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Abstract: In this paper, a new five-parameter distribution is proposed using the functionalities of the
Kumaraswamy generalized family of distributions and the features of the power Lomax distribution.
It is named as Kumaraswamy generalized power Lomax distribution. In a first approach, we derive
its main probability and reliability functions, with a visualization of its modeling behavior by consid-
ering different parameter combinations. As prime quality, the corresponding hazard rate function is
very flexible; it possesses decreasing, increasing and inverted (upside-down) bathtub shapes. Also,
decreasing-increasing-decreasing shapes are nicely observed. Some important characteristics of the
Kumaraswamy generalized power Lomax distribution are derived, including moments, entropy
measures and order statistics. The second approach is statistical. The maximum likelihood estimates
of the parameters are described and a brief simulation study shows their effectiveness. Two real
data sets are taken to show how the proposed distribution can be applied concretely; parameter
estimates are obtained and fitting comparisons are performed with other well-established Lomax
based distributions. The Kumaraswamy generalized power Lomax distribution turns out to be best
by capturing fine details in the structure of the data considered.

Keywords: kumaraswamy generalized distribution; moments; order statistics; lomax distribution;
power lomax distribution

1. Introduction

For several decades, researchers have been working to come up with several new
distributions to meet certain practical requirements. The motivation is that, in concrete
applications related to disciplines such as hydrology, econometrics and many others,
the standard distributions have been observed to lack fit. For instance, for daily precip-
itation and daily vapor flow data, Kumaraswamy [1] showed that the beta distribution
does not provide a suitable fit. Continuing this work, in References [2,3], it is also explored
that distributions like Johnson, sinepower and extended sinepower distributions were
satisfactory in fitting the above mentioned data type. However, in later years, an alternative
distribution of finite range was suggested by Kumaraswamy [1] which is named later as
Kw distribution. It reveals to fit such data appropriately. The cumulative distribution
function (cdf) and probability density function (pdf) are given in (1) and (2), respectively:

F(x; a, b) = 1− (1− xa)b, x ∈ (0, 1), (1)

and
f (x; a, b) = abxa−1(1− xa)b−1, (2)

where a > 0 and b > 0 are shape parameters, with the usual modifications for x 6∈ (0, 1).
The main advantage of the Kw distribution is that it has the shape parameter that addresses
data that has an extended tail nature. Also, the Kw distribution has been well received
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by many researchers for fitting skewed types of data sets from hydrology and other
engineering disciplines. Other works on Kw distribution has been planned by several
researchers, pointing out that it is a special case of the three-parameter beta distribution [4].
Also, the similarities along with basic properties have been extensively studied by Jones [5].
In the recent past, a generalized version of the Kw distribution has been proposed by
Cordeiro and de Castro [6] with the cdf and pdf given in (3) and (4), respectively:

FG(x; a, b) = 1− [1− G(x)a]b, x ∈ R, (3)

and
fG(x; a, b) = abg(x)G(x)a−1[1− G(x)a]b−1. (4)

Here, G(x) is the cdf of a chosen base distribution, with pdf given as g(x). Clearly,
if a = b = 1, the forms in (3) and (4) reduce to the pdf and cdf from the base distribution.
This generalized version of the Kw distribution is called the Kw-G family of distributions.
Extensive work on the Kw-G family of distributions has been observed exponentially
by proposing new distributions of various asymmetric natures. To cite a few, there are
the Kumaraswamy-Weibull distribution [7], Kumaraswamy-Gumbel distribution [8], Ku-
maraswamy generalized gamma distribution [9] and Kumaraswamy-Burr XII (KBXII)
distribution [10]. Applications of the Kw-G family can also be found in References [11–13],
among others.

In general, the goal of providing new distributions is to create flexible mathematical
models capable of handling non-normal data scenarios. This flexibility can be achieved in
a simple way by adding additional parameters such as location, scale and shape. In similar
lines of thought process, several distributions extending the famous Lomax distribution,
such as the exponentiated-Lomax (EL) distribution [14], extended Lomax distribution [15],
Kumaraswamy-generalized Lomax distribution [16], exponential-Lomax distribution [17],
Weibull-Lomax (WL) distribution [18], Weibull Fréchet (WFr) distribution [19], power Lo-
max (PL) distribution [20], half-logistic Lomax distribution [21], inverse PL distribution [22],
Topp-Leone Lomax (TLGL) distribution [23], type II Topp-Leone power Lomax (TIITLPL)
distribution [24], Marshall-Olkin exponential Lomax distribution [25] and Marshall-Olkin
length biased Lomax distribution [26] were proposed and developed.

In this present work, an attempt to propose a new distribution by compounding the PL
distribution into the general Kw-G family of distributions is made. The proposed distribu-
tion is called the Kumaraswamy generalized PL distribution, KPL for short. The rationality
of considering the PL distribution is that it equips the most famous extensions of the Lomax
distribution [20] and it allows applications dealing with heavy tailed data. Because of
its nature, we wish to exhibit mathematical flexibility by adding two additional shape
parameters that are presented in the Kw-G family of distributions. To be more precise,
a short retrospective on the PL distribution is necessary. First, let us mention that the cdf
and pdf of the PL distribution have the forms in (5) and (6), respectively:

G(x; α, β, λ) = 1−
(

λ

λ + xβ

)α

, x > 0 (5)

and

g(x; α, β, λ) =
αβxβ−1

λ

(
λ

λ + xβ

)α+1
, (6)

where α > 0 is a shape parameter, and β > 0 and λ > 0 are scale parameters. Rady et al. [20]
mentioned that the hazard rate function (hrf) of the PL distribution does not have an in-
creasing curve, which remains a serious limitation for some modeling purposes. This issue
is addressed in this work by making the use of the shape parameter and it is performed
in the proposed KPL distribution. In particular, the various forms of the pdf of the KPL
distribution show that, with increasing values of the new parameters that will be denoted
“a” and “b”, it is unimodal and can attain the symmetric nature curve. Also, the corre-
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sponding hrf possesses decreasing, increasing and inverted (upside-down) bathtub shapes.
In addition, decreasing-increasing-decreasing shapes are observed, which is a clear plus
for various statistical purposes. The KPL distribution and its statistical properties such as
quantiles, moments, information measures, order statistics and maximum likelihood (ML)
estimation are detailed out in subsequent sections of the article. Using two famous data
sets, namely turbo charger data set and radiation therapy data set, we demonstrate that the
proposed distribution is better suited compared to different types of Lomax distribution,
including the PL distribution.

