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Abstract: The testing of high-dimensional normality is an important issue and has been intensively
studied in the literature, it depends on the variance–covariance matrix of the sample and numerous
methods have been proposed to reduce its complexity. Principle component analysis (PCA) has been
widely used in high dimensions, since it can project high-dimensional data into a lower-dimensional
orthogonal space. The normality of the reduced data can then be evaluated by Jarque–Bera (JB)
statistics in each principle direction. We propose a combined test statistic—the summation of one-way
JB statistics upon the independence of the principle directions—to test the multivariate normality of
data in high dimensions. The performance of the proposed method is illustrated by the empirical
power of the simulated normal and non-normal data. Two real data examples show the validity of
our proposed method.
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1. Introduction

Normality plays an important role in statistical analysis and there are numerous
methods for normality testing presented in the literature. Koziol [1] and Slate [2] used the
properties of normal distribution function to assess multivariate normality. Reference [3]
checked normality using a class of goodness-of-fit tests and this kind of method was also
discussed in [4,5]. Various statistics have also been used in recent years, such as the Cramér-
Von Mises(CM) statistic [5], skewness and kurtosis [6], sample entropy [7], Shapiro–Wilk’s
W statistic [8] and the Kolmogorov-Smirnov(KS) statistic (see also in [9–11]).

It is noticed that many studies of the aforementioned statistics are based on univariate
normality, while the practical research we concentrate on is based on multivariate normality.
Therefore, generalization should be used to enlarge the conclusions from univariate to
multivariate. This is a common practice in multivariate normality testing when some
useful statistics are adopted. Projection methods such as principle component analysis
(PCA) can be exploited to obtain such achievement, as described in [8,12]. Convenient
principle component analysis can project a high dimensional dataset into several lower
dimensions in independent directions, then statistical tests in each direction can be sum-
marized together to give a total test for multivariate normality, using the fact that the
joint probability distribution is the product of all marginal probability distributions for
independent variables. With the help of these orthogonal projections, the dimension can be
reduced and the computation can be more efficient.

In this paper, the Jarque–Bera statistic, a combination of skewness and kurtosis, instead
of the two statistics, as in [8], is investigated to test the normality in each principle direction.
Then, a new kind of statistic JBsum is constructed to test the high-dimensional normality.
The performance of the proposed method and its empirical power of testing are illustrated
based on some high-dimensional simulated data.

This paper is organized as follows—Section 2 provides the theory of principle compo-
nent analysis and gives the methodologies of statistical inference for multivariate normality.
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In Section 3, some simulated examples of normal data and non-normal data are used to
illustrate the efficiency of our proposed method. Two real examples are then investigated
in Section 4 to verify the methods’ effectiveness.

2. High-Dimensional Normality Test Based on PC-Type JB Statistic

For observed data X = (xij)n×p with sample size n and dimension p, the principle
component analysis reduces the dimension of p-variate random vector X through linear
combinations, and it searches the linear combinations with larger spread among the ob-
served value of X, i.e., the larger variances. Specifically, it searches for the orthogonal
directions ωi(i = 1, 2, . . . , p), which satisfy

ω = arg max
ω

Var(Xω) = arg max
ω

ωTVar(X)ω,

s.t. ωTω = 1. (1)

Denoted by ΣΣΣ, the covariance matrix of X, the eigenvalue λi and principle components
ωi(i = 1, 2, . . . , p) can be obtained by spectral decomposition of the covariance matrix
ΣΣΣ. Therefore, the observed data can be projected to the archived lower-dimension space
{ω1, ω2, . . . , ωp} by zi = Xωi, which gives the projected observed matrix z.

For each zi, the skewness and kurtosis can be calculated by

Sk(zi) =
1
n ∑n

j=1
(
zij − zi

)3(
1
n ∑n

j=1
(
zij − zi

)2
)3/2 , (2)

Ku(zi) =
1
n ∑n

j=1
(
zij − zi

)4(
1
n ∑n

j=1
(
zij − zi

)2
)2 , (3)

where zi stands for the sample mean. Then, the univariate JB statistic can be given by

JB(zi) =
n
6

(
S2

k(zi) +
(Ku(zi)− 3)2

4

)
. (4)

To test the normality of high-dimensional data, z = (z1, z2, . . . , zr), define

JBsum(z) =
r

∑
i=1

JB(zi), (5)

where r stands for the number of principle components ultimately selected, which satisfies:

r

∑
i=1

λi

/
p

∑
i=1

λi ≥ 1− s.

Considering the hypothesis:

H0 : the data is normally distributed; v.s. H1 : the data is nonnormally distributed

Under the null hypothesis H0, the JB statistic will be asymptotically χ2(2)
distributed [13], then the JBsum will be asymptotically χ2(2r) distributed. For a given
significance α, the critical region will be

R(Z) = {Z|JBsum(Z) > χ2
α(2r)}. (6)

Upon JBsum, an exact critical region R(X) can be deduced, and therefore the testing
can be implemented based on these critical regions.
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Evaluating the performance of the proposed PC-type Jarque–Bera testing depends
on (1) whether the orthogonal axes are chosen due to the cumulative proportion; and
(2) whether the hypothesis is rejected or accepted. Composed by the well known power
function, the error will be:

Power =
{

α with H0
1− [(s + (1− s)β)] = (1− s)(1− β) with H1

, (7)

where α is the probability of a Type-I error and β is the probability of a Type-II error.
Therefore, we can see that the power is a non-decreasing function of the parameter s.

