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Abstract: Expert knowledge elicitation (EKE) aims at obtaining individual representations of experts’
beliefs and render them in the form of probability distributions or functions. In many cases the elicited
distributions differ and the challenge in Bayesian inference is then to find ways to reconcile discrepant
elicited prior distributions. This paper proposes the parallel analysis of clusters of prior distributions
through a hierarchical method for clustering distributions and that can be readily extended to
functional data. The proposed method consists of (i) transforming the infinite-dimensional problem
into a finite-dimensional one, (ii) using the Hellinger distance to compute the distances between
curves and thus (iii) obtaining a hierarchical clustering structure. In a simulation study the proposed
method was compared to k-means and agglomerative nesting algorithms and the results showed that
the proposed method outperformed those algorithms. Finally, the proposed method is illustrated
through an EKE experiment and other functional data sets.

Keywords: expert knowledge elicitation; functional data analysis; Hellinger distance; hierarchical
clustering

1. Introduction

Even when we receive information under the same conditions, our point of view
may greatly differ from others’. Therefore, if we want to analyze expert knowledge,
such differences should be considered. Figure 1 shows a representation of this problem.
Our point of view on certain information depends on our cognitive skills and external
factors that might change our beliefs.

Expert knowledge elicitation (EKE) has the goal of producing, via elicitation, a proba-
bilistic distribution that represents the expert’s knowledge around a parameter of interest.
For that purpose, we can adopt the Delphi method as an elicitation method. The latter
is defined by Brown (1968) [1] as a technique based on the results of multiple rounds of
questionnaires sent to a panel of experts and whose purpose is to reach a consensus on
their opinion. Such method is effective, as it allows a group of individuals to address a
complex problem and could be implemented to obtain a single representation of experts’
beliefs through a probability distribution. However, this method proves difficult when the
number of experts in the study increases considerably.

Finding the mean of the level of certainty of each expert using their personal dis-
tributions is another way to obtain a prior distribution of expert knowledge. Never-
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theless, it could be erroneous, as shown in Figure 2, where, for instance, we observe
two hypothetical experts’ prior distributions (red and black curves) representing their
level of knowledge over a proportion of θ, and the mean of the level of the two experts
(green curve), which does not represent the actual level of certainty of each expert. As
a result, the entire complex elicitation work done for each expert is wasted. Hence, we
believe that the probability distributions of each expert can be classified and their opinions
represented using clusters of beliefs. Thus, Bayesian inference can be carried out in parallel
by considering each cluster of priors and a decision can be arrived at via experts’ criteria
(Barrera-Causil et al., 2019) [2].

Figure 1. Illustration of two experts having different points of view in regards to a specific phenomenon.
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Figure 2. Level of certainty of two hypothetical experts (red and black curves) and their mean
(green curve). Note that, when the location parameters of the experts’ distributions are different,
those of the resulting mean distribution (green curve) may be considerably different from the experts’
actual opinion.
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On the other hand, classifying probability distributions is an essential task in different
areas. Clustering methods to classify word distribution histograms in information retrieval
systems have been implemented successfully [3]. For instance, Henderson at al. (2015) [4]
present three illustrations with airline route data, IP traffic data, and synthetic data sets to
classify distributions. Therefore, functional data analysis (FDA) could be used for clustering
distributions since it is an extension of the multivariate methods where observations
are represented by curves in a function space [5]. Some tools of multivariate analysis
have been extended to the functional context pointwise, considering the implementation
of multivariate procedures around the real interval where these functions are defined.
Thus, in many cases, the curves are discretized to implement statistical procedures.

Cluster analysis is one of multiple techniques that have been extended to FDA, and dif-
ferent methods are implemented to obtain partitions of curves within its framework.
Some of those methods have been compared to determine their performance and make
recommendations in several situations [6]. For instance, Abraham et al. [7] proposed a two-
stage clustering procedure in which each observation is approximated by a B-spline in the
first stage, and the functions are grouped using the k-means algorithm in the second stage.
Gareth and Sugar (2003) [8] presented a model-based approach for clustering functional
data. Their method was effective when the observations were sparse, irregularly spaced,
or occurred at different time points for each subject. Serban and Wasserman (2005) [9]
proposed a technique for nonparametrically estimating and clustering a large number of
curves. In their method, the nearly flat curves are removed from the analysis, while the
remaining curves are smoothed and finally grouped into clusters.