The rest of the article is structured by the following sections. Section 2 completes the
presentation of the KPL distribution. Section 3 is devoted to its moments analysis. Section 4
is about information measures of the KPL distribution. Section 5 discusses the related order
statistics. The estimation of the parameters of the KPL distribution is afforded in Section 6,
including a simulation study. Section 7 focuses on the applications by considering two
practical data sets. A summary is given in Section 8.

2. The Kumaraswamy Generalized Power Lomax Distribution

By considering (5) and (6) in (3) and (4), we obtain the following cdf and pdf, respec-
tively,

FKPL(x; ξ) = 1−
{

1−
[

1−
(

λ

λ + xβ

)α]a
}b

, x > 0, (7)

where ξ = (α, β, λ, a, b) ∈ (0, ∞)5, and

fKPL(x; ξ) =
abαβ

λ
xβ−1

(
λ

λ + xβ

)α+1[
1−

(
λ

λ + xβ

)α]a−1
{

1−
[

1−
(

λ

λ + xβ

)α]a
}b−1

. (8)

The expressions (7) and (8) constitute the cdf and pdf of the KPL distribution, re-
spectively. The KPL distribution contains several existing distribution, including the PL
distribution for a = b = 1 and the TIITLPL distribution for a = 2. It can be also viewed
as a re-parametrized version of the KBXII distribution. As already mentioned, the roles
of a and b will be major in the interests of the KPL distribution, reaching new levels of
flexibility compared to those of the PL distribution, among others.

As preliminary properties, note that FKPL(x; ξ) is a decreasing function with respect to
a and λ, an increasing function with respect to b and α, and a non-monotonic function with
respect to β. This implies various first-order stochastic dominance properties. For instance,
for ξ1 = (α1, β, λ, a, b2) and ξ2 = (α2, β, λ, a, b2) with α1 ≤ α2 and b1 ≤ b2, since FKPL(x; ξ)
is an increasing function with respect to b and α, we have FKPL(x; ξ1) ≤ FKPL(x; ξ2). Similar
inequalities can be presented by taking into account the other parameters. Also, it is worth
mentioning that the KPL distribution is heavy-tailed; for all t > 0, we can prove that∫ ∞

0 etx fKPL(x; ξ)dx = ∞.
Considering different values of the parameters, variant density forms of the KPL

distribution are obtained, and are shown in Figure 1.
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Figure 1. Curves of the pdf of the KPL distribution at different parameter values.

From Figure 1, we observe that the pdf of the KPL distribution can be decreasing
or unimodal, with very flexible skewness, peakness and plateness. One can show that
the decreasing case corresponds to aβ < 1. When the pdf is unimodal, we see that it is
mainly ‘almost symmetric’ or ‘right-skewed’, which is ideal for the modelling of diverse
lifetime phenomena.

Since the KPL distribution belongs to the family of lifetime distributions, its hrf is of
interest to deals with some of the statistical properties of the proposed distribution. These
properties will help out to exhibit the practical applications and characterizations of real
data phenomenon. The hrf of the KPL distribution is given by

hKPL(x; ξ) =
fKPL(x; ξ)

1− FKPL(x; ξ)
,

that is, by substituting the Equations (7) and (8) in hKPL(x; ξ),

hKPL(x; ξ) =
abαβ

λ
xβ−1

(
λ

λ + xβ

)α+1[
1−

(
λ

λ + xβ

)α]a−1
{

1−
[

1−
(

λ

λ + xβ

)α]a
}−1

, x > 0.

Considering various values of the parameters, the hrf of the KPL distribution contains
different kinds of shapes as shown in Figure 2.
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Figure 2. Shapes of the hrf of the KPL distribution at different parameter values.

From Figure 2, we highlight a crucial difference between the PL and KPL distributions.
Indeed, an immediate limitation of the PL distribution is that its hrf cannot be increasing
(see Reference [20]). This limitation is overcome in this work by using shape parameters
and it is shown that the hrf of the proposed KPL distribution may be increasing. At the
same time, we are able to present a decreasing-increasing-decreasing hrf. It is another
point to emphasize that the proposed distribution has a better way of expressing different
natures of data.

We end this part by presenting the quantile function (qf) of the KPL distribution which
also defines it in the mathematical sense. This qf is rigorously defined as the inverse func-
tion of FKPL(x; ξ). By solving the following nonlinear equation: FKPL[QKPL(u; ξ); ξ] = u
with u ∈ (0, 1) and respect to QKPL(u; ξ), we obtain

QKPL(u; ξ) = λ1/β

{[
1−

(
1− (1− u)1/b

)1/a
]−1/α

− 1

}1/β

, u ∈ (0, 1).

We immediately derive the median of the KPL distribution as

M = λ1/β

{[
1−

(
1− (0.5)1/b

)1/a
]−1/α

− 1

}1/β

.