3. Numerical Simulations

To evaluate the performance of the aforementioned testing, some simulation experi-
ments are carried out in this section.

3.1. Normally Distributed Data

A series of normally distributed data were investigated with different data dimension
p and different sample size n. Let n× p simulated data matrix Xn×p ∼ N(µµµ, ΣΣΣ), where
µµµ = 0. Consider two kinds of covariance matrix:

(I) ΣΣΣ = ρI(|i−j|6=0) ;
(II) ΣΣΣ = 0.5ρI(|i−j|6=0) + 0.5ρ|i−j|.

Define
Empirical power = nfalse/nnormal,

where n f alse is the number of rejected samples, nnormal is the number of samples that obey
the normal distribution. Tables 1–6 describe separately the Empirical power of the PC-type
JB testing JBsum compared with Sk-type statistics χ2

sk, Skmax [14], Ku-type statistics χ2
ku,

Kumax [14], Mardia’s method Z∗M1 [15], Srivastava’s method Z∗S1 [16], Kauyuki’s method
MJB∗m, MJB∗s [16], Kazuyuki’s method mJBM [17] in these two cases with significance
level α = 0.01, 0.05, 0.10 respectively.

From the table above we can conclude that in the case of normal data, the empirical
power of JBsum is small and stable whenever p/n is large or small. Although the empirical
power of each statistic converges to the given significance level as n increases, the perfor-
mance of Skmax(especially when α = 0.1), Kumax, Z∗M1, MJB∗m and ZNT is not so good as p
increase. Besides, it is noticed that Z∗S1, MJB∗s and mJBM are inapplicable to p > n whereas
JBsum still works well. For all six tables, the numbers in bold represent the empirical power
that is closest to the significance level among the eleven statistics in each situation.

3.2. Non-Normally Distributed Data

In this part, non-normal datasets are simulated to evaluate the performance of the
proposed method according to Empirical power. Define

Empirical power = ntrue/nnon−normal,

where ntrue is the number of accepted samples, nnon−normal is the number of samples that
do not obey the normal distribution. The performance is evaluated in three databases
as follows:

(III) Shi f ted χ2(1) : every variable in Xn×p was centralized, with independently identical
distribution χ2(1).

(IV) Shi f ted exp(1) : every variable in Xn×p was centralized, with independently identical
distribution exp(1).

(V) N(0, 1) + χ2(2) : the first [p/2] variables in Xn×p are from N(0, 1) distribution, while
the last p− [p/2] variables independently identically distributed from χ2(2), where
[p/2] stands for the integer part of p/2.
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The performance of JBsum compared with the Sk-type statistics χ2
sk, Skmax [14], Ku-

type statistics χ2
ku, Kumax [14], Mardia’s statistics Z∗M1, Z∗M2 [15], Srivastava’s statistics Z∗S1,

Z∗S2 [16], Kazuyuki’s statistic mJBM [17] and Rie’s statistic ZNT [18] are illustrated in
Figures 1–5. Since JBsum, χ2

sk, and χ2
ku are based on the sum of χ2, we call them sum-type.

Skmax and Kumax come from the maximum of χ2, and thus we call them max-type.
All of these methods are studied in 2000 simulated data. Figures 1–5 show the

comparisons of the empirical power of different dimension p and various sample size n.

(1) Figure 1 indicates that in the case of p = 5, Z∗M1’s performance is best in all three
cases. Though Z∗M2 performs well in Case I and Case II, it is not as good in Case
III. Comparatively, Z∗S1, χ2

sk and JBsum perform similarly well and better than χ2
ku

and Kumax.
(2) In the case of p = 30, as in Figure 2, although Z∗M1 and Z∗M2 perform better than JBsum

in Case II, they do not maintain stable results like JBsum in Case III. In fact, JBsum’s
performance is generally better than the other methods mentioned here among all
three cases.

(3) In Figure 3, where p = 50, JBsum’s performance is best among others except Z∗M1
and Z∗M2. As in Figure 2, Z∗M1 and Z∗M2 are unstable in Case III when p is close to n.
This phenomenon can also be seen in mJBM. Combining the information shown in
Figure 2, we can see that Z∗M1, Z∗M2, and mJBM are not as stable as JBsum.

(4) With the increase in dimension, as seen in Figure 4, Z∗M1 and Z∗M2 no longer per-
form as well as before, and mJBM is still not stable enough when n is close to p.
Although Kumax’s performance is better than JBsum’s at first, it is surpassed by the
latter when n > 100.

(5) In Figure 5, as in p = 100, the power of Kumax is initially higher than JBsum, and is
eventually surpassed by JBsum. Except for Kumax, JBsum’s performance is the best.

Table 1. Empirical power of PC-type Jarque–Bera (JB) testing for normally distributed data for Case-I compared with other
methods (α = 0.01).