Other alternatives can also be found in the literature. For instance, Shubhankar and
Bani (2006) [10] proposed a nonparametric Bayes wavelet model for clustering curves based
on a mixture of Dirichlet processes. Song et al., (2007) [11] presented a FDA-based method
to cluster time-dependent gene expression profiles. Chiou et al. (2007) [12] developed a
Functional Clustering (FC) method (i.e., k-centres FC) for longitudinal data. Their approach
accounts for both the means and the modes of variation differentials between clusters by
predicting cluster membership with a reclassification step. Tarpey (2007) [13] applied the
k-means algorithm for clustering curves under linear transformations of their regression
coefficients. More recently, Goia et al., (2010) [14] used a functional clustering procedure to
classify curves representing the maximum daily demand for heating measurements in a dis-
trict heating system. Hébrail et al., (2010) [15] proposed an exploratory analysis algorithm
for functional data. Their method involves finding k clusters in a set of functions and repre-
senting each cluster with a piecewise constant, seeking simplicity in the construction of the
clusters. Boullé (2012) [16] presented a novel method to analyze and summarize a collection
of curves based on a piecewise constant density estimation where the curves are partitioned
into clusters. Furthermore, Secchi et al., (2012) [17] focused on the problem of clustering
functional data indexed by the sites of a spatial finite lattice. Jacques and Preda (2013) [18]
presented a model-based clustering algorithm for multivariate functional data based on
multivariate functional principal components analysis. The references in Jacques and Preda
(2013) [19] are of particular importance because they summarize the main contributions in
the field of functional data clustering. Other clustering algorithms have been reported in
the literature. For instance, Ferreira and Hitchcock (2009) [6] compared four hierarchical
clustering algorithms on functional data: single linkage, complete linkage, average linkage,
and Ward’s method (T these methods are implemented in the agnes function of R. This
function takes several arguments: x, a data matrix, data frame, or dissimilarity matrix;
metric which is the metric to be used for calculating dissimilarities between observations
(by default, it is the euclidean distance); and method, a character string specifying the
clustering method (single linkage, complete linkage, average linkage, or Ward’s method)).
Ferreira and Hitchcock (2009) [6] found that Ward’s method and average linkage outper-
form their counterparts.

Although there is research relating to the clustering of functions, no study has consid-
ered functional clustering of experts’ beliefs. For example, Stefan et al., (2021) [20] studied
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the effect of interpersonal variation in elicited prior distributions on Bayesian inference.
In their study one of the six experts exhibited discrepant distributions. Thus, it would
be ideal to have a method able to numerically address discrepancies among clusters of
elicited prior distributions. Another important situation is when a researcher needs to
make a decision based on information obtained from elicited priors. In all these cases,
and according to the problem showed in Figure 2, differences between priors should be
addressed and the estimation, either posterior or prior, must be done in parallel for each
group of elicited priors. Thus, in this paper we propose a new method to deal with multiple
elicited prior distributions. The method thus allows clustering distributions using FDA and
the Hellinger’s distance (Simpson, 1987) [21]. Hellinger’s distance enables to quantify the
similarity between two probability distributions and, we believe, it is a more appropriate
metric than the current metrics for functional data. An illustration of the place of the
proposed method within the expert knowledge elicitation workflow is shown in Figure 3.

Figure 3. Illustration of the expert knowledge elicitation workflow. E.K.E.(me) = expert knowledge
elicitation from multiple experts; P.D.g = generation of prior distributions; P.D.c = clustering of prior
distributions; C1, C2 . . . Cn = cluster 1 to cluster n; P.iC1 , P.iC2 . . . P.iCn = prior or posterior inference
for each cluster; D.M.(e) = decision making with a panel of experts. The long dash arrow from
D.M.(e) to E.K.E.(me) indicates that workflow can be iterated if required. The goal of the workflow
is to create clusters of experts and analyze the clusters separately by means of prior or posterior
estimations. A final decision is reached via a panel of experts. Step IV is unique to our proposal in
that it shows where the clustering of elicited prior distributions takes place in the EKE workflow.

This proposal is motivated by the interest of offering a new tool for the analysis of prior
curves from multiple experts when elicitation is used. However, in addition to offering an
alternative to the problem posed in Figure 2, or to the complexity involved in applying the
Delphi method with a considerable number of experts, this proposal can be implemented
to detect atypical curves, or even to create clusters in fuzzy multicriteria decision-making
problems (Kahraman, Onar, and Oztaysi, 2015) [22].

To test the efficiency of the clustering algorithm our method, we propose a hierar-
chical clustering technique for functional data and compare it, via statistical simulation,
with functional k-means, Ward’s, and average linkage methods (these methods are imple-
mented in R [23] through thekmeans.fd function in the fda.usc package (Febrero-Bande
and Oviedo, 2012) [24] and the agnes function in the cluster package [25]. The latter
function performs agglomerative nesting clustering). To examine the similarity between
two clusters, we considered the Rand index, the Fowlkes–Mallows index, the Jaccard coeffi-
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cient—index to measure similarity between sample sets—and the correct classification rate
(Hubert and Arabie, 1985; Morlini and Zani, 2012) [26,27]. Note that reporting the outcomes
of all these indexes allows seeing patterns in the results and it is in line with practices to
enhance transparency in research (Steegen et al., 2016) [28]. Finally, the application of our
method is illustrated using real data sets.

