⊆

[0,∞)d, d ≥ 1. We use the following notations:
√

varX = (
√

varX1, . . . ,
√

varXd)
> is the

elementwise square root of the variance vector of X; diag
√

varX = diagd(
√

varX j) is
the d × d diagonal matrix with diagonal entries

√
varX j and 0 elsewhere; and, covX =

(cov(Xi, X j))i, j∈{1,...,d} denotes the covariance matrix of X which is a d× d symmetric matrix
with entries cov(Xi, X j) such that cov(Xi, Xi) = varXi is the variance of Xi. Then, one has

covX = (diag
√

varX)(ρX)(diag
√

varX), (1)

where ρX = ρ(X) is the correlation matrix of X; see, e.g., Equations (2)–(36) [23]. It
is noteworthy that there are many multivariate distributions with exponential (resp.,
Poisson) margins. Therefore, we denote a generic d-variate exponential distribution by
Ed(µ,ρ), given specific positive mean vector µ−1 := (µ−1

1 , . . . ,µ−1
d )> and correlation matrix

ρ = (ρi j)i, j∈{1,...,d}. Similarly, a generic d-variate Poisson distribution is given by Pd(µ,ρ),
with positive mean vectorµ := (µ1, . . . ,µd)

> and correlation matrixρ. See, e.g., Appendix A
for more extensive exponential and Poisson models with possible behaviours in the negative
correlation setup. The uncorrelated or independent d-variate exponential and Poisson
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will be written as Ed(µ) and Pd(µ), respectively, for ρ = Id the d × d unit matrix. Their
respective d-variate probability density function (pdf) and probability mass function (pmf)
are the product of d univariate ones.

According to [16] and following the recent univariate unification of the well-known
(Fisher) dispersion and the (Jørgensen) variation indexes by Touré et al. [24], the relative
variability index of d-variate nonnegative orthant distributions can be written as follows.
Let X and Y be two random vectors on the same support T+

d ⊆ [0,∞)d and assume
m := EX = EY, ΣX := covX and VFY (m) := cov(Y) fixed, then the relative variability
index of X with respect to Y is defined as the positive quantity

RWIY(X) := tr[ΣXW+
FY
(m)] T 1, (2)

where “tr(·)” stands for the trace operator and W+
FY
(m) is the unique Moore-Penrose

inverse of the associated matrix WFY (m) := [VFY (m)]1/2[VFY (m)]>/2 to VFY (m). From (2),
RWIY(X) T 1 means the over- (equi- and under-variability) of X compared to Y is realized
if RWIY(X) > 1 (RWIY(X) = 1 and RWIY(X) < 1, respectively).

The expression (2) of RWI does not appear to be very easy to handle in this general
formulation on T+

d ⊆ [0,∞)d, even the empirical version and interpretations. We now detail
both multivariate cases of counting ([17]) and of semicontinuous ([16]). An R package is
recently provided in [25].

2.1. Relative Dispersion Indexes for Count Distributions

For T+
d = Nd, let WFY (m) =

√
m
√

m> be the d× d matrix of rank 1. Then, ΣXW+
FY
(m)

of (2) is also of rank 1 and has only one positive eigenvalue, denoted by

GDI(X) :=

√
EX> (covX)

√
EX

EX>EX
T 1 (3)

and called generalized dispersion index of X compared to Y ∼Pd(EX) with EY = EX = m
by [17]. For d = 1, GDI(X1) = varX1/EX1 = DI(X1) is the (Fisher) dispersion index with
respect to the Poisson distribution. To derive this interpretation of GDI, we successively
decompose the denominator of (3) as

EX>EX =
√

EX> (diagEX)
√

EX = [(diag
√

EX)
√

EX]>(Id)[(diag
√

EX)
√

EX] (4)

and the numerator of (3) by using also (1) as

√

EX> (covX)
√

EX = [(diag
√

varX)
√

EX]>(ρX) [(diag
√

varX)
√

EX].

Thus, GDI(X) makes it possible to compare the full variability of X (in the numerator)
with respect to its expected uncorrelated Poissonian variability (in the denominator) which
depends only on EX. In other words, the count random vector X is over- (equi- and
under-dispersed) with respect to Pd(EX) if GDI(X) > 1 (GDI(X) = 1 and GDI(X) < 1,
respectively). This is a generalization in multivariate framework of the well-known
(univariate) dispersion index by [17]. See, e.g., [17,26] for illustrative examples. We can
modify GDI(X) to MDI(X), as marginal dispersion index, by replacing covX in (3) with
diag
√

varX to obtain dispersion information only coming from the margins of X.
More generally, for two count random vectors X and Y on the same support T+

d ⊆ Nd

with EX = EY and GDI(Y) > 0, the relative dispersion index is defined by

RDIY(X) :=
GDI(X)

GDI(Y)
=

[(diag
√

varX)
√
EX]>(ρX) [(diag

√
varX)

√
EX]

[(diag
√

varY)
√
EY]>(ρY) [(diag

√
varY)

√
EY]

T 1; (5)

i.e., the over- (equi- and under-dispersion) of X compared to Y is realized if GDI(X) >
GDI(Y) (GDI(X) = GDI(Y) and GDI(X) < GDI(Y), respectively). Obviously, GDI is a
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particular case of RDI with any general reference than Pd. Consequently, many properties
of GDI are easily extended to RDI.

2.2. Relative Variation Indexes for Semicontinuous Distributions

Assuming here T+
d = [0,∞)d and WFY (m) = mm> another d × d matrix of rank 1.

Then, we also have that ΣXW+
FY
(m) of (2) is of rank 1. Similar to (3), the generalized variation

index of X compared to Ed(EX) is defined by

GVI(X) :=
EX> (covX) EX

(EX>EX)2
T 1; (6)

i.e., X is over- (equi- and under-varied) with respect to Ed(EX) if GVI(X) > 1 (GVI(X) =
1 and GVI(X) < 1, respectively); see [16]. Remark that when d = 1, GVI(X1) =
varX1/(EX1)

2 = VI(X1) is the univariate (Jørgensen) variation index which is recently
introduced by Abid et al. [27]. From (4) and using again (1) for rewritting the numerator of
(6) as

EX> (covX) EX = [(diag
√

varX)EX]>(ρX) [(diag
√

varX)EX],

GVI(X) of (6) can be interpreted as the ratio of the full variability of X with respect
to its expected uncorrelated exponential Ed(EX) variability which depends only on EX.
Similar to MDI(X), we can define MVI(X) from GVI(X). See [16] for properties, numerous
examples and numerical illustrations.