χ2
sk χ2

ku Skmax Kumax Z∗
M1 Z∗

S1 M JB∗
m M JB∗

s mJBM ZNT JBsum

p = 5
n = 25 0.0065 0.0090 0.0080 0.0140 0.0195 0.0195 0.0310 0.0345 0.0110 0.0005 0.0215
n = 50 0.0110 0.0190 0.0105 0.0245 0.0195 0.0170 0.0280 0.0295 0.0115 0.0025 0.0250
n = 100 0.0160 0.0245 0.0145 0.0295 0.0205 0.0185 0.0290 0.0265 0.0150 0.0105 0.0245
n = 200 0.0115 0.0215 0.0135 0.0270 0.0130 0.0180 0.0140 0.0225 0.0110 0.0040 0.0275
n = 500 0.0110 0.0185 0.0115 0.0215 0.0110 0.0070 0.0125 0.0095 0.0090 0.0070 0.0255

p = 30
n = 25 0.0100 0.0125 0.0150 0.0290 0.1880 0.0035 0.1880 0.0560 - 0.3030 0.0215
n = 50 0.0225 0.0210 0.0230 0.0565 0.0005 0.0235 0.0025 0.0300 0.0300 0.0000 0.0265
n = 100 0.0295 0.0290 0.0230 0.0730 0.0195 0.0130 0.0220 0.0200 0.0195 0.0005 0.0335
n = 200 0.0295 0.0345 0.0160 0.0740 0.0175 0.0160 0.0180 0.0160 0.0125 0.0030 0.0265
n = 500 0.0300 0.0255 0.0130 0.0555 0.0115 0.0140 0.0120 0.0155 0.0140 0.0115 0.0250

p = 50
n = 25 0.0150 0.0065 0.0185 0.0335 0.1890 - 0.1890 - - 0.3000 0.0190
n = 50 0.0275 0.0255 0.0260 0.0660 0.1215 0.0145 0.1215 0.0145 0.0720 0.1435 0.0255
n = 100 0.0415 0.0215 0.0235 0.0870 0.0050 0.0165 0.0050 0.0220 0.0165 0.0000 0.0340
n = 200 0.0460 0.0270 0.0155 0.0910 0.0265 0.0120 0.0270 0.0145 0.0150 0.0010 0.0295
n = 500 0.0415 0.0265 0.0135 0.0655 0.0180 0.0125 0.0195 0.0150 0.0145 0.0060 0.0210

p = 100
n = 25 0.0215 0.0115 0.0195 0.0320 0.1840 - 0.1840 - - 0.3075 0.0135
n = 50 0.0495 0.0170 0.0275 0.0695 0.1260 - 0.1260 - - 0.2055 0.0210
n = 100 0.0530 0.0305 0.0295 0.1045 0.0875 0.0140 0.0875 0.0145 0.0470 0.1070 0.0285
n = 200 0.0630 0.0315 0.0270 0.1110 0.0080 0.0110 0.0080 0.0125 0.0150 0.0000 0.0305
n = 500 0.0650 0.0290 0.0190 0.1010 0.0225 0.0160 0.0225 0.0165 0.0140 0.0030 0.0160

p = 200
n = 25 0.0340 0.0105 0.0305 0.0360 0.1730 - 0.1730 - - 0.3055 0.0145
n = 50 0.0615 0.0200 0.0500 0.0845 0.1540 - 0.1540 - - 0.2295 0.0225
n = 100 0.0835 0.0285 0.0400 0.1315 0.1235 - 0.1235 - - 0.1815 0.0310
n = 200 0.0820 0.0250 0.0260 0.1470 0.0835 0.0110 0.0835 0.0115 0.0360 0.0915 0.0205
n = 500 0.0995 0.0185 0.0210 0.1265 0.0090 0.0145 0.0090 0.0145 0.0115 0.0000 0.0165
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Table 2. Empirical power of PC-type Jarque–Bera (JB) testing for normally distributed data for Case-I compared with other
methods (α = 0.05).

χ2
sk χ2

ku Skmax Kumax Z∗
M1 Z∗

S1 M JB∗
m M JB∗

s mJBM ZNT JBsum

p = 5
n = 25 0.0320 0.0185 0.0380 0.0255 0.0605 0.0710 0.0695 0.0835 0.0515 0.0205 0.0345
n = 50 0.0415 0.0355 0.0390 0.0490 0.0735 0.0630 0.0815 0.0665 0.0485 0.0330 0.0500
n = 100 0.0500 0.0515 0.0510 0.0660 0.0675 0.0620 0.0765 0.0655 0.0575 0.0510 0.0530
n = 200 0.0485 0.0485 0.0450 0.0580 0.0560 0.0585 0.0630 0.0640 0.0520 0.0465 0.0680
n = 500 0.0570 0.0475 0.0530 0.0555 0.0540 0.0510 0.0590 0.0505 0.0525 0.0485 0.0690

p = 30
n = 25 0.0255 0.0265 0.0460 0.0495 0.1900 0.0260 0.1900 0.3175 - 0.3050 0.0345
n = 50 0.0465 0.0395 0.0650 0.0960 0.0195 0.0755 0.0215 0.0815 0.0940 0.0000 0.0570
n = 100 0.0595 0.0595 0.0660 0.1205 0.0670 0.0650 0.0685 0.0625 0.0695 0.0105 0.0700
n = 200 0.0745 0.0645 0.0615 0.1300 0.0755 0.0530 0.0760 0.0585 0.0660 0.0295 0.0715
n = 500 0.0745 0.0625 0.0610 0.1080 0.0550 0.0645 0.0560 0.0675 0.0565 0.0425 0.0680