The paper is structured as follows: Section 2 introduces some theoretical approaches
and details the proposed method for clustering density functions and/or functional data.
Section 3 describes the simulation study and its results. Section 4 shows an example using
real data sets to illustrate the use of the proposed method. Section 5 presents the main
contributions of this paper and suggests topics for further research. Finally, Section 6
contains the supplementary material and three additional illustrations using different
data sets (see Appendix A).

2. Definitions
2.1. Elicitation of Probability Distributions

An elicitation process involves extracting information about parameters of interest
(θ) from the subjective experience of a person (expert) and expressing it as a probability
distribution (prior distribution) Barrera-Causil et al., (2019) [2]. Thus, for expert i, a real
function xi(θ) (prior distribution) is elicited, and for a grid of m equally spaced points
(θi

1 < θi
2 < · · · < θi

m−1 < θi
m) throughout the support of this distribution, the heights of the

function are calculated (y1, y2 . . . , ym−1, ym). This process is made for n experts with the
aim to discretize the functions x1, . . . , xn.

2.2. Functional Data Analysis

In functional data, the ith observation is a real function xi(θ), where θ ∈ Θ = [θi
1, θi

m],
such that θi

1 and θi
m are the minimum and maximum of θ for the i-th expert, respectively,

and Θ is a real interval (i = 1, . . . , n). Thus, each xi is a point in certain function space
H (Ramsay et al. 2009) [29]. For analysis purposes, we assume that the functional data
x1, . . . , xn has an inner product or Hilbert space structure, that is, xi ∈ H, where H is a
vector space of functions defined on a real interval Θ and H is complete and has an inner
product 〈, 〉.

Functional Clustering

There are different methods for clustering functional data, such as k-means, agnes
with the agglomerative average method, and Ward’s method, among others (Ferreira and
Hitchcock (2009) [6]). However, k-means is used most frequently.

Table 1 describes three different methods implemented in this paper.

Table 1. Methods for clustering functional data.

Method Description

Functional k-means It is an extension of the traditional k-means clustering algorithm for
kmeans.fd functional data analysis. This method uses a special metric for

functional data.
Agglomerative hierarchical It computes agglomerative hierarchical clustering of the data set using
clustering Agnes (average method) the average method, where the distance between two clusters is the

average of the dissimilarities between the points in one cluster and the
points in the other cluster. A complete description of agglomerative
nesting (agnes) can be found in chapter 5 of Kaufman and
Rousseeuw (1990) [30].

Agglomerative hierarchical It computes agglomerative hierarchical clustering of the data set using
clustering Agnes (Ward’s method) Ward’s method, where the agglomerative criterion is based on the

optimal value of an objective function, which is usually the sum of
squared errors.
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2.3. Proposed Method

Our proposed method for clustering density functions, based on the Hellinger distance,
works as follows:

1. For each xi(θ), i = 1, 2, . . . , n, discretize the curve and get a grid of m equidistant
points (y1, . . . , ym). These points correspond to heights of the curve in m equally
spaced points of the support of the function (in this paper, we use 200 and 300
equally spaced points throughout the support of the function. The determination
of the amount of points depends on computational capacity). Thus, to apply this
methodology, we recommend selecting equidistant points throughout the support
of the distributions of interest in order to capture the shape of the curves. We have
found that increasing the numbers of points does not have a notorious effect on the
outcome of the algorithm).

2. Compute the Hellinger distance for all possible combinations of two of these functions.
So, for curves xs and xt, the distance is as follows:

d(xs, xt) ≈

√√√√ m

∑
j=1

(√
hs

j −
√

ht
j

)2
, (1)

where
hs

r =
ys

r

∑ ys
j
, (2)

with 1 ≤ r ≤ m and (y1, . . . , ym) are defined.
3. Build a matrix of distances d between all curves using the proposed metric.
4. Use the hierarchical clustering function hclust in R with d as the distance matrix.
5. Obtain the corresponding dendrogram.
6. Specify the number of clusters and identify the members in each cluster.

To analyze the performance of our proposed method, we compared it with other
algorithms available in the literature under different schemes. Such algorithms included
those implemented in the kmeans.fd and agnes functions in R, as studied by Ferreira and
Hitchcock (2009) [6]. In the following section, we explain in detail the way the simulation
study was conducted.