Additional quantile analysis can be performed based on QKPL(u; ξ). In this regard,
one may refer to Reference [27].

3. Moments of the KPL Distribution

By definition, for any positive integer r, the rth order moment about the origin of a
random variable X following the KPL distribution is given as

µ′r = E(Xr) =
∫ ∞

0
xr fKPL(x; ξ)dx, (9)

where E denotes the expectation. Clearly, in view of the mathematical complexity of
fKPL(x; ξ), a simple expression of this integral is not possible. Let us first study its existence
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according to the values of the parameters of the KPL distribution. At the neighborhood of
x = 0, we have fKPL(x; ξ) ∼ (abαaβ/λa)xβa−1 and, by the Riemann integrability criterion,
since r + βa > 0, the function xr+βa−1 is integrable over (0, ε) with ε > 0. Now, at the
neighborhood of x = ∞, we have fKPL(x; ξ) ∼ abbαβλαbx−βαb−1 and, by the Riemann
integrability criterion, the function xr−βαb−1 is integrable over (ε, ∞) with ε > 0 if and only
if r < βαb. In summary, µ′r exists if and only if r < βαb. In this case, one can approximate it
via various numerical procedures.

For an analytical approach, one can derive series expansion for fKPL(x; ξ) and plug-
in into (9). With this in mind, the next result presents a series expansion of a power
transformation of the pdf of the KPL distribution.

Proposition 1. For any ρ > 0, we have

fKPL(x; ξ)ρ =
∞

∑
i=0

∞

∑
j=0

υi,j(ξ, ρ)dj(x; α, β, λ, ρ), x > 0,

where, by introducing generalized binomial coefficients,

υi,j(ξ, ρ) =

(
abαβ

λ

)ρ(ρ(b− 1)
i

)(
ai + ρ(a− 1)

j

)
(−1)i+j

and

dj(x; α, β, λ, ρ) = xρ(β−1)
(

λ

λ + xβ

)αj+ρ(α+1)
.

Proof. We have

fKPL(x; ξ)ρ =

(
abαβ

λ

)ρ

xρ(β−1)
(

λ

λ + xβ

)ρ(α+1)[
1−

(
λ

λ + xβ

)α]ρ(a−1)

×{
1−

[
1−

(
λ

λ + xβ

)α]a
}ρ(b−1)

.

Now, the generalized binomial theorem states that (1− Z)b =
∞
∑

i=0
(b

i)(−1)iZi for any

real numbers b and Z such that |Z| < 1, condition that can be removed if b is a positive
integer. Therefore, by the application of this theorem two times in a row, we obtain

fKPL(x; ξ)ρ =

(
abαβ

λ

)ρ

xρ(β−1)
(

λ

λ + xβ

)ρ(α+1) ∞

∑
i=0

(
ρ(b− 1)

i

)
(−1)i

[
1−

(
λ

λ + xβ

)α]ai+ρ(a−1)

=

(
abαβ

λ

)ρ

xρ(β−1)
∞

∑
i=0

∞

∑
j=0

(
ρ(b− 1)

i

)(
ai + ρ(a− 1)

j

)
(−1)i+j

(
λ

λ + xβ

)αj+ρ(α+1)

=
∞

∑
i=0

∞

∑
j=0

υi,j(ξ, ρ)d(x; α, β, λ, ρ).

The desired expansion is obtained.

The particular case ρ = 1 in Proposition 1 gives

fKPL(x; ξ) =
∞

∑
i=0

∞

∑
j=0

υi,j(ξ, 1)dj(x; α, β, λ, 1).
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Hence, under the condition that r < βα inf(b, 1) permitting to interchange the integral
and sum signs, the rth order moment about the origin of X is given as

µ′r =
∫ ∞

0
xr

[
∞

∑
i=0

∞

∑
j=0

υi,j(ξ, 1)dj(x; α, β, λ, 1)

]
dx =

∞

∑
i=0

∞

∑
j=0

υi,j(ξ, 1)
∫ ∞

0
xrdj(x; α, β, λ, 1)dx.

Let us now discuss a tractable expression for the integral term. We have

∫ ∞

0
xrdj(x; α, β, λ, 1)dx =

∫ ∞

0
xr+β−1

(
λ

λ + xβ

)α(j+1)+1
dx.

Let us now set u = xβ/λ, so x = (uλ)1/β and du = (β/λ)xβ−1dx with no change at
the boundaries, implying that

∫ ∞

0
xr+β−1

(
λ

λ + xβ

)α(j+1)+1
dx =

λ

β

∫ ∞

0

(uλ)r/β

(1 + u)α(j+1)+1
du

=
λr/β+1

β

∫ ∞

0

u(r/β+1)−1

(1 + u)(r/β+1)+[α(j+1)−r/β]
du =

λr/β+1

β
B
(

r
β
+ 1, α(j + 1)− r

β

)
,

where B(a, b) denotes the standard beta function defined by B(a, b) =
∫ 1

0 ta−1(1− t)b−1dt
with a > 0 and b > 0. We finally get

µ′r =
∞

∑
i=0

∞

∑
j=0

υi,j(ξ, 1)
λr/β+1

β
B
(

r
β
+ 1, α(j + 1)− r

β

)
.

This formula is exact, without approximation. It can serve to determine the exact
numerical values of µ′r and all the associated measures. The most basic of them are the mean
of X defined by µ′1 and the variance given by Var = µ′2 − (µ′1)

2. A practical approximation
of µ′r is given by

µ′r =
50

∑
i=0

50

∑
j=0

υi,j(ξ, 1)
λr/β+1

β
B
(

r
β
+ 1, α(j + 1)− r

β

)
,

the bound 50 being an integer chosen arbitrary large.
As an illustration, with the use of the R software, Table 1 provides the moments about

the origin and variance of X with different parameter values of the KPL distribution.
From Table 1, we see that the fourth moments about the origin and variance have

notable numerical variations. This is particularly obvious for the last combination of
parameters: b = 2.7, α = 0.8, λ = 0.5, β = 2.2 with a = 4, 11, 17, 22 and 36. The high
numerical variability of these moment measures also testifies to the flexibility of the
KPL distribution.