p = 50
n = 25 0.0295 0.0205 0.0500 0.0580 0.1900 - 0.1900 - - 0.3000 0.0340
n = 50 0.0595 0.0425 0.0730 0.1120 0.1280 0.0525 0.1280 0.0465 0.1685 0.1505 0.0495
n = 100 0.0745 0.0550 0.0740 0.1340 0.0350 0.0645 0.0375 0.0680 0.0675 0.0005 0.0630
n = 200 0.0860 0.0585 0.0630 0.1545 0.0655 0.0465 0.0660 0.0470 0.0565 0.0130 0.0660
n = 500 0.0935 0.0700 0.0565 0.1315 0.0595 0.0515 0.0595 0.0495 0.0625 0.0330 0.0590

p = 100
n = 25 0.0370 0.0180 0.0580 0.0565 0.1840 - 0.1840 - - 0.3075 0.0225
n = 50 0.0785 0.0360 0.0820 0.1280 0.1265 - 0.1265 - - 0.2060 0.0420
n = 100 0.0915 0.0575 0.0770 0.1815 0.0940 0.0510 0.0940 0.0500 0.1150 0.1090 0.0560
n = 200 0.1065 0.0615 0.0760 0.1940 0.0355 0.0595 0.0355 0.0615 0.0640 0.0000 0.0640
n = 500 0.1095 0.0655 0.0645 0.1850 0.0820 0.0635 0.0820 0.0665 0.0610 0.0230 0.0615

p = 200
n = 25 0.0430 0.0150 0.0760 0.0675 0.1735 - 0.1735 - - 0.3055 0.0240
n = 50 0.0875 0.0355 0.1145 0.1425 0.1540 - 0.1540 - - 0.2295 0.0395
n = 100 0.1130 0.0530 0.1045 0.2300 0.1235 - 0.1235 - - 0.1815 0.0660
n = 200 0.1235 0.0575 0.0790 0.2405 0.0855 0.0485 0.0855 0.0485 0.1025 0.0940 0.0540
n = 500 0.1475 0.0570 0.0695 0.2315 0.0505 0.0665 0.0505 0.0655 0.0565 0.0000 0.0585

Figure 1. Empirical power of proposed PC-type JB testing compared with other methods (p = 5).
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Table 3. Empirical power of PC-type Jarque–Bera (JB) testing for normally distributed data for Case-I compared with other
methods (α = 0.1).

χ2
sk χ2

ku Skmax Kumax Z∗
M1

Z∗
S1 M JB∗

m Z∗
S1 mJBM ZNT JBsum

p = 5
n = 25 0.0575 0.0285 0.0660 0.0380 0.1090 0.1150 0.1140 0.1115 0.0950 0.0635 0.0455
n = 50 0.0710 0.0560 0.0745 0.0645 0.1250 0.1055 0.1305 0.1060 0.0945 0.0765 0.0725
n = 100 0.0900 0.0755 0.0940 0.0880 0.1205 0.1110 0.1160 0.1010 0.1005 0.0970 0.0865
n = 200 0.0900 0.0795 0.0810 0.0895 0.1080 0.1135 0.1085 0.1080 0.0920 0.0985 0.0985
n = 500 0.1035 0.0855 0.1135 0.0915 0.1110 0.1015 0.1075 0.0950 0.1070 0.0900 0.1110

p = 30
n = 25 0.0385 0.0350 0.0780 0.0670 0.1905 0.0425 0.1905 0.5345 - 0.3050 0.0450
n = 50 0.0740 0.0565 0.1030 0.1210 0.0540 0.1300 0.0570 0.1320 0.1465 0.0000 0.0805
n = 100 0.0920 0.0870 0.1140 0.1580 0.1060 0.1115 0.1070 0.1170 0.1150 0.0345 0.1020
n = 200 0.1140 0.0950 0.1210 0.1710 0.1390 0.1030 0.1400 0.1045 0.1085 0.0715 0.1085
n = 500 0.1180 0.1020 0.0975 0.1535 0.1030 0.1105 0.1040 0.1165 0.1135 0.0870 0.1130

p = 50
n = 25 0.0430 0.0295 0.0870 0.0775 0.1905 - 0.1905 - - 0.3000 0.0470
n = 50 0.0880 0.0610 0.1195 0.1420 0.1340 0.0980 0.1340 0.0945 0.2460 0.1540 0.0725
n = 100 0.1085 0.0805 0.1205 0.1900 0.0850 0.1170 0.0850 0.1140 0.1200 0.0030 0.0900
n = 200 0.1225 0.0935 0.1105 0.1995 0.1175 0.0960 0.1170 0.0990 0.1055 0.0370 0.1000
n = 500 0.1370 0.1095 0.1100 0.1830 0.1130 0.1035 0.1130 0.1030 0.1045 0.0815 0.1035