3. Simulation Study

For simulation purposes, density functions were used as functional data. The theoreti-
cal counterpart of these densities was estimated using kernel functions via the density()
function in R. To assess the performance of our method, we compared it with the functional
k-means, Ward’s, and average linkage methods for functional data as implemented in
the kmeans.fd(), agnes(method="ward") and agnes(method="average") functions in R,
respectively. In the simulation study, we generated overlapping distributions and overlap-
ping clusters of distributions based on the two following definitions:

Definition 1. Overlapping distributions. Let X and Y be random variables with density functions
f (x) and g(y), respectively, both sharing the same support, and define Pγ|Z as the γ-th percentile
of Z. Then, we can say that f and g overlap if one of the following conditions is satisfied:

(a) Pγ|X ≤ P1−γ|Y ∧ P1−γ|X ≤ Pγ|Y
(b) Pγ|Y ≤ P1−γ|X ∧ P1−γ|Y ≤ Pγ|X .

Definition 2. Overlapping clusters of distributions. A cluster is δ-overlapped (0 ≤ δ ≤ 1) with
another one if at least 100× δ% of those distributions is overlapped. If two clusters of distributions
are not overlapped, it means they are separated.

Initially, the clusters generated contained a finite number of curves following a Normal
(µ, σ2) distribution with pre-specified means and variances for each real group but with



Stats 2021, 4 190

a random perturbation of the parameters within clusters. Therefore, three clusters with
n = {5, 10, 30, 50} curves per cluster were considered. All of the cases above were simulated
considering two and three clusters of curves.

We also considered asymmetrical features to compare the behavior of the four methods
under different scenarios and thus modified the previously described simulation process
(clusters of Normal distributions) using Gamma(α, β) and Beta(α, β) distributions within
clusters. A further major consideration in all cases was the use of an atypical curve for
each simulation scenario to evaluate the performance of the method in the presence of
atypical curves. To study the effectiveness of the method under evaluation, we considered
separated and δ-overlapped clusters of distributions with a known value of δ. The average
overlapping rate in each scenario is presented in Table 2.

Table 2. Average value of δ in all simulation scenarios.

Scenarios
δ-Overlapping Average

2 Clusters 3 Clusters

Overlapped Normal curves 0.953 0.961
Overlapped Gamma curves 0.974 0.969
Overlapped Beta curves 0.955 0.959
Separated Normal curves 0.052 0.066
Separated Gamma curves 0.078 0.071
Separated Beta curves 0.064 0.067

In all the simulation scenarios, the existence of clusters of curves was ensured by
testing the equality of their means. Figure 4 shows one of the different simulation scenarios
used to compare the four methods. These scenarios were considered for two and three
clusters, with n = {5, 10, 30, 50} curves per cluster, and an equal number of curves. In each
simulation scenario, a total of 1000 replicates were run. To validate the clusters found at
each replicate, we used the routines in the clv package [31] in R. The performance of the
four methods compared here was assessed using the Rand index, the Fowlkes–Mallows
index (F.M), the Jaccard coefficient, and the correct classification rate. These measures are
defined by the equations below.
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Figure 4. Illustration of some assessed simulation schemes where three clusters of n = 30 curves with
a (a) separated, (b) overlapped, and (c) atypical structure are generated. Clusters of Normal(µ, σ2)

and Gamma(α, β) distributions are presented in the first and second columns, respectively. In (c),
atypical curves are shown in blue.
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Given a set of n elements S = {v1, . . . , vn} and two partitions of S to be compared:
X = {X1, . . . , Xr}, a partition of S into r subsets, and Y = {Y1, . . . , Ys}, a partition of S into
s subsets, define the following:

• a: the number of pairs of elements in S that are in the same set in X and in the same
set in Y.

• b: the number of pairs of elements in S where both elements belong to different
clusters in both partitions.

• c: the number of pairs of elements in S where both elements belong to the same cluster
in partition X but not in partition Y.

• d: the number of pairs of elements in S that are in different sets in X and in the same
set in Y.

So,
a = |S∗|, where S∗ = {(vi, vj)|vi, vj ∈ Xk, vi, vj ∈ Yl}

b = |S∗|, where S∗ = {(vi, vj)|vi ∈ Xk1 , vj ∈ Xk2 , vi ∈ Yl1 , vj ∈ Yl2}

c = |S∗|, where S∗ = {(vi, vj)|vi, vj ∈ Xk, vi ∈ Yl1 , vj ∈ Yl2}

d = |S∗|, where S∗ = {(vi, vj)|vi ∈ Xk1 , vj ∈ Xk2 , vi, vj ∈ Yl}

For some, 1 ≤ i, j ≤ n, i 6= j, 1 ≤ k, k1, k2 ≤ r, k1 6= k2, 1 ≤ l, l1, l2 ≤ s, l1 6= l2.
The Rand index (R), the Jaccard coefficient (J), the Fowlkes–Mallows index (F.M),

and the correct classification rate (CCR) are thus calculated as follows:

R =
a + b

a + b + c + d

J =
a

a + c + d

FM =

√
a

a + c
×
√

a
a + d

CCR =
Number of correctly classified objects

Total number of objects

All these validation measures have a value between 0 and 1, where 0 indicates that
no pair of points is shared by the two data clusters, and 1 means that the data clusters are
exactly the same.