The relative variation index is defined, for two semicontinuous random vectors X
and Y on the same support T+

d = [0,∞)d with EX = EY and GVI(Y) > 0, by

RVIY(X) :=
GVI(X)

GVI(Y)
=

[(diag
√

varX)EX]>(ρX) [(diag
√

varX)EX]

[(diag
√

varY)EY]>(ρY) [(diag
√

varY)EY]
T 1; (7)

i.e., the over- ( equi- and under-variation) of X compared to Y is carried out if
GVI(X) > GVI(Y) (GVI(X) = GVI(Y) and GVI(X) < GVI(Y), respectively). Of course,
RVI generalizes GVI for multivariate semicontinuous distributions. For instance, one refers
to [16] for more details on its discriminating power in multivariate parametric models from
two first moments.

3. Multivariate Orthant Associated Kernels

Nonparametric techniques through associated kernels represent an alternative ap-
proach for multivariate orthant data. Let X1, . . . , Xn be independent and identically
distributed (iid) nonnegative orthant d-variate random vectors with an unknown joint
pdmf f on T+

d ⊆ [0,∞)d, for d ≥ 1. Then the multivariate associated kernel estimator f̃n of
f is expressed as

f̃n(x) =
1
n

n∑
i=1

Kx,H(Xi), ∀x = (x1, . . . , xd)
>
∈ T+

d , (8)

where H is a given d × d bandwidth matrix (i.e., symmetric and positive definite) such
that H ≡ Hn → 0d (the d× d null matrix) as n→∞, and Kx,H(·) is a multivariate (orthant)
associated kernel, parameterized by x and H; see, e.g., [10]. More precisely, we have the
following refined definition.

Definition 1. Let T+
d be the support of the pdmf to be estimated, x ∈ T+

d a target vector and H a
bandwidth matrix. A parameterized pdmf Kx,H(·) on support Sx,H ⊆ T+

d is called “multivariate
orthant associated kernel” if the following conditions are satisfied:

x ∈ Sx,H, EZx,H = x + A(x, H)→ x and covZx,H = B(x, H)→ 0+d ,
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where Zx,H denotes the corresponding orthant random vector with pdmf Kx,H such that vector
A(x, H)→ 0 (the d-dimensional null vector) and positive definite matrix B(x, H)→ 0+d as H→ 0d

(the d × d null matrix), and 0+d stands for a symmetric matrix with entries ui j for i, j = 1, . . . , d
such that ui j ∈ [0, 1).

This definition exists in the univariate count case of [21,28] and encompasses the multi-
variate one by [10]. The choice of the orthant associated kernel satisfying lim

H→0d
Cov(Zx,H) =

0d assures the convergence of its corresponding estimator named of the second order.
Otherwise, the convergence of its corresponding estimator is not guarantee for ui j ∈ (0, 1),
a right neighborhood of 0, in Definition 1 and it is said a consistent first-order smoother; see,
e.g., [28] for discrete kernels. In general, d-under-dispersed count associated kernels are
appropriated for both small and moderate sample sizes; see, e.g., [28] for univariate cases.
As for the selection of the bandwidth H, it is very crucial because it controls the degree of
smoothing and the form of the orientation of the kernel. As a matter of fact, a simplification
can be obtained by considering a diagonal matrix H = diagd(h j). Since it is challenging
to obtain a full multivariate orthant distribution Kx,H(·) for building a smoother, several
authors suggest the product of univariate orthant associated kernels,

Kx,H(·) =
d∏

j=1

Kx j,h j(·), (9)

where Kx j,h j , j = 1, . . . , d, belong either to the same family or to different families of
univariate orthant associated kernels. The following two subsections are devoted to the
summary of discrete and semicontinuous univariate associated kernels.

Before showing some main properties of the associated kernel estimator (8), let us
recall that the family of d-variate classical (symmetric) kernels K on Sd ⊆ Rd (e.g., [29–31])
can be also presented as (classical) associated kernels. Indeed, from (8) and writting for
instance

Kx,H(·) = (det H)−1/2K
[
H−1/2(x− ·)

]
where “det” is the determinant operator, one has Sx,H = x −H−1/2Sd, A(x, H) = 0 and
B(x, H) = H1/2IdH1/2 = H. In general, one uses the classical (associated) kernels for
smoothing continuous data or pdf having support Td = Rd.

The purely nonparametric estimator (8) with multivariate associated kernel, f̃n of
f , is generally defined up to the normalizing constant Cn. Several simulation studies
(e.g., Table 3.1 in [10]) are shown that Cn = Cn(K, H) (depending on samples, associated
kernels and bandwidths) is approximatively 1. Without loss of generality, one here assumes
Cn = 1 as for all classical (associated) kernel estimators of pdf. The following proposition
finally proves its mean behavior and variability through the integrated bias and integrated
variance of f̃n, respectively. In what follows, let us denote by ν the reference measure
(Lebesgue or counting) on the nonnegative orthant set T+

d and also on any set Td ⊆ Rd.

Proposition 1. Let Cn :=
∫
Td

f̃n(x)ν(dx) = Cn(K, H). Then, for all n ≥ 1:

E(Cn) = 1 +
∫
Td

Bias{ f̃n(x)}ν(dx) and var(Cn) =

∫
Td

var{ f̃n(x)}ν(dx).

Proof. Let n ≥ 1. One successively has

E(Cn) =

∫
Td

[
f (x) +E{ f̃n(x)} − f (x)

]
ν(dx) =

∫
Td

f (x)ν(dx) +
∫
Td

[
E{ f̃n(x)} − f (x)

]
ν(dx),

which leads to the first result because f is a pdmf on Td. The second result on var(Cn)
is trivial. �
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The following general result is easily deduced from Proposition 1. To the best of our
knwoledge, it appears to be new and interesting in the framework of the pdmf (associated)
kernel estimators.

Corollary 1. If Cn = 1, for all n ≥ 1, then:
∫
Td

Bias{̃ fn(x)}ν(dx) = 0 and
∫
Td

var{̃ fn(x)}ν(dx) = 0.

In particular, Corollary 1 holds for all classical (associated) kernel estimators. The two
following properties on the corresponding orthant multivariate associated kernels shall be
needed subsequently.

(K1) There exists the second moment of Kx,H:

µ2
j (Kx,H) :=

∫
Sx,H

⋂
T+

d

u2
j Kx,H(u)ν(du) < ∞, ∀ j = 1, . . . , d.

(K2) There exists a real largest number r = r(Kx,H) > 0 and 0 < c(x) < ∞ such that

||Kx,H||
2
2 :=

∫
Sx,H

⋂
T+

d

{Kx,H(u)}2ν(du) ≤ c(x)(det H)−r.

In fact, (K1) is a necessary condition for smoothers to have a finite variance and (K2)
can be deduced from the continuous univariate cases (e.g., [32]) and also from the discrete
ones (e.g., [28]).

We now establish both general asymptotic behaviours of the pointwise bias and
variance of the nonparametric estimator (8) on the nonnegative orthant set T+

d ; its proof is
given in Appendix B. For that, we need the following assumptions by endowing T+

d with
the Euclidean norm || · || and the associated inner product 〈·, ·〉 such that 〈a, b〉 = a>b.