The incomplete versions of the moments about the origin can have a similar mathe-
matical treatment. They allow us to define various deviation measures and diverse types
of residual life function, as those managed in References [10,20,24].
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Table 1. Moments about the origin and variance with different parameter values of the KPL distribution.

Parameters a µ′
1 µ′

2 µ′
3 µ′

4 Var

b = 1 α = 2 λ = 3 β = 4

1 1.096343 1.360350 1.898922 3.000000 0.1583815
2 1.313328 1.870481 2.907724 5.000000 0.1456513
3 1.434132 2.199940 3.641145 6.600000 0.1432048
4 1.518195 2.448363 4.233660 7.971429 0.1434478
5 1.582860 2.650083 4.738448 9.190476 0.1446359

b = 2 α = 4 λ = 6 β = 8

1 0.9167115 0.8606779 0.8251498 0.8059774 0.020317974
2 1.0286584 1.0695094 1.1233040 1.1912426 0.011371281
3 1.0808945 1.1768814 1.2905014 1.4248888 0.008548480
4 1.1137116 1.2475227 1.4053524 1.5920104 0.007169093
5 1.1372247 1.2996238 1.4924269 1.7220834 0.006343810

b = 1.5 α = 1.5 λ = 2 β = 5

1 0.9515346 0.9771163 1.075939 1.267621 0.07169832
2 1.1398721 1.3609060 1.703722 2.242301 0.06159767
3 1.2428513 1.6039652 2.154467 3.022583 0.05928593
4 1.3141795 1.7859622 2.516701 3.691375 0.05889455
5 1.3690008 1.9333437 2.824648 4.286271 0.05918053

b = 1.5 α = 1.5 λ = 0.5 β = 2

3 0.9246664 1.113072 1.936337 7.651063 0.2580643
7 1.3393890 2.214626 5.046252 24.903052 0.4206629

10 1.5452139 2.909026 7.447825 40.692316 0.5213404
14 1.7598484 3.737898 10.690728 64.504585 0.6408318
17 1.8937766 4.309344 13.141668 84.065516 0.7229542

b = 3.5 α = 0.8 λ = 2.5 β = 2

3 2.381898 7.098448 27.62178 156.1513 1.425008
7 4.209734 21.533759 141.10721 1329.5962 3.811897

10 5.291480 33.862448 276.77366 3248.8381 5.862686
14 6.547543 51.716382 520.95011 7533.2474 8.846066
17 7.398181 65.967625 749.80026 12233.8552 11.234540

b = 2.7 α = 0.8 λ = 0.5 β = 2.2

4 1.420161 2.542323 6.287137 28.97299 0.5254662
11 2.573373 8.204595 35.761130 289.64094 1.5823481
17 3.301047 13.473254 75.107768 778.33805 2.5763424
22 3.822930 18.059557 116.502575 1397.61270 3.4447658
36 5.056489 31.580735 269.364002 4275.42575 6.0126525

4. Information Measures

In this section, some information measures of the KPL distribution are discussed,
namely the Rényi entropy and β-entropy measures. Both measuring the variation or
uncertainty of the considered distribution.

4.1. Rényi Entropy

Rényi [28] provided an useful extension of the Shannon entropy. The Rényi entropy
of the KPL distribution can be defined as

I(ρ)R =
1

1− ρ
log
[∫ ∞

0
fKPL(x; ξ)ρdx

]
,

with ρ > 0 and ρ 6= 1. Let us now study the existence of this entropy measure which
depends on the existence of its integral term. At the neighborhood of x = 0, we have
fKPL(x; ξ)ρ ∼ (abαaβ/λa)ρxρ(βa−1) and, by the Riemann integrability criterion, the function
xρ(βa−1) is integrable over (0, ε) with ε > 0 if and only if ρ(βa− 1) > −1. Now, at the
neighborhood of x = ∞, we have fKPL(x; ξ)ρ ∼ [abbαβλαb]ρx−ρ(βαb+1) and, by the Riemann
integrability criterion, the function x−ρ(βαb+1) is integrable over (ε, ∞) with ε > 0 if and
only if ρ(βαb + 1) > 1. Hence, I(ρ)R exists if and only if ρ(βa− 1) > −1 and ρ(βαb + 1) > 1.

If these conditions are satisfied, one can approximate I(ρ)R through the approximation of its
integral term via various numerical procedures.
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In a more analytical manner, one can use Proposition 1. Under the conditions above
plus ρ(β− 1) > −1 and ρ(βα + 1) > 1, a direct application of this result gives

∫ ∞

0
fKPL(x; ξ)ρdx =

∫ ∞

0

[
∞

∑
i=0

∞

∑
j=0

υi,j(ξ, ρ)dj(x; α, β, λ, ρ)

]
dx

=
∞

∑
i=0

∞

∑
j=0

υi,j(ξ, ρ)
∫ ∞

0
dj(x; α, β, λ, ρ)dx.