Results

The main results of this simulation study are shown in Figures 5 and 6 (R codes and
data associated with this article can be found at https://figshare.com/projects/An_FDA-
based_approach_for_clustering_expert_knowledge/73437 (accessed on 4 March 2021)). In
general, and regardless of the performance index we used, our proposed method performs
better than kmean.fd, Ward’s, and average linkage methods in terms of recreating the
cluster structure in the data (Figure 5). Therefore, the clustering method based on the
Hellinger distance proposed herein is a better choice for classifying density curves (or, for
that matter, functional data).

The assertion above is justified from two perspectives. First, when clusters are sepa-
rated or overlapped or an atypical curve is present in simulated data from Normal(µ, σ2)
or Gamma(α, β) populations, there is evidence that our method performs better than the
other ones. Second, when two clusters from a Gamma(α, β) population are generated,
the kmean.fd and Ward’s methods, as well as our proposed method, performed equally
well. However, in any other scenario, our method outperforms the others.

https://figshare.com/projects/An_FDA-based_approach_for_clustering_expert_knowledge/73437
https://figshare.com/projects/An_FDA-based_approach_for_clustering_expert_knowledge/73437
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Figure 5. Performance indexes when two and three clusters of overlapped and separated (A)
Normal(µ, σ2), (B) Gamma(α, β), and (C) Beta(α, β) distributions are generated.

Although the kmean.fd method and our proposal perform equally well in almost all
the scenarios, our method outperforms others when three clusters of Gamma(α, β) curves
are considered regardless of their degree of overlap (Figure 5). When compared with
Ward’s method, ours has a slightly lower performance when n = 50 curves are generated
for two clusters of curves obtained from a Gamma(α, β) distribution. A similar behavior
is observed when two clusters of overlapped Beta(α, β) curves are generated, or when
n = {5, 10} curves from two clusters of a Beta(α, β) distribution with an atypical curve are
generated (Figure 6). In the former case, our proposal exhibits a slightly lower performance
than the other alternatives. However, in general, our method and the kmean.fd algorithm
performed equally well. In the latter case, Ward’s method performs slightly better than our
proposed method.
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Figure 6. Performance indexes when two and three clusters of (A) Normal(µ, σ2), (B) Gamma(α, β), and (C) Beta(α, β)

distributions with one atypical curve are generated.

Figure 6 illustrates the performance measures of the four methods compared in this
study to obtain optimal partitions. Overall, all the methods studied here exhibit poor
performance compared to that of our proposal. The result seems to be a promissory topic
for further exploration, especially for clusters generated from a Beta(α, β) distribution
because this is a very flexible distribution that can take different shapes. The closed support
of a Beta distribution leads to seeking clusters under more concentrated possibilities,
turning every method into a more overlapping one and making it more challenging to
detect the true differences within these curves. Thus, our proposed method exhibits the
best performance compared to the other options considered here.

4. Illustration

This section shows the performance of our proposed method when faced with a real
data set.
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Computer’s Lifetime Elicitation

The purpose of this application is to segment prior distributions of experts regard-
ing a desktop computer’s average operation time in months; since its purchase until its
first failure. Those prior distributions were obtained in an elicitation process described
in Barrera and Correa (2008) [32]. They carried out this elicitation process through an
interview-survey administered to six experts; however, their study was conducted taking
into account only the person with the most exceptional expertise. In this study, we work
with all prior distributions, considering the possible existence of clusters.

Figure 7 shows the elicited prior distributions (plotted via the free-hand method) of
the six experts, which resulted from the interview-survey conducted in Barrera-Causil and
Correa (2008) [32]. We can observe that all the distributions have a similar distributional
shape, but one of them (in green) has a very different shape with respect to the others.
Table 3 shows the experts’ years of experience in the ICT area (expertise) and years in their
current job. Expert 3 exhibits the highest level of expertise.
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Figure 7. Prior distributions of the beliefs of six experts.

Table 3. Experts’ years of experience in the ICT area and years in their current job. Note for example
that while E3 and E4 have the same number of years of expertise, E3 has more experience working
the computers being assessed in this study.