(a1) The unknown pdmf f is a bounded function and twice differentiable or finite difference
in T+

d and ∇ f (x) andH f (x), which denote, respectively, the gradient vector (in the
continuous or discrete sense, respectively) and the corresponding Hessian matrix of
the function f at x.

(a2) There exists a positive real number r > 0 such that ||Kx,Hn ||
2
2(det Hn)r

→ c1(x) > 0 as
n→∞.

Note that (a2) is obviously a consequence of (K2).

Proposition 2. Under the assumption (a1) on f , then the estimator f̃n in (8) of f verifies

Bias{ f̃n(x)} =
〈
∇ f (x), A(x, Hn)

〉
+

1
2

tr
{
H f (x)

[
B(x, Hn) + A(x, Hn)

TA(x, Hn)
]}
+ o

{
tr[B(x, Hn)]

}
, (10)

for any x ∈ T+
d . Moreover, if (a2) holds then

var{ f̃n(x)} =
1
n

f (x)||Kx,Hn ||
2
2 + o

[
1

n(det Hn)r

]
. (11)

For d = 1 and according to the proof of Proposition 2, one can easily write E f̂n(x) as
follows:

E f̂n(x) = E f (Zx,h) =
∑
k≥0

1
k!
E
(
Zx,h −EZx,h

)k
f (k)(EZx,h),

where f (k) is the kth derivative or finite difference of the pdmf f under the existence of the
centered moment of order k ≥ 2 ofZx,h.

Concerning bandwidth matrix selections in a multivariate associated kernel estimator
(8), one generally use the cross-validation technique (e.g., [10,20,28,33,34]). However, it
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is tedious and less precise. Many papers have recently proposed Bayesian approaches
(e.g., [6,7,13,14,35,36] and references therein). In particular, they have recommended local
Bayesian for discrete smoothing of pmf (e.g., [6,7,37]) and adaptive one for continuous
smoothing of pdf (e.g., [13,35,36]).

DenoteM the set of positive definite [diagonal] matrices [from (9), resp.] and let π be
a given suitable prior distribution onM. Under the squared error loss function, the Bayes
estimator of H is the mean of the posterior distribution. Then, the local Bayesian bandwidth
at the target x ∈ T+

d takes the form

H̃(x) :=
∫
M

Hπ(H) f̃n(x)dH
[∫
M

f̃n(x)π(H)dH
]−1

, x ∈ T+
d , (12)

and the adaptive Bayesian bandwidth for each observation Xi ∈ T+
d of X is given by

H̃i :=
∫
M

Hiπ(Hi) f̃n,Hi,−i(Xi)dHi

[∫
M

f̃n,Hi,−i(Xi)π(Hi)dHi

]−1

, i = 1, . . . , n, (13)

where f̃n,Hi,−i(Xi) is the leave-one-out associated kernel estimator of f (Xi) deduced from
(8) as

f̃n,Hi,−i(Xi) :=
1

n− 1

n∑
`=1,`,i

KXi,Hi(X`). (14)

Note that the well-known and classical (global) cross-validation bandwidth matrix
H̃CV and the global Bayesian one H̃B are obtained, respectively, from (14) as

H̃CV := arg min
H∈M

∫T+
d

{ f̃n(x)}2ν(dx) −
2
n

n∑
i=1

f̃n,H,−i(Xi)


and

H̃B :=
∫
M

Hπ(H)dH
n∏

i=1

f̃n,H,−i(Xi)dH

∫
M

π(H)dH
n∏

i=1

f̃n,H,−i(Xi)

−1

.

3.1. Discrete Associated Kernels

We only present three main and useful families of univariate discrete associated kernels
for (9) and satisfying (K1) and (K2).

Example 1 (categorical). For fixed c ∈ {2, 3, . . .}, the number of categories and T+
1 = {0, 1, . . . , c−

1}, one defines the Dirac discrete uniform (DirDU) kernel by

KDirDU
x,h (u) = (1− h)1u=x

(
h

c− 1

)1−1u=x

,

for x ∈ {0, 1, . . . , c − 1}, h ∈ (0, 1], with Sx := {0, 1, . . . , c − 1} = T+
1 , A(x, h) = h{c/2 − x −

x/(c− 1)} and B(x, h) = h{c(2c− 1)/6 + x2
− xc + x2/(c− 1)} − h2

{c/2− x− x/(c− 1)}2.

It was introduced in the multivariate setup by Aitchison and Aitken [38] and investi-
gated as a discrete associated kernel which is symmetric to the target x by [28] in univariate
case; see [7] for a Bayesian approach in multivariate setup. Note here that its normalized
constant is always 1 = Cn.
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Example 2 (symmetric count). For fixed m ∈ N and T+
1 ⊆ Z, the symmetric count triangular

kernel is expressed as

KSCTriang
x,h (u) =

(m + 1)h
− |u− x|h

P(m, h)
1{x,x±1,...,x±m}(u),

for x ∈ T+
1 , h > 0, with Sx := {x, x ± 1, . . . , x ±m}, P(m, h) = (2m + 1)(m + 1)h

− 2
∑m
`=0 `

h,
A(x, h) = 0 and

B(x, h) =
1

P(m, h)

m(2m + 1)(m + 1)h+1

3
− 2

m∑
`=0

`h+2


' h

m(2m2 + 3m + 1)
3

log(m + 1) − 2
m∑
`=1

`2 log `

+ O(h2),

where ' holds for h sufficiently small.

It was first proposed by Kokonendji et al. [33] and then completed in [39] with an
asymmetric version for solving the problem of boundary bias in count kernel estimation.

Example 3 (standard count). Let T+
1 ⊆ N, the standard binomial kernel is defined by

KBinomial
x,h (u) =

(x + 1)!
u!(x + 1− u)!

(
x + h
x + 1

)u( 1− h
x + 1

)x+1−u

1{0,1,...,x+1}(u),

for x ∈ T+
1 , h ∈ (0, 1], with Sx := {0, 1, . . . , x + 1}, A(x, h) = h and B(x, h) = (x + h)(1 −

h)/(x + 1)→ x/(x + 1) ∈ [0, 1] as h→ 0.

Here, B(x, h) tends to x/(x + 1) ∈ [0, 1) when h→ 0 and the new Definition 1 holds.
This first-order and under-dispersed binomial kernel is introduced in [28] which becomes
very useful for smoothing count distribution through small or moderate sample size; see,
e.g., [6,7,37] for Bayesian approaches and some references therein. In addition, we have the
standard Poisson kernel where KPoisson

x,h follows the equi-dispersed Poisson distribution with
mean x + h, Sx := N =: T+

1 , A(x, h) = h and B(x, h) = x + h → x ∈ N as h → 0. Recently,
Huang et al. [40] have introduced the Conway-Maxwell-Poisson kernel by exploiting its
under-dispersed part and its second-order consistency which can be improved via the
mode-dispersion approach of [41]; see also Section 2.4 in [42].