p = 100
n = 25 0.0445 0.0275 0.0955 0.0735 0.1840 - 0.1840 - - 0.3075 0.0410
n = 50 0.0990 0.0485 0.1375 0.1600 0.1270 - 0.1270 - - 0.2060 0.0625
n = 100 0.1195 0.0825 0.1395 0.2345 0.0960 0.1050 0.0960 0.0985 0.1915 0.1105 0.0845
n = 200 0.1360 0.0905 0.1260 0.2520 0.0715 0.1085 0.0720 0.1110 0.1230 0.0005 0.0945
n = 500 0.1470 0.1045 0.1125 0.2470 0.1375 0.1160 0.1375 0.1185 0.1075 0.0550 0.1030

p = 200
n = 25 0.0520 0.0225 0.1205 0.0870 0.1735 - 0.1735 - - 0.3055 0.0330
n = 50 0.1020 0.0510 0.1585 0.1765 0.1540 - 0.1540 - - 0.2295 0.0580
n = 100 0.1430 0.0755 0.1620 0.2770 0.1235 - 0.1235 - - 0.1815 0.0905
n = 200 0.1530 0.0875 0.1365 0.3110 0.0875 0.0905 0.0875 0.0910 0.1690 0.0945 0.0905
n = 500 0.1825 0.1055 0.1145 0.2965 0.1095 0.1205 0.1095 0.1190 0.1140 0.0010 0.0960

Figure 2. Empirical power of proposed PC-type JB testing compared with other methods (p = 30).
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Table 4. Empirical power of PC-type Jarque–Bera (JB) testing for normally distributed data for Case-II compared with other
methods (α = 0.01).

χ2
sk χ2

ku Skmax Kumax Z∗
M1 Z∗

S1 M JB∗
m M JB∗

s mJBM ZNT JBsum

p = 5
n = 25 0.0045 0.0125 0.0090 0.0140 0.0245 0.0255 0.0385 0.0410 0.0150 0.0005 0.0230
n = 50 0.0115 0.0180 0.0130 0.0280 0.0190 0.0115 0.0275 0.0180 0.0145 0.0050 0.0255
n = 100 0.0130 0.0215 0.0185 0.0295 0.0195 0.0130 0.0250 0.0190 0.0160 0.0055 0.0260
n = 200 0.0140 0.0225 0.0140 0.0310 0.0150 0.0135 0.0220 0.0215 0.0115 0.0115 0.0230
n = 500 0.0120 0.0205 0.0135 0.0230 0.0095 0.0130 0.0110 0.0160 0.0080 0.0090 0.0205

p = 30
n = 25 0.0025 0.0120 0.0150 0.0305 0.1985 0.0050 0.1985 0.0595 - 0.3480 0.0180
n = 50 0.0065 0.0205 0.0215 0.0525 0.0015 0.0185 0.0020 0.0255 0.0280 0.0000 0.0310
n = 100 0.0090 0.0260 0.0170 0.0700 0.0235 0.0150 0.0250 0.0150 0.0180 0.0015 0.0260
n = 200 0.0105 0.0295 0.0200 0.0655 0.0225 0.0110 0.0230 0.0150 0.0120 0.0035 0.0245
n = 500 0.0085 0.0195 0.0120 0.0495 0.0140 0.0115 0.0140 0.0125 0.0125 0.0075 0.0205

p = 50
n = 25 0.0010 0.0075 0.0185 0.0235 0.2605 - 0.2605 - - 0.4230 0.0150
n = 50 0.0055 0.0240 0.0250 0.0770 0.1075 0.0180 0.1075 0.0165 0.0725 0.1615 0.0245
n = 100 0.0100 0.0250 0.0175 0.0915 0.0065 0.0170 0.0070 0.0165 0.0185 0.0000 0.0260
n = 200 0.0090 0.0365 0.0210 0.0910 0.0155 0.0125 0.0155 0.0130 0.0105 0.0015 0.0275
n = 500 0.0135 0.0205 0.0145 0.0670 0.0240 0.0115 0.0240 0.0115 0.0105 0.0100 0.0180

p = 100
n = 25 0.0005 0.0070 0.0250 0.0360 0.2600 - 0.2600 - - 0.4315 0.0145
n = 50 0.0050 0.0225 0.0405 0.0850 0.1970 - 0.1970 - - 0.3345 0.0265
n = 100 0.0035 0.0260 0.0275 0.1195 0.0845 0.0130 0.0845 0.0125 0.0510 0.1310 0.0295
n = 200 0.0110 0.0265 0.0255 0.1295 0.0075 0.0105 0.0080 0.0115 0.0130 0.0000 0.0260
n = 500 0.0180 0.0210 0.0135 0.0885 0.0250 0.0075 0.0250 0.0080 0.0090 0.0040 0.0210

p = 200
n = 25 0.0005 0.0080 0.0360 0.0395 0.3050 - 0.3050 - - 0.4800 0.0110
n = 50 0.0040 0.0195 0.0475 0.1120 0.2500 - 0.2500 - - 0.4035 0.0265
n = 100 0.0085 0.0225 0.0405 0.1365 0.1475 - 0.1475 - - 0.2465 0.0245
n = 200 0.0115 0.0230 0.0295 0.1520 0.0650 0.0100 0.0650 0.0105 0.0285 0.0960 0.0250
n = 500 0.0125 0.0195 0.0160 0.1310 0.0100 0.0120 0.0100 0.0120 0.0120 0.0005 0.0195

Figure 3. Empirical power of proposed PC-type JB testing compared with other methods (p = 50).
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Table 5. Empirical power of PC-type Jarque–Bera (JB) testing for normally distributed data for Case-II compared with other
methods (α = 0.05).