E1 E2 E3 E4 E5 E6

Expertise 2.5 5 17 17 4 7

Current Job 0.5 1.3 4 2 1 2.5

Applying our proposed clustering method, Figure 8 presents the cluster dendrogram
of the six experts, where we can observe that the prior belief of Expert 3 is far from that of
the other participants. Furthermore, note that, in Table 3, this expert exhibits the highest
level of expertise. For that reason, we decided to analyze the prior distributions using two
clusters: one comprising Experts 1, 2, 4, 5 and 6; and another one containing Expert 3 alone.
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Figure 8. Cluster dendrogram of the six experts.

In this situation, the following questions arise: Is the average of all distributions the
best representation of prior beliefs? Is it possible to reach a consensus among these experts?
Regarding the last question, in some cases a consensus can be quickly reached, but in many
others this process can be tedious or such agreement cannot be reached.

As for the first question, when priors are very different, the average of these distri-
butions can result in almost an uniform distribution that spoils the complex process of
elicitation. Thus, we recommend creating homogeneous groups of these prior distributions
and analyzing them simultaneously. To analyze each group simultaneously, we calculate
the functional mean and approximate the average curves to a Gamma distribution by
cluster. By using the fitdistr function of the R software, we obtain a maximum-likelihood
fitting of Gamma distribution for the functional mean in each cluster. This procedure can
be described as follows:

• The functional mean is obtained in each cluster.
• 1000 observations are generated from the distribution that is proportional to the the

functional mean in each cluster.
• This distribution is approximated to a gamma distribution using the fitdistr func-

tion with the generated samples.

Accordingly, for the cluster formed by Experts 1, 2, 4, 5, and 6, the fitted prior distri-
bution is G(2.82 , 0.19), with standard errors of the estimated parameters 0.39011009 and
0.02798532, respectively. For Expert 3, the fitted distribution is G(16.21 , 0.5), with standard
errors of the estimated parameters 2.04588737 and 0.06345412, respectively (the Gamma
distribution was chosen as it is a distribution typically used to model lifetime data (Shanker
et al., 2016 [33]). A method based on goodness-of-fit metrics (e.g., AIC) via a GAMLSS
approach (see Rigby and Stasinopoulos, 2005) [34] could have suggested distributions
other than the Gamma as better fits. Thus, the selection of the distribution has a direct
effect on estimates of location, scale, and shape and, in turn, on any subsequent inferential
analysis). Figure 9 shows prior distributions, by cluster, of a computer’s average operation
time in months (since its acquisition until its first failure) considering the functional mean
in each group.
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Figure 9. Prior distributions by cluster of experts. Expert 3 is represented by the dotted PDF and the
remaining experts are represented by the solid PDF.

It is clear there are two clusters of experts with their distributions exhibiting differences
in location and scale. As mentioned above, combining both distributions is indeed possible
(e.g., by averaging); however, doing so does not reflect the level of expertise in each cluster
(see Figure 2). Thus, each cluster should be analysed separately. Next, we illustrate a
parallel analysis for each cluster. Table 4 shows the lifetime of the desktop computers
assessed by the experts in the study by Barrera-Causil and Correa (2008) [32]. By resorting
to the exponential component of the Gamma distribution, it is possible to estimate 95%
probability intervals for the average time of the first occurrence of a physical failure in a
desktop computer (in months). Thus,

p(x | θ) = θ e−θx,

where x are the observed data, and θ is the parameter of interest.

Table 4. First failure times (in months) of 72 desktops. Out of the 72 desktop computers, 17 desktops were reported to have
failed at the time of the study. The failure times of the remaining 55 desktops were denoted by 66+ (this indicates that these
computers had not failed by the time when the study was carried out).

14,07 17,80 19,43 21,33 24,60 28,97 29,63 33,73 37,60 37,67 40,87 52,40

53,97 60,57 64,27 65,43 65,43 66+ 66+ 66+ 66+ 66+ 66+ 66+

66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+

66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+

66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+

66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+ 66+

For cluster 1, as the average operation time in months is 1
θ ∼ G(2.82 , 0.19), then

we have that θ follows an inverted Gamma distribution. Then, the prior of θ can be
expressed as

p(θ) ∝ θ−3.82e−0.19/θ .

Given that the likelihood of the Exponential distribution is

L(θ | x) = θ17e−θ ∑72
i=1 xi .
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The posterior distribution is therefore:

p(θ | x) ∝ p(θ) L(θ | x)

∝ θ13.18e
−
(

θ
72
∑

i=1
xi+

0.19
θ

)
,

where ∑72
i=1 xi = 4297.77.

We know that for future observations y, the predictive distribution is given by

p(y | θ) = θ e−θy, with (y ≥ 0 ; θ > 0).