A comprehensive expression of the integral term is developed below. By setting
u = xβ/λ, so x = (uλ)1/β and du = (β/λ)xβ−1dx with no change at the boundaries,
it comes∫ ∞

0
dj(x; α, β, λ, ρ)dx =

∫ ∞

0
xρ(β−1)

(
λ

λ + xβ

)αj+ρ(α+1)
dx

=
λ

β

∫ ∞

0

(uλ)(ρ−1)(1−1/β)

(1 + u)αj+ρ(α+1)
du

=
λ(ρ−1)(1−1/β)+1

β

∫ ∞

0

u[(ρ−1)(1−1/β)+1]−1

(1 + u)αj+ρ(α+1)−[(ρ−1)(1−1/β)+1]+[(ρ−1)(1−1/β)+1]
du

=
λ(ρ−1)(1−1/β)+1

β
B
[
(ρ− 1)

(
1− 1

β

)
+ 1, αj + ρ(α + 1)− (ρ− 1)

(
1− 1

β

)
− 1
]

.

Therefore, we obtain an expression for I(ρ)R as

I(ρ)R =
1

1− ρ
log
{ ∞

∑
i=0

∞

∑
j=0

υi,j(ξ, ρ)
λ(ρ−1)(1−1/β)+1

β
×

B
[
(ρ− 1)

(
1− 1

β

)
+ 1, αj + ρ(α + 1)− (ρ− 1)

(
1− 1

β

)
− 1
]}

.

This formula is exact, without approximation. The following simple approximation
can be derived for practical purposes:

I(ρ)R ≈ 1
1− ρ

log
{ 50

∑
i=0

50

∑
j=0

υi,j(ξ, ρ)
λ(ρ−1)(1−1/β)+1

β
×

B
[
(ρ− 1)

(
1− 1

β

)
+ 1, αj + ρ(α + 1)− (ρ− 1)

(
1− 1

β

)
− 1
]}

.

Here again, the bound 50 must be viewed as a large integer arbitrarily chosen.

4.2. Tsallis Entropy

The Tsallis entropy or q-entropy was discovered by Havrda and Charvat [29]. Later,
it was developed by Tsallis [30] in the context of Physics. The Tsallis entropy of the KPL
distribution can be defined as

I(q)H =
1

q− 1

[
1−

∫ ∞

0
fKPL(x; ξ)qdx

]
,

where q > 0 and q 6= 1. Then, based on the previous work on the Rényi entropy, I(q)H exists
if and only if q(βa− 1) > −1 and q(βαb + 1) > 1. In all cases, we can approximate it via
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numerical procedures. With the following additional assumptions: q(β− 1) > −1 and
q(βα + 1) > 1, proceeding as for I(ρ)R , we can expand I(q)H as

I(q)H =
1

q− 1

{
1−

∞

∑
i=0

∞

∑
j=0

υi,j(ξ, q)
λ(q−1)(1−1/β)+1

β
×

B
[
(q− 1)

(
1− 1

β

)
+ 1, αj + q(α + 1)− (q− 1)

(
1− 1

β

)
− 1
]}

.

Based on this formula, analytical approximation can be conducted.

5. Order Statistics

The modeling of certain random systems requires the concept of order statistic. Basi-
cally, for r = 1, . . . , n, the rth order statistic of a statistical sample is equal to its rth smallest
value. In what follows, some immediate distributional properties of the order statistics of
the KPL distribution are presented.

Let X(1), X(2), . . . , X(n) be an ordered random sample distributed with the KPL distri-
bution. Then, the pdf of X(r) is computed as

fr(x; ξ) =
1

B(r, n− r + 1)
FKPL(x; ξ)r−1[1− FKPL(x; ξ)]n−r fKPL(x; ξ),

that is, by substituting the Equations (7) and (8) in fr(x; ξ),

fr(x; ξ) =
1

B(r, n− r + 1)
abαβ

λ
xβ−1

(
λ

λ + xβ

)α+1[
1−

(
λ

λ + xβ

)α]a−1

×

{
1−

[
1−

(
λ

λ + xβ

)α]a
}b(n−r+1)−1

1−
{

1−
[

1−
(

λ

λ + xβ

)α]a
}b
r−1

, x > 0. (10)

For r = 1, we get the pdf of the first order statistics X(1) = min(X1, X2, . . . , Xn)
as follows

f1(x; ξ) = n
abαβ

λ
xβ−1

(
λ

λ + xβ

)α+1[
1−

(
λ

λ + xβ

)α]a−1
{

1−
[

1−
(

λ

λ + xβ

)α]a
}bn−1

, x > 0.

One can remark that f1(x; ξ) = fKPL(x; α, β, λ, a, bn), meaning that the distribution of
X(1) is also a KPL distribution.

Similarly, for r = n, we get the pdf of the nth order statistics X(n) = max(X1, X2, . . . , Xn)
as follows

fn(x; ξ) = n
abαβ

λ
xβ−1

(
λ

λ + xβ

)α+1[
1−

(
λ

λ + xβ

)α]a−1

×

{
1−

[
1−

(
λ

λ + xβ

)α]a
}b−1

1−
{

1−
[

1−
(

λ

λ + xβ

)α]a
}b
n−1

, x > 0.

The next result exhibits the linear relation existing between the pdf of X(r) and some
pdfs of the KPL distribution.