χ2
sk χ2

ku Skmax Kumax Z∗
M1 Z∗

S1 M JB∗
m M JB∗

s mJBM ZNT JBsum

p = 5
n = 25 0.0205 0.0200 0.0280 0.0250 0.0735 0.0695 0.0795 0.0825 0.0685 0.0260 0.0390
n = 50 0.0375 0.0410 0.0450 0.0510 0.0620 0.0420 0.0700 0.0495 0.0495 0.0320 0.0505
n = 100 0.0555 0.0445 0.0550 0.0515 0.0715 0.0480 0.0770 0.0515 0.0475 0.0370 0.0585
n = 200 0.0525 0.0530 0.0530 0.0665 0.0580 0.0560 0.0660 0.0605 0.0595 0.0420 0.0565
n = 500 0.0535 0.0500 0.0515 0.0625 0.0515 0.0565 0.0595 0.0530 0.0530 0.0460 0.0675

p = 30
n = 25 0.0105 0.0240 0.0520 0.0515 0.2010 0.0230 0.2010 0.3135 - 0.3500 0.0300
n = 50 0.0225 0.0360 0.0625 0.0855 0.0170 0.0580 0.0175 0.0670 0.0895 0.0000 0.0535
n = 100 0.0385 0.0515 0.0520 0.1285 0.0670 0.0610 0.0680 0.0605 0.0650 0.0145 0.0580
n = 200 0.0430 0.0655 0.0720 0.1250 0.0715 0.0520 0.0725 0.0590 0.0545 0.0345 0.0670
n = 500 0.0530 0.0615 0.0480 0.1035 0.0685 0.0570 0.0680 0.0590 0.0565 0.0460 0.0640

p = 50
n = 25 0.0055 0.0140 0.0535 0.0470 0.2610 - 0.2610 - - 0.4240 0.0295
n = 50 0.0250 0.0450 0.0800 0.1260 0.1130 0.0655 0.1130 0.0620 0.1685 0.1690 0.0470
n = 100 0.0370 0.0535 0.0710 0.1445 0.0475 0.0710 0.0480 0.0715 0.0680 0.0005 0.0570
n = 200 0.0470 0.0715 0.0685 0.1720 0.0645 0.0580 0.0645 0.0655 0.0615 0.0135 0.0615
n = 500 0.0510 0.0625 0.0640 0.1405 0.0705 0.0585 0.0705 0.0575 0.0560 0.0420 0.0710

p = 100
n = 25 0.0025 0.0155 0.0660 0.0725 0.2600 - 0.2600 - - 0.4315 0.0305
n = 50 0.0170 0.0395 0.0915 0.1430 0.1975 - 0.1975 - - 0.3345 0.0490
n = 100 0.0290 0.0510 0.0885 0.1935 0.0900 0.0540 0.0900 0.0525 0.1370 0.1355 0.0605
n = 200 0.0430 0.0590 0.0795 0.2110 0.0395 0.0545 0.0395 0.0545 0.0525 0.0000 0.0665
n = 500 0.0515 0.0545 0.0610 0.1755 0.0755 0.0535 0.0760 0.0525 0.0475 0.0210 0.0665

p = 200
n = 25 0.0020 0.0150 0.0790 0.0670 0.3050 - 0.3050 - - 0.4805 0.0225
n = 50 0.0125 0.0405 0.1205 0.1685 0.2510 - 0.2510 - - 0.4040 0.0515
n = 100 0.0225 0.0485 0.1025 0.2340 0.1475 - 0.1475 - - 0.2465 0.0560
n = 200 0.0430 0.0520 0.0870 0.2660 0.0685 0.0520 0.0685 0.0510 0.0970 0.0980 0.0545
n = 500 0.0530 0.0490 0.0650 0.2460 0.0570 0.0510 0.0570 0.0500 0.0625 0.0010 0.0615

Figure 4. Empirical power of proposed PC-type JB testing compared with other methods (p = 100).
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Table 6. Empirical power of PC-type Jarque–Bera (JB) testing for normally distributed data for Case-II compared with other
methods (α = 0.1).