3.2. Semicontinuous Associated Kernels

Now, we point out eight main and useful families of univariate semicontinuous
associated kernels for (9) and satisfying (K1) and (K2). Which are gamma (G) of [43]
(see also [44]), inverse gamma (Ig) (see also [45]) and log-normal 2 (LN2) by [41], inverse
Gaussian (IG) and reciprocal inverse Gaussian by [46] (see also [47]), log-normal 1 (LN1)
and Birnbaum–Saunders by [48] (see also [49,50]), and Weibull (W) of [51] (see also [50]).
It is noteworthy that the link between LN2 of [41] and LN1 of [48] is through changing
(x, h) to (x exp(h2), 2

√
log(1 + h). Several other semicontinuous could be constructed by

using the mode-dispersion technique of [41] from any semicontinuous distribution which
is unimodal and having a dispersion parameter. Recently, one has the scaled inverse
chi-squared kernel of [52].

Table 1 summarizes these eight semicontinuous univariate associated kernels with
their ingredients of Definition 1 and order of preference (O.) obtained graphically. In fact,
the heuristic classification (O.) is done through the behavior of the shape and scale of the
associated kernel around the target x at the edge as well as inside; see Figure 1 for edge and
Figure 2 for inside. Among these eight kernels, we thus have to recommend the five first
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univariate associated kernels of Table 1 for smoothing semicontinuous data. This approach
could be improved by a given dataset; see, e.g., [53] for cumulative functions.

Table 1. Eight semicontinuous univariate associated kernels on Sx,h ⊆ [0,∞) and classifyed by “O.”

O. Name Kx,h(u) A(x, h) B(x, h)

1 LN2 [41] (uh
√

2π)−1 exp
([

log{x exp(h2)} − log u
]
/2h2

)
x[exp(3h2/2)−1] x2 exp(3h2)[exp(h2) − 1]

2 W [51] [Γ(h)/x][uΓ(1 + h)/x]1/h−1 exp
{
−[uΓ(1 + h)/x]1/h

}
0 x2

[
Γ(1+2h)/Γ2(1+2h)−1

]
3 G [43] h−1−x/hux/h exp(−u/h)/Γ(1 + x/h) h (x + h)h
4 BS [48] (uh

√
2π)−1

[
(xu)−1/2+(x/u3)−1/2

]
exp[(2−u/x−x/u)/2h] xh/2 x2h(2 + 5h/2)/2

5 Ig [41] h1−1/xhu−1/xh exp(−1/uh)/Γ(1/xh− 1) 2x2h/(1− 2xh) x3h/[(1− 3xh)(1− 2xh)2]

6 RIG [46] (
√

2πuh)−1 exp
{
[x− h][2− (x− h)/u− u/(x− h)]/2h

}
0 (x− h)h

7 IG [46] (
√

2πhu3)−1 exp
{
[2− x/u− u/x)]/2hx

}
0 x3h

8 LN1 [48] (u
√

8π log(1 + h))−1 exp
(
−[log u− log x]2/[8 log(1 + h)]

)
xh(h + 2) x2(1 + h)4[(1 + h)4

− 1]

Γ(v) :=
∫
∞

0 sv−1 exp(−s)ds is the classical gamma function with v > 0.

Figure 1. Comparative graphics of the eight univariate semicontinuous associated kernels of Table 1 on the edge (x = 0.3)
with h = 0.1 and h = 0.4.

Figure 2. Comparative graphics of the eight univariate semicontinuous associated kernels of Table 1 inside (x = 2.3) with
h = 0.1 and h = 0.4.
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4. Semiparametric Kernel Estimation with d-Variate Parametric Start

We investigate the semiparametric orthant kernel approach which is a compromise
between the pure parametric and the nonparametric methods. This concept was proposed
by Hjort and Glad [19] for continuous data, treated by Kokonendji et al. [20] for discrete
univariate data and, recently, studied by Kokonendji et al. [21] with an application to
radiation biodosimetry.

Without loss of generality, we here assume that any d-variate pdmf f can be formulated
(e.g., [54] for d = 1) as

f (x) = w(x;θ) pd(x;θ), ∀x ∈ T+
d , (15)

where pd(·;θ) is the non-singular parametric part according to a reference d-variate distribu-
tion with corresponding unknown parametersθ = (θ1, . . . ,θk)

> and w(·;θ) := f (·)/pd(·;θ)
is the unknown orthant weight function part, to be estimated with a multivariate orthant
associated kernel. The weight function at each point can be considered as the local mul-
tiplicative correction factor aimed to accommodate any pointwise departure from the
reference d-variate distribution. However, one cannot consider the best fit of parametric
models as the start distribution in this semiparametric approach. Because the corresponding
weight function is close to zero and becomes a noise which is unappropriated to smooth by
an associated kernel, especially for the continuous cases.

Let X1, . . . , Xn be iid nonnegative orthant d-variate random vectors with unknown
pdmf f on T+

d ⊆ [0,∞)d. The semiparametric estimator of (15) with (9) is expressed
as follows:

f̂n(x) = pd(x; θ̂n)
1
n

n∑
i=1

1

pd(Xi; θ̂n)
Kx,H(Xi)

=
1
n

n∑
i=1

pd(x; θ̂n)

pd(Xi; θ̂n)
Kx,H(Xi), x ∈ T+

d , (16)

where θ̂n is the estimated parameter of θ. From (16), we then deduce the nonparametric
orthant associated kernel estimate

w̃n(x; θ̂n) =
1
n

n∑
i=1

1

pd(Xi; θ̂n)
Kx,H(Xi) (17)

of the weight function x 7→ w(x; θ̂n) which depends on θ̂n. One can observe that
Proposition 1 also holds for f̂n(·) = pd(·; θ̂n)w̃n(·; θ̂n). However, we have to prove be-
low the analogous fact to Proposition 2.

4.1. Known d-Variate Parametric Model

Let pd(·;θ0) be a fixed orthant distribution in (15) with θ0 known. Writing f (x) =
pd(x;θ0)w(x), we estimate the nonparametric weight function w by w̃n(x) = n−1 ∑n

i=1 Kx,H(Xi)/
pd(Xi;θ0) with an orthant associated kernel method, resulting in the estimator

f̂n(x) = pd(x;θ0)w̃n(x) =
1
n

n∑
i=1

pd(x;θ0)

pd(Xi;θ0)
Kx,H(Xi), x ∈ T+

d . (18)

The following proposition is proven in Appendix B.
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Proposition 3. Under the assumption (a1) on f (·) = pd(·;θ0)w(·), then the estimator f̂n(·) =
pd(·;θ0)w̃n(·) in (18) of f satisfies

Bias{ f̂n(x)} = pd(x;θ0)
[
w(x) − f (x){pd(x;θ0)}

−1 +
〈
∇w(x), A(x, Hn)

〉]
+

1
2

pd(x;θ0)
(
tr
{
Hw(x)

[
B(x, Hn) + A(x, Hn)

TA(x, Hn)
]})

+(1 + o
{
tr[B(x, Hn)]

}
),

for any x ∈ T+
d . Furthermore, if (a2) holds then one has var{ f̂n(x)} = var{ f̃n(x)} of (11).