In order to obtain the predictive Bayesian PDF, 1000 samples from the posterior
distribution were obtained. Thus, the Bayesian predictive density for cluster 1, can be
expressed as:

p(y | x) = Eθ | x

[
θ e−θy

]
≈ 1

m

m

∑
i=1

θi e−θiy,

where m = 1000.
A 95% probability interval of the average time of the first failure time of a desktop

computer (in months) in cluster 1, could be calculated by plugging the 1000 samples from
the posterior distribution into the previous equation. The interval in cluster 1 is therefore
[1, 79.025]. By performing the same procedure for cluster 2, the resulting 95% probability
interval is [1, 75]. These probability intervals can then be used by a panel of experts to make
case-related decisions.

5. Discussion

In this paper, we proposed a simple method to segment expert knowledge that can be
effectively applied to functional data or problems with large volumes of data (data mining).
Implementing such method, we built, after a discretization process, a distance matrix
between curves using the Hellinger distance.

A simulation study considering different scenarios was presented. In such study,
our proposed method performed better in almost all scenarios than the k-means and
agglomerative nesting clustering algorithms for functional data (as implemented in the
kmean.fd and agnes functions in R, respectively). Therefore, it proved to be a useful tool
to perform a cluster analysis with distributions elicited from experts’ personal beliefs.
Based on the computers’ lifetime example, we conclude that the proposed clustering
method can be used to segment expert knowledge. Furthermore, it can identify the expert
with the highest level of expertise, which is very important when analyzing experts’ beliefs
considering their different points of view.

Along the same lines of this proposal, further research topics in this field include
sensitivity analyses when different initial values are considered. Another interesting area,
based on the results of the analyses above, is developing a robust clustering method
to generate data partitions, namely a clustering method that performs well in different
conditions. Additionally, other distributions (e.g., Poisson), samples, and cluster sizes
should be considered in future simulation studies to further assess the performance of
our method.

Finally, we believe our proposed method has implications for two specific areas;
combination of expert knowledge and machine learning (ML), and Bayesian inference.
Supervised (e.g., classification) and unsupervised (e.g., clustering) ML methods have
gained momentum in current research. For example, it has been shown that ML-based
classification ensembles perform better than experts in segregating viable from non-viable
embryos [35] and that (evolutionary) clustering algorithms enable characterising COVID-
19-related textual tweets in order to assist institutions in making decisions [36]. In general,
researchers pitch ML-based analyses against human expert knowledge because they see no
value in it or because do not know how to integrate into the analysis pipeline. Evidence,
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however, suggests that blending expert knowledge with ML analyses leads to better
predictions [37–40]. We believe our proposal can be used to contribute in this rather
under-investigated area.

A challenge in Bayesian inference is to determine the effect of different prior distri-
butions on a parameter to be estimated. In this regard, Stefan et al., (2021) [20] found
that the variability in prior distributions from six experts did not affect the qualitative
conclusions associated to estimated Bayes factors. Their results thus suggest that although
there can be quantitative differences between the elicited prior distributions, the overall
qualification associated to those quantities is not altered. We believe, though, that if the
elicited distributions show considerable fluctuation in terms of location, scale and shape,
those distributions need to be subjected to clustering in order to segregate levels of expertise
(see Figures 2, 7 and 9). The method proposed herein can serve for such purpose.

6. Conclusions

Although the proposed clustering method is designed for data obtained from ex-
perts’ belief curves, we demonstrated it can be applied to data sets that do not correspond
to distributions or curves (we show this in three supplementary examples). In conclu-
sion, the proposed method offers encouraging applications using other types of data sets
encountered in data mining problems.
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Appendix A

This section presents the performance of the proposed method in different scientific
fields. Note that this proposal was focused on elicited prior distributions, but it could be
applied using other types of data sets.

https://figshare.com/projects/An_FDA-based_approach_for_clustering_expert_knowledge/73437
https://figshare.com/projects/An_FDA-based_approach_for_clustering_expert_knowledge/73437
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Appendix A.1. Weather Station Density Classification

In this example, we used the CanadianWeather data set from the fda R package.
Particularly, we analyzed the average daily temperatures at 35 different locations in Canada
from 1960 to 1994. Although this data set has already been studied from different points of
view (see Ramsay and Silverman, 2005 [41]; Giraldo, 2009 [42]; and Giraldo, Delicado and
Mateu, 2012 [43] for more details), our interest was focused on seeking, for each location,
the optimal density clusters associated with the average temperatures in January.

The dendrogram in Figure A1 suggests that the weather stations can be grouped into
five clusters. Although this is a subjective criterion, it is an important step to compare
the number of clusters defined by our method with the actual grouping of the Canadian
geographical locations (see Table A1). An objective alternative to select the numbers of
clusters could be applied using a cost function (see Cohen-Addad, 2019 [44]).