χ2
sk χ2

ku Skmax Kumax Z∗
M1 Z∗

S1 M JB∗
m M JB∗

s mJBM ZNT JBsum

p = 5
n = 25 0.0380 0.0260 0.0515 0.0330 0.1195 0.1210 0.1230 0.1200 0.1160 0.0665 0.0490
n = 50 0.0650 0.0550 0.0795 0.0690 0.1070 0.0940 0.1090 0.0855 0.0915 0.0780 0.0705
n = 100 0.0940 0.0710 0.1065 0.0770 0.1215 0.0990 0.1215 0.0885 0.0900 0.0925 0.0860
n = 200 0.0930 0.0870 0.1065 0.0940 0.1070 0.1020 0.1060 0.0965 0.1010 0.0970 0.0925
n = 500 0.1000 0.0945 0.1015 0.1005 0.1010 0.1090 0.1040 0.1035 0.0995 0.0915 0.1075

p = 30
n = 25 0.0190 0.0320 0.0875 0.0740 0.2015 0.0410 0.2015 0.5340 - 0.3525 0.0430
n = 50 0.0465 0.0545 0.0995 0.1165 0.0470 0.1165 0.0495 0.1145 0.1420 0.0000 0.0735
n = 100 0.0715 0.0775 0.1055 0.1685 0.1115 0.1070 0.1110 0.1050 0.1090 0.0400 0.0920
n = 200 0.0840 0.1040 0.1175 0.1695 0.1300 0.1015 0.1290 0.1050 0.1085 0.0740 0.1090
n = 500 0.0985 0.1030 0.1090 0.1450 0.1235 0.1085 0.1240 0.1050 0.1140 0.0870 0.1150

p = 50
n = 25 0.0085 0.0210 0.0880 0.0650 0.2620 - 0.2620 - - 0.4265 0.0435
n = 50 0.0400 0.0635 0.1235 0.1580 0.1175 0.1105 0.1175 0.1095 0.2365 0.1720 0.0710
n = 100 0.0655 0.0735 0.1100 0.1875 0.0875 0.1210 0.0885 0.1230 0.1190 0.0030 0.0810
n = 200 0.0815 0.1025 0.1190 0.2275 0.1185 0.1175 0.1190 0.1195 0.1060 0.0400 0.0925
n = 500 0.1070 0.0980 0.1245 0.1870 0.1210 0.1095 0.1210 0.1135 0.1070 0.0775 0.1130

p = 100
n = 25 0.0050 0.0245 0.1050 0.0895 0.2600 - 0.2600 - - 0.4315 0.0400
n = 50 0.0280 0.0550 0.1370 0.1800 0.1975 - 0.1975 - - 0.3345 0.0650
n = 100 0.0575 0.0745 0.1430 0.2445 0.0930 0.0970 0.0930 0.0960 0.2085 0.1385 0.0865
n = 200 0.0760 0.0980 0.1455 0.2780 0.0740 0.1145 0.0740 0.1150 0.1025 0.0005 0.1020
n = 500 0.0935 0.0935 0.1135 0.2485 0.1295 0.0990 0.1295 0.0965 0.0875 0.0515 0.1025

p = 200
n = 25 0.0025 0.0210 0.1335 0.0880 0.3050 - 0.3050 - - 0.4810 0.0340
n = 50 0.0180 0.0580 0.1875 0.2175 0.2510 - 0.2510 - - 0.4040 0.0740
n = 100 0.0385 0.0665 0.1630 0.2910 0.1475 - 0.1475 - - 0.2465 0.0785
n = 200 0.0700 0.0835 0.1510 0.3390 0.0710 0.0990 0.0710 0.0965 0.1585 0.0985 0.0830
n = 500 0.0945 0.0890 0.1140 0.3205 0.1055 0.1055 0.1055 0.1035 0.1080 0.0030 0.1025

Figure 5. Empirical power of proposed PC-type JB testing compared with other methods (p = 200).

From the phenomenon above, we may conclude that JBsum performs well compared
to the other statistics, in that its empirical power is relatively higher than the others and
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the corresponding simulation results are more stable. Thus, it can be used to test the
non-normality of low- or high-dimensional data effectively.

4. Two Real Examples

In this section, we investigated two real examples to illustrate the performance of our
proposed method compared with the nine aforementioned existing methods.

4.1. Spectf Heart Data Example

The SPECTF heart dataset [19] provides data on cardiac single proton emission com-
puted tomography (SPECT) images. It describes the diagnosis of cardiac single proton
emission computed tomography (SPECT) images, and each patient is classified into two
categories: normal and abnormal. The data contain 267 instances, with each instance
belonging to a patient along with 44 continuous feature patterns summarized from the
original SPECT images. The other attribute is a binary variable that indicates the diagnosis
of each patient, with 0 for normal and 1 for abnormal.

In this dataset, we simultaneously evaluate the normality of the whole dataset and
each class within it. The testing p-value of each method mentioned above is shown in
Table 7. The highest p-value of each relatively normal data set and the lowest p-value of
each relatively non-normal data set are in bold.

Table 7. p-values of the ten statistics of single proton emission computed tomography (SPECT) heart data.

Data Set χ2
sk χ2

ku Skmax Kumax Z∗
M1 Z∗

S1 M JB∗
m M JB∗

s mJBM JBsum

S2 0.2076 0.0141 0.0713 0.0000 0.4533 0.0329 0.4553 0.0241 0.1367 0.0138
S3 0.5345 0.5318 0.6518 0.4207 0.0087 0.2109 0.0066 0.1935 0.4567 0.5560
S4 0.1956 0.1201 0.3231 0.0728 0.0000 0.0244 0.0000 0.0050 0.0212 0.0780
S5 0.0096 0.0045 0.0056 0.0038 0.0000 0.0415 0.0000 0.0111 0.0464 0.0003

Let S0 describe the whole data set and S1 and S2 denote the normal class dataset and
abnormal class dataset, respectively. We calculate the p-values of our PC-type statistic as
well as the Sk-type and Ku-type statistics and other methods mentioned in [16,17] of these
three datasets. Since all ten statistics’ p-values of data S0 and S1 are very close to 0, we will
not describe them here, which indicates a non-normal distribution of the whole dataset
and abnormal dataset.