It is expected that the bias here is quite different from that of (10).

4.2. Unknown d-Variate Parametric Model

Let us now consider the more realistic and practical semiparametric estimator f̂n(·) =
pd(·; θ̂n)w̃n(·; θ̂n) presented in (16) of f (·) = pd(·;θ)w(·;θ) in (15) such that the parametric
estimator θ̂n of θ can be obtained by the maximum likelihood method; see [19] for quite a
general estimator of θ. In fact, if the d-variate parametric model pd(·;θ) is misspecified
then this θ̂n converges in probability to the pseudotrue value θ0 satisfying

θ0 := arg min
θ

∫
x∈T+

d

f (x) log[ f (x)/pd(x;θ)]ν(dx)

from the Kullback–Leibler divergence (see, e.g., [55]).
By writting p0(·) := pd(·;θ0) this best d-variate parametric approximant, but this p0(·)

is not explicitly expressible as the one in (18). According to [19] (see also [20]), we can
represent the proposed estimator f̂n(·) = pd(·; θ̂n)w̃n(·; θ̂n) in (16) as

f̂n(x) �
1
n

n∑
i=1

p0(x)
p0(Xi)

Kx,H(Xi), x ∈ T+
d . (19)

Thus, the following result provides approximate bias and variance. We omit its proof
since it is analogous to the one of Proposition 3.

Proposition 4. Let p0(·) := pd(·;θ0) be the best d-variate approximant of the unknown pdmf
f (·) = pd(·;θ)w(·;θ) as (15) under the Kullback–Leibler criterion, and let w(·) := f (·)/p0(·) be
the corresponding d-variate weight function. As n→∞ and under the assumption (a1) on f , then
the estimator f̂n(·) = pd(·; θ̂n)w̃n(·; θ̂n) in (16) of f and refomulated in (19) satisfies

Bias{ f̂n(x)} = p0(x)
[
w(x) − f (x){p0(x)}−1 +

〈
∇w(x), A(x, Hn)

〉]
+

1
2

p0(x)
(
tr
{
Hw(x)

[
B(x, Hn) + A(x, Hn)

TA(x, Hn)
]})

+
(
1 + o

{
tr[B(x, Hn)]

}
+ n−2

)
,

for any x ∈ T+
d . Furthermore, if (a2) holds then we have var{ f̂n(x)} = var{ f̃n(x)} of (11).

Once again, the bias is different from that of (10). Thus, the proposed semiparametric
estimator f̂n in (16) of f can be shown to be better (or not) than the traditional nonparametric
one f̃n in (8). The following subsection provides a practical solution.
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4.3. Model Diagnostics

The estimated weight function w̃n(x, θ̂n) given in (17) provides useful information
for model diagnostics. The d-variate weight function w(·) is equal one if the d-variate
parametric start model pd(·;θ0) is indeed the true pdmf. Hjort and Glad [19] proposed
to check this adequacy by examining a plot of the weight function for various potential
models with pointwise confidence bands to see wether or not w(x) = 1 is reasonable. See
also [20,21] for univariate count setups.

In fact, without technical details here we use the model diagnostics for verifying the
adequacy of the model by examining a plot of x 7→ w̃n(x; θ̂n) or

W̃n(x) := log w̃n(x; θ̂n) = log[ f̂n(x)/pd(x; θ̂n)] (20)

for all x = Xi, i = 1, . . . , n, with a pointwise confidence band of ±1.96 for large n; that
is to see how far away it is from zero. More precisely, for instance, W̃n is <5% for pure
nonparametric, it belongs to [5%, 95%] for semiparametric, and it is >95% for full parametric
models. It is noteworthy that the retention of pure nonparametric means the inconvenience
of parametric part considered in this approach; hence, the orthant dataset is left free.

5. Semicontinuous Examples of Application with Discussions

For a practical implementation of our approach, we propose to use the popular
multiple gamma kernels as (9) by selecting the adaptive Bayesian procedure of [13] to
smooth w̃n(x; θ̂n). Hence, we shall gradually consider d-variate semicontinuous cases with
d = 1, 2, 3 for real datasets. All computations and graphics have been done with the R
software [56].

5.1. Adaptive Bayesian Bandwidth Selection for Multiple Gamma Kernels

From Table 1, the function Gx,h(·) is the gamma kernel [43] given on the support
Sx,h = [0,∞) = T+

1 with x ≥ 0 and h > 0:

Gx,h(u) =
ux/h

Γ(1 + x/h)h1+x/h
exp

(
−

u
h

)
1[0,∞)(u),

where 1E denotes the indicator function of any given event E. This gamma kernel Gx,h(·)
appears to be the pdf of the gamma distribution, denoted by G(1 + x/h, h) with shape
parameter 1 + x/h and scale parameter h. The multiple gamma kernel from (9) is written
as Kx,H(·) =

∏d
j=1 Gx j,h j(·) with H = diagd

(
h j

)
.

For applying (13) and (14) in the framework of semiparametric estimator f̂n in (16),
we assume that each component hi` = hi`(n), ` = 1, . . . , d, of Hi has the univariate inverse
gamma prior Ig(α, β`) distribution with same shape parameters α > 0 and, eventually,
different scale parameters β` > 0 such that β = (β1, . . . , βd)

>. We here recall that the pdf of
Ig(α, β`) with α, β` > 0 is defined by

Igα,β` (u) =
βα
`

Γ(α)
u−α−1 exp(−β`/u)1(0,∞)(u), ` = 1, . . . , d. (21)

The mean and the variance of the prior distribution (21) for each component hi` of the
vector Hi are given by β`/(α− 1) for α > 1, and β2

`/(α− 1)2(α− 2) for α > 2, respectively.
Note that for a fixed β` > 0, ` = 1, . . . , d, and if α → ∞, then the distribution of the
bandwidth vector Hi is concentrated around the null vector 0.

From those considerations, the closed form of the posterior density and the Bayesian
estimator of Hi are given in the following proposition which is proven in Appendix B.

Proposition 5. For fixed i ∈ {1, 2, . . . , n}, consider each observation Xi = (Xi1, . . . , Xid)
>

with its corresponding Hi = diagd

(
hi j

)
of univariate bandwidths and defining the subset
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Ii = {k ∈ {1, . . . , d} ; Xik = 0} and its complementary set Ic
i =

{
` ∈ {1, . . . , d} ; Xi` ∈ (0,∞)

}
.