Proposition 2. The pdf of X(r) can be expressed as a linear combination of pdfs of the KPL
distribution, and, more precisely,

fr(x; ξ) =
1

B(r, n− r + 1)

r−1

∑
k=0

(
r− 1

k

)
(−1)k 1

n− r + k + 1
fKPL(x; α, β, λ, a, b(n− r + k + 1)), x > 0.
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Proof. It follows from (10) and the (standard) binomial theorem that

fr(x; ξ) =
1

B(r, n− r + 1)
abαβ

λ
xβ−1

(
λ

λ + xβ

)α+1[
1−

(
λ

λ + xβ

)α]a−1

×{
1−

[
1−

(
λ

λ + xβ

)α]a
}b(n−r+1)−1 r−1

∑
k=0

(
r− 1

k

)
(−1)k

{
1−

[
1−

(
λ

λ + xβ

)α]a
}bk

=
1

B(r, n− r + 1)

r−1

∑
k=0

(
r− 1

k

)
(−1)k 1

n− r + k + 1
×

ab(n− r + k + 1)αβ

λ
xβ−1

(
λ

λ + xβ

)α+1[
1−

(
λ

λ + xβ

)α]a−1

×{
1−

[
1−

(
λ

λ + xβ

)α]a
}b(n−r+k+1)−1

=
1

B(r, n− r + 1)

r−1

∑
k=0

(
r− 1

k

)
(−1)k 1

n− r + k + 1
fKPL(x; α, β, λ, a, b(n− r + k + 1)).

This ends the proof of Proposition 2.

An immediate consequence of Proposition 2 is the determination of some properties
for X(r) based on those of the KPL distribution. For example, the sth order moment of X(r)
about the origin can be written as

µ′r,s = E(Xs
(r)) =

1
B(r, n− r + 1)

r−1

∑
k=0

(
r− 1

k

)
(−1)k 1

n− r + k + 1
µ′s(k),

where µ′s(k) denotes the sth order moment about the origin of a random variable with the
KPL distribution with parameters α, β, λ, a and b(n− r + k + 1).

6. Maximum Likelihood Estimates of the Parameters

The ML estimation method is used for estimating the unknown parameters of the
distribution. Let x = (x1, x2, . . . xn) be a random sample drawn from the KPL distribution.
Then the likelihood function and log-likelihood function corresponding to the Equation (8)
are, respectively, as follows

L(x; ξ) =

(
abαβ

λ

)n n

∏
i=1

xβ−1
i

(
λ

λ + xβ
i

)α+1[
1−

(
λ

λ + xβ
i

)α]a−1{
1−

[
1−

(
λ

λ + xβ
i

)α]a}b−1

and

log L(x; ξ) = n log
(

abαβ

λ

)
+ (β− 1)

n

∑
i=1

log xi + (α + 1)
n

∑
i=1

log

(
λ

λ + xβ
i

)
+ (a− 1)

n

∑
i=1

log ϑi

+ (b− 1)
n

∑
i=1

log(1− ϑa
i ),

where it is set ϑi = 1−
[
λ/(λ + xβ

i )
]α

. The ML estimates (MLEs) of the parameters a, b, α, β

and λ, say â, b̂, α̂, β̂ and λ̂, are given by ξ̂ = (â, b̂, α̂, β̂, λ̂) making L(x; ξ̂) or log L(x; ξ̂)
maximal. These MLEs can be obtained by solving the following nonlinear equations:

∂

∂a
log L(x; ξ) =

n
a
+

n

∑
i=1

log ϑi + (1− b)
n

∑
i=1

log ϑi

(ϑ−a
i − 1)

= 0,
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∂

∂b
log L(x; ξ) =

n
b
+

n

∑
i=1

log(1− ϑa
i ) = 0,

∂

∂α
log L(x; ξ) =

n
α
+

n

∑
i=1

log

(
λ

λ + xβ
i

)
+

n

∑
i=1

(
λ

λ + xβ
i

)α

log

(
λ

λ + xβ
i

)[
a(b− 1)

ϑi(ϑ
−a
i − 1)

− (a− 1)
ϑi

]
= 0,

∂

∂β
log L(x; ξ) =

n
β
+

n

∑
i=1

log xi − (α + 1)
n

∑
i=1

(
xβ

i

λ + xβ
i

)( λ

λ + xβ
i

)α−1
λxβ

i log xi

(λ + xβ
i )

2

×
[

α(a− 1)
ϑi

− aα(b− 1)
ϑi(ϑ

−a
i − 1)

]
log xi = 0

and

∂

∂λ
log L(x; ξ) = − n

λ
+

(
α + 1

λ

) n

∑
i=1

(
xβ

i

λ + xβ
i

)
+

n

∑
i=1

xβ
i

(
λ

λ + xβ
i

)α+1[
aα(b− 1)

λ2ϑi(ϑ
−a
i − 1)

− α(a− 1)
λ2ϑi

]
= 0.

Based on data, the MLEs can be obtained numerically by the iterative procedure
of Newton-Raphson method for a system of simultaneous nonlinear equations. As an
example of use, Monte Carlo simulations are carried out to assess the finite sample behavior
of the MLEs â, b̂, α̂, β̂ and λ̂. For a given sample size, 1000 random samples drawn from the
KPL distribution with given parameters are generated by using the qf technique. In this
setting, the MLEs of the five model parameters along with the respective bias and mean
square error (MSE) for the sample sizes n = {50, 100, 250} are shown in Table 2.

Table 2. Bias in parenthesis and MSEs for different sample sizes in the context of the KPL distribution.

(a, b, α, λ, β) â b̂ α̂ β̂ λ̂

(10, 4, 5, 0.5, 20)

n = 50 (8.651935)
74.85599

(6.67144)
44.50811

(4.366995)
19.07065

(−6.868542)
47.17687

(1.093022)
1.194697

n = 100 (8.002526)
64.04406

(4.365969)
19.08434

(−2.73485)
7.479976

(0.207459)
0.08666441

(−0.3513344)
0.1234489

n = 250 (6.22343)
38.73797

(−0.751908)
0.5679816

(−1.357911)
1.845981

(2.745664)
7.551292

(−0.3055339)
0.09335099

(4, 2, 5, 0.5, 1.5)

n = 50 (−3.279042)
10.75212

(−1.111076)
1.23449

(−4.199035)
17.6319

(3.525116)
12.42645

(−0.4977061)
0.2477113

n = 100 (−3.003313)
9.124203

(−0.9706962)
1.134068

(−4.235572)
17.94019

(0.7994587)
0.641023

(−0.4568123)
0.2086831

n = 250 (−0.2668285)
0.07645446

(−1.074196)
1.187502

(−2.093235)
4.3866

(0.7068528)
0.4997061

(−0.4322879)
0.1868756

As mentioned initially about the advantage of having additional shape parameters,
the same is true between bias and MSE. From the results of Table 2, it is clearly evident
that the estimates are quite stable and close to the true values of the parameters for these
sample sizes. Additionally, as the sample size increases, the biases and MSEs of the MLEs
decrease as expected.