We may see from Table 7 that S2’s corresponding p-values are a little different from the
former two sets, in which the p-values of χ2

sk, Z∗M1 and MJB∗M depart from 0. The relatively
high p-values motivate us to conduct a detailed survey to investigate the normality of the
SPECTF heart data’s normal class by selecting some kinds of different variables that belong
to a variety of degrees of normality.

In this normal category, we extract some variables and construct a new dataset S3
from several experiments. The selected variables included in S3 are X2, X4, X6, X7, X9∼X12,
X14∼X21, X23∼X28, X31∼X34, and X37∼X43. We then compute the p-values of this dataset,
and the results are shown in Table 7. It can be seen that all normality testing methods have
a relatively high p-value, which demonstrates the multivariate normality of set S3. For com-
parison, we constructed another two datasets, S4 and S5, which consist of several verified
normal variables and non-normal variables, respectively. Specifically, S4 contains the
variables X3, X5, X6∼X8, X11∼X14, X17, X21, X22, X27∼X32, X35, X36, X38, X40, X43, and X44,
while S5 contains variables X3∼X8, X13, X15, X22, X29, X30, X35, X36, X42, and X44. From
Table 7 we can see the results of these two sets. This time, the p-values of the ten methods
are no longer as high as before, meaning that our method performs well in assessing the
normality of normal and non-normal data.

4.2. Body Data Example

In this part, we analyze the normality of body data investigated in [14] to show the
consistency of our method with other existing methods and conclusions before. This data



Stats 2021, 4 226

set contains 100 human individuals and each individual has 12 measurements of the human
body (see [14] for details). As before, the p-values of the PC-type statistics and the Sk-type,
Ku-type, and Kazuyuki’s statistics are computed.

Let B0 describe the whole dataset, and the multivariate normality of it can be inves-
tigated by the resulting p-values of each method shown in Table 7. Since all the p-values
approach 0, we may conclude that this dataset contains non-normal data. As with the
discussion in [14], we also investigate the other six datasets to show the validity of our
proposed method, as well as making a comparison with other methods. For convenience,
we denote B1 = (X1, X3, X8, X10, X12), B2 = (X1, X3, X8, X10), B3 = (X1, X8, X10, X12),
B4 = (X3, X8, X10, X12), B5 = (X4, X5, X6, X11), and B6 = (X2, X4, X6, X11). From Table 8,
we can conclude that the normality testing results of our proposed PC-type statistic JBsum
are nearly the same as those for Sk-type statistics, Ku-type statistics, and Kazuyuki’s meth-
ods. Since B1, B2, B3, and B4 have multivariate distribution, whereas B5 and B6 have
non-normal distribution [14], our method is closer to the truth in the sense of relatively
higher p-values in multivariate normal situations and lower p-values in non-normal sit-
uations. Same as in Table 7, the highest p-value of each normal data set and the lowest
p-value of each non-normal data set are in bold.

Table 8. p-values of the ten statistics of body data.

Data Set χ2
sk χ2

ku Skmax Kumax Z∗
M1 Z∗

S1 M JB∗
m M JB∗

s mJBM JBsum

B0 0.0005 0.0046 0.0007 0.0007 0.0018 0.0051 0.0014 0.0037 0.0253 0.0000
B1 0.6148 0.7214 0.5606 0.6502 0.5602 0.5568 0.5632 0.6345 0.9584 0.7879
B2 0.3568 0.5468 0.3083 0.4704 0.1893 0.2897 0.2303 0.3771 0.8128 0.5087
B3 0.6069 0.4335 0.5813 0.5116 0.3277 0.5817 0.3309 0.6405 0.8588 0.6097
B4 0.6447 0.4297 0.5759 0.5776 0.7257 0.5863 0.5275 0.5285 0.6280 0.6694
B5 0.0109 0.0628 0.0338 0.0422 0.0028 0.0163 0.0014 0.0099 0.0405 0.0048
B6 0.0538 0.2003 0.1183 0.2662 0.1124 0.0290 0.1252 0.0221 0.0777 0.0533

This phenomenon indicates that our proposed PC-type statistic JBsum constitutes an
effective way of testing normality both in normal data and non-normal data, with more
stable testing results.

5. Conclusions

The purpose of this paper is to use a JB-type testing method to test high-dimensional
normality. The statistics we proposed here used the generalized statistic JBsum of JB
statistics to test normality based on the dimensional reduction performed by PCA.

Through simulated experiments, we find that, in both low and high dimensions, JBsum
performs well in testing normal and non-normal data and it is more stable than many other
compared methods. Therefore, it can be used to test normality effectively.

From two real examples, we can also see that our proposed method possesses the
superiority of stability in performing the normality testing of real datasets, as well as the
inclination of detecting the true normality from the perspective of p-values.
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