Using the inverse gamma prior Igα,β` of (21) for each component hi` of Hi in the multiple gamma
estimator with α > 1/2 and β = (β1, . . . , βd)

>
∈ (0,∞)d, then:

(i) the posterior density is the following weighted sum of inverse gamma

π(Hi | Xi) =
pd(Xi; θ̂n)

Di(α,β)

n∑
j=1, j,i

1

pd(X j; θ̂n)

∏
k∈Ii

C jk(α, βk) Igα+1,X jk+βk (hik)


∏
`∈Ic

i

Ai j`(α, β`) Igα+1/2,Bi j`(β`)
(hi`)

,

with Ai j`(α, β`) = [Γ(α+ 1/2)]/(β−α
`

X1/2
i`

√
2π[Bi j`(β`)]

α+1/2), Bi j`(β`) = Xi` log(Xi`/X j`)+

X j` −Xi`+ β`, C jk(α, βk) = [Γ(α+ 1)]/[β−αk (X jk + βk)
α+1], and Di(α,β) = pd(Xi; θ̂n)

∑n
j=1, j,i(∏

k∈Ii
Ai jk(α, βk)

)(∏
`∈Ic

i
Bi j`(β`)

)
/pd(X j; θ̂n);

(ii) under the quadratic loss function, the Bayesian estimator Ĥi = diagd

(
ĥim

)
of Hi in (16) is

ĥim =
pd(Xi; θ̂n)

Di(α,β)

n∑
j=1, j,i

1

pd(X j; θ̂n)

∏
k∈Ii

C jk(α, βk)


∏
`∈Ic

i

Ai j`(α, β`)


(

X jm + βm

α
1{0}(Xim) +

Bi jm(βm)

α− 1/2
1(0,∞)(Xim)

)
,

for m = 1, 2, . . . , d, with the previous notations of Ai j`(α, β`), Bi jm(βm), C jk(α, βk) et Di(α,β).

Following Somé and Kokonendji [13] for nonparametric approach, we have to select
the prior parameters α and β = (β1, . . . , βd)

> of the multiple inverse gamma of Ig(α, β`) in
(21) as follows: α = αn = n2/5 > 2 and β` > 0, ` = 1, . . . , d, to obtain the convergence of the
variable bandwidths to zero with a rate close to that of an optimal bandwidth. For practical
use, we here consider each β` = 1.

5.2. Semicontinuous Datasets

The numerical illustrations shall be done through the following dataset of Table 2
which are recently used in [13] for non-parametric approach and only in the trivariate
setup as semicontinuous data. It concerns three measurements (with n = 42) of drinking
water pumps installed in the Sahel. The first variable X1 represents the failure times (in
months) and, also, it is recently used by Touré et al. [24]. The second variable X2 refers to
the distance (in kilometers) between each water pump and the repair center in the Sahel,
while the third one X3 stands for average volume (in m3) of water per day.

Table 2. Drinking water pumps trivariate data measured in the Sahel with n = 42.

X1 : 23 261 87 10 120 14 62 15 47 225 71 20 246 21
X2 : 97 93 94 100 98 84 96 110 121 73 90 93 103 116
X3 : 26 52 22 39 23 26 32 17 10 39 31 42 52 26

X1 : 19 42 20 5 12 120 17 11 3 14 71 11 5 14
X2 : 114 82 96 94 77 91 117 103 99 113 79 109 84 118
X3 : 26 36 43 36 6 27 15 36 9 52 11 20 25 37

X1 : 11 16 90 1 16 52 95 10 1 14 4 7 14 20
X2 : 98 93 94 103 109 110 89 108 101 93 102 138 103 96
X3 : 25 18 43 43 24 38 6 40 21 34 15 23 68 37

Table 3 displays all empirical univariate, bivariate and trivariate variation (6) and
dispersion (3) indexes from Table 2. Hence, each X j, (X j, Xk) and (X1, X2, X3) is over-
dispersed compared to the corresponding uncorrelated Poisson distribution. However, only
(X1, X3) (resp. X1) can be considered as a bivariate equi-variation (resp. univariate over-
variation) with respect to the corresponding uncorrelated exponential distribution; and,
other X j, (X j, Xk) and (X1, X2, X3) are under-varied. In fact, we just compute dispersion
indexes for curiosity since all values in Table 2 are positive integers; and, we here now omit
the counting point of view in the remainder of the analysis.
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Table 3. Empirical univariate (in diagonal), bivariate (off diagonal) and trivariate (at the corner) variation (6) and dispersion
(3) indexes.

ĜVI3 = 0.0533 X1 X2 X3 ĜDI3 = 15.1229 X1 X2 X3

X1 1.9425 0.0557 1.0549 X1 89.5860 14.3223 70.7096
X2 0.0557 0.0167 0.0157 X2 14.3223 1.6623 2.0884
X3 1.0549 0.0157 0.2122 X3 70.7096 2.0884 6.3192

Thus, we are gradually investing in semiparametric approaches for three univariates,
three bivariates and only one trivariate from (X1, X2, X3) of Table 2.

5.3. Univariate Examples

For each univariate semicontinuous dataset X j, j = 1, 2, 3, we have already computed
the GVI in Table 3 which belongs in (0.01, 1.95) 3 1. This allows to consider our flexible
semiparametric estimation f̂n, j with an exponential E1(µ j) as start in (16) and using adaptive
Bayesian bandwidth in gamma kernel of Proposition 5. Hence, we deduce the corresponding
diagnostic percent W̃n, j from (20) for deciding an appropriate approach. In addition, we first

present the univariate nonparametric estimation f̃n, j with adaptive Bayesian bandwidth in
gamma kernel of [35] and then propose another parametric estimation of X j by the standard
gamma model with shape (a j) and scale (b j) parameters.

Table 4 transcribes parameter maximum likelihood estimates of exponential and
gamma models with diagnostic percent from Table 2. Figure 3 exhibits histogram, f̃n, j,

f̂n, j, exponential, gamma and diagnostic W̃n, j graphs for each univariate data X j. One can

observe differences with the naked eye between f̃n, j and f̂n, j although they are very near
and with the same pace. The diagnostic W̃n, j graphics lead to conclude to semiparametric
approach for X2 and to full parametric models for X3 and slightly also for X1. Thus, we have
suggested the gamma model with two parameters for improving the starting exponential
model; see, e.g., Table 2 in [54], for alternative parametric models.

Table 4. Parameter estimates of models and diagnostic percents of univariate datasets.

Estimate µ̂ j W̃n, j (%) â j b̂ j

X1 0.0217 95.2381 0.7256 63.5618
X2 0.0100 76.1905 56.9817 1.7470
X3 0.0336 100.0000 3.7512 7.9403
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Figure 3. Comparative graphs of estimates of X1, X2 and X3 with their corresponding diagnostics.