Figure A2 shows the density functions of the temperatures at each location (color
coded by cluster). Note that, after applying our clustering method, five clusters can be
clearly identified in the data even though the spatial correlation effect was not taken
into account.

After comparing these results with the actual locations in Figure A3, we found that
cluster 1 (C1) represents stations located close to the Atlantic continental coast and sur-
rounding islands (5 cities), two cities near Lake Ontario, and Kamloops—an “atypical”
city located in the province of British Columbia. Although Kamloops seems to be an
outlier in this group, the behavior of the temperatures in this area is very similar to the one
mentioned before (see https://weather.gc.ca/ (acessed on 13 December 2020)).
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Figure A1. Dendrogram of Canadian weather stations. The clusters are, from left to right, C2 (from Quebec to Pr. George),
C1 (from Yarmouth to Sydney), C3 (from Bagottville to The Pas), C5 (from Pr. Rupert to Victoria), and C4 (from Resolute
to Inuvik).

https://weather.gc.ca/
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Figure A2. Densities of the Canadian weather stations by cluster. From left to right, C1: red densities,
C2: green densities, C4: purple densities, C3: blue densities, and C5: orange densities.

Table A1. Clusters resulting from data of Canadian weather stations.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Locations

St. Johns Fredericton Scheffervll Churchill Vancouver
Halifax Quebec Arvida Uranium Cty Victoria
Sydney Sherbrooke Bagottville Dawson Pr. Rupert
Yarmouth Montreal Thunderbay Yellowknife
Charlottvl Ottawa Winnipeg Iqaluit
Toronto Calgary The Pas Inuvik
London Pr. George Regina Resolute
Kamloops Pr. Albert

Edmonton
Whitehorse

Despite certain limitations of the available sample, the classification of these locations
based on the proposed method matches, almost entirely, their geographical distribution.
For instance, Cluster 2 (C2) is also segmented into two principal areas. The first one in-
cludes cities near the river in the East of the country (5 cities) and bordering St. Lawrence
River as far as Ottawa; the second one features stations located in cities near the Ap-
palachian Mountains. The stations in Cluster 3 (C3) are located in the Mid-South part of
the country. Cities in Cluster 4 (C4) are located in the coldest zones (extended North).
Finally, Cluster 5 (C5) consists of cities on the Pacific coast. These results provide us with
a good classification/representation of the actual temperature distribution registered at
those stations (see Figure A2).
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Figure A3. Map of Canada. The clusters are C1, C2, C3, C4, and C5 (see Table A1 for the list of cities in
each cluster and Figure A2 for their temperatures). Adapted from http://goo.gl/Ok8CWv (accessed
on 13 December 2021)

Appendix A.2. Students Data Set

We collected data of students pursuing an online bachelor’s degree in Health Science
at a public university in Australia in 2018. We selected students from an online program in-
stead of an on-campus one due to the increased diversity in demographics (i.e., age groups)
Stone (2019) [45]. Online learning tends to attract “non-traditional” students, as it pro-
vides easier access to education and increased flexibility for studying Stone (2019) [45].
Non-traditional students found in online learning environments are individuals who may:
(a) be significantly older, (b) work full time, (c) belong to different socio-economic statuses,
(d) have family responsibilities, or (e) want to move forward or change careers Devlin
(2017) [46]. For that reason, we determined that this kind of data is appropriate to test our
proposed method.

The density of the engagement variable of each age group is presented in Figure A4.
We can observe that the density of older individuals shows a different behavior regarding
the dispersion of the observations in the other functions. The engagement variable involves
the interactions of students with the Electronic Learning Management System (e-LMS)
during their studies, which includes access to content, forums, and assessments.

http://goo.gl/Ok8CWv
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Figure A4. Density plots of the engagement variable of all age groups.

Before clustering probability distributions, we transformed the data using a density
function to obtain the heights of the engagement variable in each age group. For that
purpose, the same X values were considered to evaluate the heights of the distributions at
the same points. We determined that the Hellinger distance was appropriate to evaluate
the dissimilarity between the distributions of students’ age groups. Then, we used a
hierarchical clustering method based on Ward’s method to interpret the results shown in
Figure A5.

Figure A5. Dendrogram of the engagement variable of all age groups.

The dendrogram in Figure A5 shows 5 distinctive groups. Those labelled “21 or under”
and “22–29” are closely related. However, “30–39”, “40–49”, and “50 or older” show slight
differences. Based on the results, there are 4 potential cluster groups that are distinctive in
terms of different engagement levels per age-group category. Our analysis and results in
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Figure A5 show that students from certain age groups have varying levels of engagement
with their online program. The proposed method, thus, seems instrumental in analyzing
data from online learning platforms.
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