7. Applications of the KPL Model

Two real data sets are used as applications of the proposed KPL distribution as heavy
tailed distribution.

Data set 1: (Strength data [31]) The data represent 69 strength data for single carbon
fibers (and impregnated 1000-carbon fiber tows). The measures in GPA by subtracting 1
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are: 0.0312, 0.314, 0.479, 0.552, 0.700, 0.803, 0.861, 0.865, 0.944, 0.958, 0.966, 0.977, 1.006,
1.021, 1.027, 1.055, 1.063, 1.098, 1.140, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 1.301,
1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566,
1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818,
1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585.

Data set 2: (Theft data [32]) The data represent the amounts of 120 theft claims made in
a home insurance portfolio. The 120 theft claims data are: 3, 11, 27, 36, 47, 49, 54, 77, 78, 85,
104, 121, 130, 138, 139, 140, 143, 153, 193, 195, 205, 207, 216, 224, 233, 237, 254, 257, 259, 265,
273, 275, 278, 281, 396, 405, 412, 423, 436, 456, 473, 475, 503, 510, 534, 565, 656, 656, 716, 734,
743, 756, 784, 786, 819, 826, 841, 842, 853, 860, 877, 942, 942, 945, 998, 1029, 1066, 1101, 1128,
1167, 1194, 1209, 1223, 1283, 1288,1296, 1310, 1320, 1367, 1369, 1373, 1382, 1383, 1395, 1436,
1470, 1512, 1607, 1699, 1720, 1772, 1780, 1858, 1922, 2042, 2247, 2348, 2377, 2418, 2795, 2964,
3156, 3858, 3872, 4084, 4620, 4901, 5021, 5331, 5771, 6240, 6385, 7089, 7482, 8059, 8079, 8316,
11453, 22274, 32043. After analyzing the histograms, data set 1 shows an offset deviation
from the symmetrical pattern while data set 2 shows a decreasing histogram shape.

In order to show the best fit of the KPL distribution, some other distributions based on
the Lomax distribution are considered and used for comparison. These competing distribu-
tions have already been mentioned in the introduction, and are the KBXII distribution [10],
PL distribution [20], WL distribution [18], WFr distribution [19], TLGL distribution [23],
EL distribution [14] and the basic Lomax distribution.

The ML estimation method is applied for all the distribution parameters. The MLEs
are obtained by iterative procedures. The MLEs of the distribution parameters are given in
Table 3.

Table 3. MLEs of the considered distribution parameters for the data sets.

Distribution Data Set 1 â b̂ α̂ λ̂ β̂

KPL 21.1082 6.5418 5.1957 0.4485 2.2026
KBXII 0.4342 0.2639 7.5759 1.9639 4.4371

PL - 3.4574 13.5759 3.1625
WL 4.0405 2.711 0.7077 - 1.7575
WFr 6.4647 6.8652 0.7611 - 0.2297

TLGL 4.8177 - 12.3340 - 16.0790
EL 5.4551 - 21.9720 - 13.2469

Lomax - - 12.3594 - 17.9267

Distribution Data Set 2 â b̂ α̂ λ̂ β̂

KPL 8.9953 7.4396 2.0506 5.5581 0.2604
WFr 0.0823 3.8303 5.0670 - 0.1522
WL 0.0056 0.1645 4.3790 - 1.2422

KBXII 8.3595 6.4601 0.0580 4.1935 1.5752
EL 6.1659 - 0.6294 - 17.4538

TLGL 9.5741 - 0.3008 - 7.2733
PL - - 0.9186 26.5070 0.5654

Lomax - - 0.2847 - 24.8517

Based on the notations of the KPL distribution, we now present the measures of
adequacy that we use. Let x1, . . . , xn represent the data and x(1), . . . , x(n) be their or-
dered values. First, we consider the Cramér-von Mises (W*), Anderson Darling (A*) and
Kolmogorov-Smirnov (K-S) statistics (Dn) defined by

W* =
1

12n
+

n

∑
i=1

(
F(x(i); ξ̂)− 2i− 1

n

)2
,

A* = −n−
n

∑
i=1

2i− 1
n

[
log(F(x(i); ξ̂)) + log(1− F(xi; ξ̂))

]
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and

Dn = max
i=1,...,n

(
i
n
− F(x(i); ξ̂), F(x(i); ξ̂)− i− 1

n

)
,

respectively, where n is the sample size, ξ denotes the parameters of the distribution
(ξ = (a, b, α, β, λ) for the KPL distribution) and ξ̂ its vectorial MLE. The p-Value of the K-S
test related to Dn is also considered. The adequacy measures are widely used to know
which distribution suits in a better manner. The distribution having the minimum value
for the W* or A*, and maximum value for the p-Value, is chosen as the best one that is in
adequacy to the data.