5.4. Bivariate and Trivariate Examples

For the sake of flexibility and efficiency, we here analyze our proposed semiparametric
estimation f̂n with an uncorrelated exponential as a start in (16) and using adaptive Bayesian
bandwidth in gamma kernel of Proposition 5. This concerns all bivariate and trivariate
datasets from Table 2 for which their GVI are in (0.01, 1.06) 3 1 from Table 3. All the
computation times are alsmost instantaneous.

Table 5 reports the main numerical results of the corresponding correlations, MVI,
parameter estimates and finally diagnostic percent W̃n from (20) that we intentionally
omit to represent some graphics in three or four dimensions. However, Figure 4 displays
some representative projections of W̃n. From Table 5, the cross empirical correlations
are closed to 0 and all MVI are smaller than 1 which allows us to consider uncorrelated
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exponential start-models. The maximum likelihood method is also used for estimating
the parameters µ j for getting the same results as in Table 4. Thus, the obtained numerical
values of W̃n indicate semiparametric approaches for all bivariate datasets and the purely
nonparametric method for the trivariate one; see [13] for more details on this nonparametric
analysis. This progressive semiparametric analysis of the trivariate dataset of Table 2 shows
the necessity of a suitable choice of the parametric start-models, which may take into
account the correlation structure. Hence, the retention of pure nonparametric means the
inconvenience of parametric part used in the modelization. Note that we could consider the
Marshall–Olkin exponential distributions with nonnegative correlations as start-models;
but, they are singular. See Appendix A for a brief review.

Table 5. Correlations, MVI, parameter estimates and diagnostic percents of bi- and trivariate cases.

Dataset (X1, X2) (X1, X3) (X2, X3) (X1, X2, X3)

ρ̂(X j, Xk) −0.3090 0.2597 0.0245 det ρ̂ = 0.8325
M̂VI 0.0720 0.9857 0.0155 0.0634
(µ̂ j) (0.0217, 0.0100) (0.0217, 0.0336) (0.0100, 0.0336) (0.0217, 0.0100, 0.0336)
W̃n (%) 9.5238 52.3809 26.1005 0.0000

Figure 4. Univariate projections of diagnostic graphs for bivariate and trivariate models.

6. Concluding Remarks

In this paper, we have presented a flexible semiparametric approach for multivariate
nonnegative orthant distributions. We have first recalled multivariate variability indexes
GVI, MVI, RVI, GDI, MDI and RDI from RWI as a prelude to the second-order discrimination
for these parametric distributions. We have then reviewed and provided new proposals to
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the nonparametric estimators through multivariate associated kernels; e.g., Proposition 1
and Corollary 1. Both effective adaptive and local Bayesian selectors of bandwidth matrices
are suggested for semicontinuous and counting data, respectively.

All these previous ingredients were finally used to develop the semiparametric
modeling for multivariate nonnegative orthant distributions. Numerical illustrations
have been simply done for univariate and multivariate semicontinuous datasets with
the uncorrelated exponential start-models after examining GVI and MVI. The adaptive
Bayesian bandwidth selection (13) in multiple gamma kernel (Proposition 5) were here
required for applications. Finally, the diagnostic models have played a very interesting role
in helping to the appropriate approach, even if it means improving it later.

At the meantime, Kokonendji et al. [37] proposed an in-depth practical analysis of
multivariate count datasets starting with multivariate (un)correlated Poisson models after
reviewing GDI and RDI. They have also established an equivalent of our Proposition 5 for
the local Bayesian bandwidth selection (12) by using the multiple binomial kernels from
Example 3. As one of the many perspectives, one could consider the categorial setup with
local Bayesian version of the multivariate associated kernel of Aitchison and Aitken [38]
from Example 1 of the univariate case.

At this stage of analysis, all the main foundations are now available for working in a
multivariate setup such as variability indexes, associated kernels, Bayesian selectors and
model diagnostics. We just have to adapt them to each situation encountered. For instance,
we have the semiparametric regression modeling; see, e.g., Abdous et al. [57] devoted to
counting explanatory variables and [22]. An opportunity will be opened for hazard rate
functions (e.g., [51]). The near future of other functional groups, such as categorical and
mixed, can now be considered with objectivity and feasibility.
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Appendix A. On a Broader d-Variate Parametric Models and the
Marshall-Olkin Exponential

According to Cuenin et al. [58], taking p ∈ {1, 2} in their multivariate Tweedie models of
flexible dependence structure, another way to define the d-variate Poisson and exponential
distributions is given by Pd(Λ) and Ed(Λ), respectively. The d × d symmetric variation
matrix Λ = (λi j)i, j∈{1,...,d} is such that λi j = λ ji ≥ 0, the mean of the corresponding marginal
distribution is λii > 0, and the non-negative correlation terms satisfy

ρi j =
λi j√
λiiλ j j

∈ [0, min{R(i, j), R( j, i)}), (A1)

with R(i, j) =
√
λii/λ j j (1−λ−1

ii
∑
`,i, j λi`) ∈ (0, 1). Their constructions are perfectly defined

having d(d + 1)/2 parameters as in Pd(µ,ρ) and Ed(µ,ρ). Moreover, we attain the exact
bounds of the correlation terms in (A1). Cuenin et al. [58] have pointed out the construction
and simulation of the negative correlation structure from the positive one of (A1) by
considering the inversion method.

The negativity of a correlation component is crucial for the phenomenon of under-
variability in a bivariate/multivariate positive orthant model. Figure A1 (right) plots a limit
shape of any bivariate positive orthant distribution with very strong negative correlation
(in red), which is not the diagonal line of the upper bound (+1) of positive correlation (in
blue); see, e.g., [58] for details on both bivariate orthant (i.e., continuous and count) models.
Conversely, Figure A1 (left) represents the classic lower (−1) and upper (+1) bounds of
correlations on R2 or finite support.
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Figure A1. Support of bivariate distributions with maximum correlations (positive in blue and
negative in red): model on R2 (left) and also finite support; model on T+

2 ⊆ [0,∞)2 (right),
without finite support.

The d-variate exponential X = (X1, . . . , Xd)
>
∼ Ed(µ,µ0) of Marshall and Olkin [59]

is built as follows. Let Y1, . . . , Yd and Z be univariate exponential random variables with
parameters µ1 > 0, . . . ,µd > 0 and µ0 ≥ 0, respectively. Then, by setting X j := Y j + Z for
j = 1, . . . , d, one has EX j = 1/(µ j + µ0) =

√
varX j and cov(X j, X`) = µ0/{(µ j + µ0)(µ` +

µ0)(µ j + µ` + µ0)} for all j , `. Each correlation ρ(X j, X`) = µ0/(µ j + µ` + µ0) lies in [0, 1]
if and only if µ0 ≥ 0. From its survival (or reliability) function

S(x;µ,µ0) = exp

−µ0 max(x1, . . . , xd) −
d∑

j=1

µ jx j

,
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its pdf can be written as

pd(x;µ,µ0) =


S(x;µ,µ0)(µ0 + µ`)

d∏
j=1, j,`

µ j if x` := max(x1, . . . , xd) and x` , x j, j , `

S(x;µ,µ0)µ0µ j1 · · ·µ jk if x j1 , . . . , x jk < x`k+1 = · · · = x`d
S(x;µ,µ0)µ0 if x1 = · · · = xd > 0.