Also, we consider the Akaike information criterion (AIC), correct Akaike information
criterion (CAIC), Bayesian information criterion (BIC) and Hannan-Quinn information
criterion (HQIC), defined as

AIC = −2 log L(x; ξ̂) + 2k, BIC = −2 log L(x; ξ̂) + k log(n),

CAIC = −2 log L(x; ξ̂) +
2kn

n− k− 1
, HQIC = −2 log L(x; ξ̂) + 2k log[log(n)],

respectively, where k is the number of parameters (k = 5 for the KPL distribution). As com-
monly accepted, the distribution having the minimum value for the AIC or CAIC or BIC or
HQIC value is chosen as the best one that fits the data. For the considered data sets and
distributions, the values of the measures above are computed and reported in Table 4.

Table 4. The goodness of fit tests and adequacy values for the data sets.

Distribution
Data Set 1 W* A* Dn p-Value AIC CAIC BIC HQIC

KPL 0.0232 0.2272 0.0604 0.9605 125.6272 126.5647 136.8697 130.0929
KBXII 0.0645 0.5108 0.0747 0.8287 129.838 130.7755 141.0804 134.3036

PL 0.1345 0.9450 0.0778 0.7909 131.9917 132.3553 138.7372 134.6711
WL 0.1860 1.2995 0.1030 0.4476 138.8186 139.4340 147.8126 142.3911
WFr 0.2186 1.4956 0.1205 0.2610 141.3542 141.9696 150.3482 144.9267

TLGL 0.4060 2.5291 0.1443 0.1085 152.7280 153.0916 159.4734 155.4073
EL 0.4265 2.6440 0.1440 0.1098 153.4122 153.7758 160.1577 156.0916

Lomax 0.3213 2.0540 0.3554 4.18 × 10−08 204.3163 204.4954 208.8133 206.1026

Data Set 2 W* A* Dn p-Value AIC CAIC BIC HQIC

KPL 0.0936 0.4740 0.0726 0.5530 2035.768 2036.294 2049.705 2041.428
WFr 0.1523 0.8761 0.0957 0.2221 2039.442 2039.790 2050.592 2043.970
WL 0.1907 1.1122 0.1175 0.0730 2043.763 2044.111 2054.913 2048.292

KBXII 0.3134 1.7692 0.1558 0.0059 2060.251 2060.778 2074.189 2065.912
EL 0.5717 3.2453 0.1399 0.0182 2072.046 2072.252 2080.408 2075.442

TLGL 0.6155 3.5241 0.1372 0.0218 2077.853 2078.060 2086.215 2081.249
PL 0.1488 0.7585 0.2486 7.22 × 10−7 2117.392 2117.599 2125.755 2120.788

Lomax 0.4167 2.3268 0.3110 1.65 × 10−10 2157.868 2157.971 2163.443 2160.132

From the results of Table 4, it is evident that best fit is observed with the proposed
KPL distribution and other distributions based on the Lomax distribution attained worst
information criterion values. This is also witnessed through the fits of the pdfs that are
depicted in Figure 3.
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Fitting of KPL and distributions 
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Figure 3. Fitted pdf curves of the distributions to the histograms for (a) data set 1 and (b) data set 2.

Among all the listed distributions, the KPL distribution has a better fit for the data
considered. We confirm this visual result by plotting the Probability-Probability (PP) plots
of the estimated distributions in Figures 4 and 5 for data sets 1 and 2, respectively.
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Figure 4. Fitted PP plots of the distributions for data set 1.



Stats 2021, 4 43

0.0 0.4 0.8

0
.0

0
.6

KPL

Observed

E
x
p

e
c
te

d
0.0 0.4 0.8

0
.0

0
.6

WFr

Observed

E
x
p

e
c
te

d

0.0 0.4 0.8

0
.0

0
.6

WL

Observed

E
x
p

e
c
te

d

0.0 0.4 0.8

0
.0

0
.6

KBXII

Observed

E
x
p
e

c
te

d

0.0 0.4 0.8

0
.0

0
.6

EL

Observed
E

x
p
e

c
te

d

0.0 0.4 0.8

0
.0

0
.6

TLGL

Observed

E
x
p
e

c
te

d

0.0 0.4 0.8

0
.0

0
.6

PL

Observed

E
x
p
e
c
te

d

0.0 0.4 0.8

0
.0

0
.6

L

Observed

E
x
p
e
c
te

d

Figure 5. Fitted PP plots of the distributions for data set 2.

From Figures 4 and 5, for the two data sets, it is clear that the best fit of the black
diagonal line is assigned to the red line, corresponding to the one of the KPL distribution.

From these analyses, it can be seen that having additional shape parameters in the
distribution is an advantage when talking about the extended tail version of the data.
In addition, the dispersion and trend of the data can be characterized using the scale and
location parameters of the basic distribution. Overall, a distribution that is compared to
measurements of location, scale, and shape parameters always has a better advantage
in handling non-normal data structures. Here, this advantage is captured by having
two additional shape parameters which helped to see the characterization and fit in the
best way.

8. Summary

The work carried out in this paper is to address some limitations of the PL distribution
and also to illustrate the usefulness of the shape parameters in handling non-normal data.
An attempt is made to introduce a new distribution, namely the KPL distribution, which is
obtained by inducing the cdf of the PL distribution into the functional form of the Kw-G
family of distributions. It contains five parameters consisting of one location, one scale
and three shape parameters. In the work of Rady et al. [20], it is learned that the hrf of the
PL distribution fails to attain the increasing pattern and decreasing-increasing-increasing
pattern. This is not the case for the hrf of the KPL distribution. Important properties are
studied, including moments, entropy measures and order statistics. With the help of two
practical data sets, the fit of the KPL distribution is done. Information criterion measures
are compared between the KPL distribution and some distributions also based on the
Lomax distribution, including the PL distribution. It is shown that the KPL distribution
has a better fit. Hence, the KPL distribution can work in a better manner for some kind of
non-normal data.
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