It is not absolutely continuous with respect to the Lebesgue measure in T+
d and has

singularities corresponding to the cases where two or more of the x j’s are equal. Karlis [60]
has proposed a maximum likelihood estimation of parameters via an EM algorithm. Finally,
Kokonendji et al. [16] have calculated

GVI(X) = 1 +
µ0

∑d
j=1(µ j + µ0)

−1
{
∑
`, j(µ j + µ` + µ0)

−1(µ` + µ0)
−1
}

{(µ1 + µ0)−2 + · · ·+ (µd + µ0)−2}2
≥ 1 (⇔ µ0 ≥ 0).

and

MVI(X) =

∑d
j=1(µ j + µ0)

−4∑d
j=1(µ j + µ0)−4 + 2

∑
1≤ j<`≤1(µ j + µ0)−2(µ` + µ0)−2

< 1.

Hence, the Marshall–Olkin exponential model X ∼ Ed(µ,µ0) is always under-varied
with respect to the MVI and over- or equi-varied with respect to GVI. If µ0 = 0 then Ed(µ,µ0)
is reduced to the uncorrolated Ed(µ) with GVI(Y) = 1. However, the assumption of non-
negative correlations between components is sometimes unrealistic for some analyzes.

Appendix B. Proofs of Proposition 2, Proposition 3 and Proposition 5

Proof of Proposition 2. From Definition 1, we get (see also [10] for more details)

E
[

f̃n(x)
]
− f (x) = E

[
Kx,Hn (X j)

]
− f (x) =

∫
Sx,Hn∩T+

d

Kx,Hn (u) f (u)ν(du) − f (x)

= E[ f (Zx,Hn )] − f (x). (A2)

Next, using (A2), by a Taylor expansion of the function f (·) over the points Zx,Hn and
E[Zx,Hn ], we get

f (Zx,Hn ) = f (E[Zx,Hn ]) +
〈
∇ f (E[Zx,Hn ]), (Zx,Hn −E[Zx,Hn ])

〉
+

1
2

〈
H f (E[Zx,Hn ])(Zx,Hn −E[Zx,Hn ]), (Zx,Hn −E[Zx,Hn ])

〉
+

∥∥∥Zx,Hn −E[Zx,Hn ]
∥∥∥2

o(1)

= f (E[Zx,Hn ]) +
〈
∇ f (E[Zx,Hn ]), (Zx,Hn −E[Zx,Hn ])

〉
+

1
2

tr
[
H f (E[Zx,Hn ])(Zx,Hn −E[Zx,Hn ])(Zx,Hn −E[Zx,Hn ])

T
]

+ tr
[
(Zx,Hn −E[Zx,Hn ])(Zx,Hn −E[Zx,Hn ])

T
]
o(1), (A3)

where o(1) is uniform in a neighborhood of x. Therefore, taking the expectation in both
sides of (A3) and then substituting the result in (A2), we get

E
[

f̃n(x)
]
− f (x) = f (E[Zx,Hn ]) − f (x) +

1
2

tr[H f (E[Zx,Hn ]) var(Zx,Hn)] + o
{
tr[var(Zx,Hn)]

}
= f (x + A) − f (x) +

1
2

tr[H f (x + A)B(x, Hn)] + o
{
tr[B(x, Hn)]

}
,

where o
{
tr[B(x, Hn)]

}
is uniform in a neighborhood of x. The second Taylor expansion of

the function f (·) over the points x and x + A(x, Hn) allows to conclude the bias (10).
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About the variance term, f being bounded, we have E
[
Kx,Hn(X j)

]
= O(1). It follows

that:

var
[

f̃n(x)
]

=
1
n

var
[
Kx,Hn(X j)

]
=

1
n

∫
Sx,Hn∩T

+
d

K2
x,Hn

(u) f (u)ν(du) + O(1)


=

1
n

∫
Sx,Hn∩T

+
d

K2
x,Hn

(u)


f (x) +

〈
∇ f (x), x− u

〉
+ 1

2 (x− u)T
H f (x)(x− u)

+o
[(
||x− u||2

)]
ν(du)

=
1
n

f (x)||Kx,Hn ||
2
2 + o

[
1

n(det Hn)r

]
.

�

Proof of Proposition 3. Since one has Bias[ f̂n(x)] = pd(x;θ0)E[w̃n(x)]− f (x) and var[ f̂n(x)] =
[pd(x;θ0)]

2var[w̃n(x)], it is enough to calculate E[w̃n(x)] and var[w̃n(x)] following Proposi-
tion 2 applied to w̃n(x) = n−1 ∑n

i=1 Kx,H(Xi)/pd(Xi;θ0) for all x ∈ T+
d .

Indeed, one successively has

E[w̃n(x)] = E[Kx,Hn (X1)/pd(X1;θ0)] =

∫
Sx,Hn∩T+

d

Kx,Hn (u)[pd(u;θ0)]
−1 f (u)ν(du) = E[w(Zx,Hn )]

= w(x) +
〈
∇w(x), A(x, Hn)

〉
+

1
2

(
tr
{
Hw(x)

[
B(x, Hn) + A(x, Hn)

TA(x, Hn)
]})

+o
{
tr[B(x, Hn)]

}
,

which leads to the announced result of Bias[ f̂n(x)]. As for var[w̃n(x)], one also write

var[w̃n(x)] =
1
n

var[Kx,Hn(X1)/pd(X1;θ0)]

=
1
n

∫
Sx,Hn∩T

+
d

K2
x,Hn

(u)[pd(u;θ0)]
−2 f (u)ν(du) + O(1)


=

1
n

f (x)[pd(x;θ0)]
−2
||Kx,Hn ||

2
2 + o

[
1

n(det Hn)r

]
and the desired result of var[ f̂n(x)] is therefore deduced. �

Proof of Proposition 5. We have to adapt Theorem 2.1 of Somé and Kokonendji [13] to this
semiparametric estimator f̂n in (16). First, the leave-one-out associated kernel estimator
(14) becomes

f̂n,Hi,−i(Xi) :=
pd(Xi; θ̂n)

n− 1

n∑
`=1,`,i

1

pd(X`; θ̂n)
KXi,Hi(X`).

Then, the posterior distribution deduced from (13) is exppressed as

π(Hi | Xi) := π(Hi) f̂n,Hi,−i(Xi)

[∫
M

f̂n,Hi,−i(Xi)π(Hi)dHi

]−1

and which leads to the result of Part (i) via Theorem 2.1 (i) in [13] for details. Consequently,
we similarly deduce the adaptive Bayesian estimator Ĥi = diagd

(
ĥim

)
of Part (ii). �
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